Evolution and Elasticity of Agricultural Carbon Balance in Beijing, Tianjin, and Hebei
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
- Agricultural carbon emissions, carbon sink data, and crop yield data were sourced from the municipal statistical yearbooks of Beijing, Tianjin, and Hebei for 2013–2022. The specific data sources include the Beijing Statistical Yearbook, Tianjin Statistical Yearbook, Shijiazhuang Statistical Yearbook, Tangshan Statistical Yearbook, Qinhuangdao Statistical Yearbook, Handan Statistical Yearbook, Xingtai Statistical Yearbook, Baoding Economic Statistical Yearbook, Zhangjiakou Statistical Yearbook, Chengde Statistical Yearbook, Cangzhou Statistical Yearbook, Langfang Statistical Yearbook, and Hengshui Statistical Yearbook. Available on the official website of the corresponding municipal government. Some supplementary data were obtained from the China Social and Economic Big Data Research Platform. (https://data.cnki.net/trade/valueSearch/index?ky=%E7%8E%89%E7%B1%B3&zcode=Z009) (accessed on 23 October 2025).
- The DEM data are sourced from the National Basic Geographic Information Center (https://ngcc.cn/dlxxzy/gjjcdlxxsjk/) (accessed on 23 October 2025).
- The 30 m China land cover dataset (CLCD) was derived from the processing results of the GEE platform [41] (https://www.earth-system-science-data.net/) (accessed on 23 October 2025).
2.3. Quantifying Agricultural Carbon Emissions
2.4. Quantifying the Agricultural Carbon Sink
2.5. Quantifying the Carbon Balance and Elasticity
2.5.1. Quantifying the Net Carbon Sink and Carbon Compensation Rates
2.5.2. Quantifying the Marginal Agricultural Product Carbon Balance
2.5.3. Quantifying the Carbon Balance Elasticity of Agricultural Products
2.6. Spatial Autocorrelation Analysis
3. Results
3.1. Current Status of Agricultural Carbon Balance
3.2. Spatial–Temporal Characteristics of Agricultural Carbon Emissions
3.3. Spatial–Temporal Characteristics of Agricultural Carbon Sinks
3.4. Spatial and Temporal Characteristics of Agricultural Carbon Compensation Rates
3.5. Spatial Autocorrelation Analysis of the Agricultural Carbon Balance
3.5.1. Global Spatial Autocorrelation
3.5.2. Local Spatial Autocorrelation
3.6. Marginal Agricultural Product Carbon Balance Analysis
3.7. Agricultural Product Carbon Balance Flexibility Mechanism
3.7.1. Framework for a Carbon Balance Elasticity Mechanism
3.7.2. Analysis of the Carbon Balance Elasticity Mechanism
- Beijing–Tianjin Suburban Agricultural Zone (I) (Figure 10)
- 2.
- Northeast Hebei Agricultural Zone (II) (Figure 11)
- 3.
- Central Hebei Plain Agricultural Zone (III) (Figure 12)
- 4.
- Taihang Mountain Agricultural Zone (IV) (Figure 13)
- 5.
- Daming Agricultural Zone (V) (Figure 14)
3.8. Differentiated Measures
- A modern agricultural production system adapted to different regions should be built.
- 2.
- The ecological compensation and carbon trading mechanisms should be improved.
- 3.
- The agricultural industrial structure should be optimized, and the path to the integration of the three industries should be optimized.
- 4.
- Regional coordination, protection, and incentives should be strengthened.
4. Discussion
4.1. Analysis of Research Results
4.2. Comparison with Existing Research
4.3. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| BTH | Beijing–Tianjin–Hebei |
| IPCC | Intergovernmental Panel on Climate Change |
| IREEA | Institute of Agricultural Resources and Ecological Environment, Nanjing Agricultural University |
| IABCAU | College of Agriculture and Biotechnology, China Agricultural University |
| I | Beijing–Tianjin Suburban Agricultural Zone |
| II | Northeast Hebei Agricultural Zone |
| III | Central Hebei Plain Agricultural Zone |
| IV | Taihang Mountain Agricultural Zone |
| V | Daming Agricultural Zone |
Appendix A


References
- The Intergovernmental Panel on Climate Change. The IPCC Sixth Assessment Report on Climate Change Impacts. Popul. Dev. Rev. 2022, 48, 629–633. [Google Scholar] [CrossRef]
- Laborde, D.; Mamun, A.; Martin, W.; Piñeiro, V.; Vos, R. Agricultural Subsidies and Global Greenhouse Gas Emissions. Nat. Commun. 2021, 12, 2601. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.X.; Deng, R.R. Spatial-Temporal Evolution and Influencing Factors of Net Carbon Sink Efficiency in Chinese Cities under the Background of Carbon Neutrality. J. Clean. Prod. 2022, 365, 132547. [Google Scholar] [CrossRef]
- Wang, L.; Lv, T.; Zhang, X.; Hu, H.; Cai, X. Global Research Trends and Gaps in Ecological Compensation Studies from 1990 to 2020: A Scientometric Review. J. Nat. Conserv. 2022, 65, 126097. [Google Scholar] [CrossRef]
- Luo, H. Research on Domestic Agricultural Carbon Source/Sink Effect: Perspectives, Advances and Improvements. Shengtai Xuebao 2022, 42, 832–3841. [Google Scholar]
- Wei, H.; Wu, L.; Yang, D.; Chen, D.; Xiong, L. Spatiotemporal dynamic characteristics and driving impact mechanisms of carbon sources and sinks in Chinese cropland ecosystem. Acta Ecol. Sin. 2025, 45, 7277–7296. [Google Scholar]
- Yuan, R.; Xu, C.; Kong, F. Decoupling Agriculture Pollution and Carbon Reduction from Economic Growth in the Yangtze River Delta, China. PLoS ONE 2023, 18, e0280268. [Google Scholar] [CrossRef]
- Wei, Q.; Xue, L.; Zhang, H.; Chen, P.; Yang, J.; Niu, B. Spatiotemporal Analysis of Carbon Emission Efficiency across Economic Development Stages and Synergistic Emission Reduction in the Beijing-Tianjin-Hebei Region. J. Environ. Manag. 2025, 377, 124609. [Google Scholar] [CrossRef] [PubMed]
- Mu, J.; Wang, J.; Liu, B.; Yang, M. Spatiotemporal Dynamics and Influencing Factors of CO2 Emissions under Regional Collaboration: Evidence from the Beijing-Tianjin-Hebei Region in China. Environ. Pollut. 2024, 357, 124403. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, Z.; Wu, W.; Shao, H. The relationship between China’s provincial carbon balance capacity and urbanization under carbon neutrality target. J. Nat. Resour. 2022, 37, 3136–3152. [Google Scholar] [CrossRef]
- Wang, J.; Dong, X.; Qiao, H.; Dong, K. Impact Assessment of Agriculture, Energy and Water on CO2 Emissions in China: Untangling the Differences between Major and Non-Major Grain-Producing Areas. Appl. Econ. 2020, 52, 482–6497. [Google Scholar] [CrossRef]
- Chen, S.; Yang, P.; Zhang, Y.; Dong, W.; Hu, C.; Oenema, O. Responses of Cereal Yields and Soil Carbon Sequestration to Four Long-Term Tillage Practices in the North China Plain. Agronomy 2022, 12, 176. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, X.; Hu, X.; Zhou, X. Spatial-Temporal Evolution of Agricultural Carbon Balance at Township Scale and Carbon Compensation Zoning: A Case Study of Guangshui City, Hubei Province. Land 2024, 13, 820. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, W.; Wang, H.; Gao, J.; Zhang, R.; Xu, G.; Wang, Z. Research on the Improvement of Carbon Neutrality by Utilizing Agricultural Waste: Based on a Life Cycle Assessment of Biomass Briquette Fuel Heating System. J. Clean. Prod. 2024, 434, 140365. [Google Scholar] [CrossRef]
- Li, J.; Ning, J.; Song, J.; Chen, X. Analysis of the Spatial Mismatch Pattern of Net Carbon in Agriculture and Its Influencing Factors. Environ. Impact Assess. Rev. 2024, 106, 107522. [Google Scholar] [CrossRef]
- Zhou, P.; Li, X.; Lai, J.; Guo, X.; Wu, J. Straw Amendment Induced Contrasting Net Carbon Balance in Subtropical Paddy and Adjacent Upland Soils. Appl. Soil Ecol. 2025, 207, 105959. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, H.; Yang, M.; Aihemaiti, G.; Lu, W.; Zhao, R. Ecological Compensation Based on Multiscale Ecosystem Carbon Sequestration Service Flow. J. Environ. Manag. 2024, 372, 123396. [Google Scholar] [CrossRef]
- Zhang, Z.; Cui, Y.; Wang, L.; Sun, X.; Gao, Y. Determining the Ecological Compensation Standards Based on Willingness to Accept (WTA) for Intensive Agricultural Production Areas: A Case in China. Appl. Geogr. 2023, 158, 103051. [Google Scholar] [CrossRef]
- Chen, B.; Xu, X.; Wang, S.; Yang, T.; Liu, Z.; Falk, S. Carbon Dioxide Fertilization Enhanced Carbon Sink Offset by Climate Change and Land Use in Amazonia on a Centennial Scale. Sci. Total Environ. 2024, 955, 176903. [Google Scholar] [CrossRef] [PubMed]
- Shen, R.; Yang, Y.; Xu, J.; Wang, L.; Jiang, Y.; Xie, Y.; Wang, Y. Research on Carbon Compensation Zoning Guided by Major Function Zones: A Case Study of the Yangtze River Delta Region. Ecol. Indic. 2025, 173, 113383. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, Z.; Liu, D.; Zhang, L.; Li, M.; Khan, M.I.; Li, T.; Cui, S. Calculation and Analysis of Agricultural Carbon Emission Efficiency Considering Water–Energy–Food Pressure: Modeling and Application. Sci. Total Environ. 2024, 907, 167819. [Google Scholar] [CrossRef]
- Meng, Q.; Li, C. Spatiotemporal Evolutionary Patterns and Influencing Factors of Urban Carbon Emissions in China. Ecol. Indic. 2025, 176, 113665. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, B.; Zhao, Y.; Liu, X.; Pan, K.; Zhang, Y. Research on the Uncertainty Analysis of the Carbon Peak and Pivotal Influencing Factors for Provincial Agriculture in China. Ecol. Model. 2025, 509, 111266. [Google Scholar] [CrossRef]
- Huan, H.; Wang, L.; Zhang, Y. Regional Differences, Convergence Characteristics, and Carbon Peaking Prediction of Agricultural Carbon Emissions in China. Environ. Pollut. 2025, 366, 125477. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Yu, J.; Xia, Y.; Wang, J. Spatiotemporal Characteristics of Carbon Emissions in Energy-Enriched Areas and the Evolution of Regional Types. Energy Rep. 2021, 7, 7224–7237. [Google Scholar] [CrossRef]
- Liu, X.; Jin, X.; Luo, X.; Zhou, Y. Quantifying the Spatiotemporal Dynamics and Impact Factors of China’s County-Level Carbon Emissions Using ESTDA and Spatial Econometric Models. J. Clean. Prod. 2023, 410, 137203. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, F.; Gao, C.; Mangi, E.; Ali, C. The Potential for Bioenergy Generated on Marginal Land to Offset Agricultural Greenhouse Gas Emissions in China. Renew. Sustain. Energy Rev. 2024, 189, 113924. [Google Scholar] [CrossRef]
- Wang, L.; Shi, P.; Luo, J.; Yin, J.; Cheng, F.; Shi, J.; Wang, Z. Region-County Characteristics of Spatiotemporal Dynamic Evolution and Influencing Factors on Agricultural Net Carbon Sink in Hexi Region of Gansu Province. Ecol. Indic. 2024, 169, 112817. [Google Scholar] [CrossRef]
- Yu, X.; Wu, Z.; Zheng, H.; Li, M.; Tan, T. Corrigendum to “How Urban Agglomeration Improve the Emission Efficiency? A Spatial Econometric Analysis of the Yangtze River Delta Urban Agglomeration in China”. J. Environ. Manag. 2020, 263, 110399. [Google Scholar] [CrossRef]
- Shi, K.; Yu, B.; Zhou, Y.; Chen, Y.; Yang, C.; Chen, Z.; Wu, J. Spatiotemporal Variations of CO2 Emissions and Their Impact Factors in China: A Comparative Analysis between the Provincial and Prefectural Levels. Appl. Energy 2019, 233–234, 170–181. [Google Scholar] [CrossRef]
- Liu, X.; Wei, Y.; Jin, X.; Luo, X.; Zhou, Y. County-Level Carbon Compensation Zoning Based on China’s Major Function-Oriented Zones. J. Environ. Manag. 2024, 367, 121988. [Google Scholar] [CrossRef]
- Zhang, L.; Mu, R.; Zhan, Y.; Yu, J.; Liu, L.; Yu, Y.; Zhang, J. Digital Economy, Energy Efficiency, and Carbon Emissions: Evidence from Provincial Panel Data in China. Sci. Total Environ. 2022, 852, 158403. [Google Scholar] [CrossRef]
- Pelaracci, S.; Goglio, P.; Moakes, S.; Knudsen, M.T.; Van Mierlo, K.; Adams, N.; Maxime, F.; Maresca, A.; Romero-Huelva, M.; Waqas, M.A.; et al. Harmonizing Soil Carbon Simulation Models, Emission Factors and Direct Measurements Used in LCA of Agricultural Systems. Agric. Syst. 2025, 227, 104361. [Google Scholar] [CrossRef]
- Li, X.; Chen, B.; Liu, H.; Xu, M.; Yang, H. Characteristics of Agricultural Carbon Emissions in Arid Zones, Drivers and Decoupling Effects: Evidence from Xinjiang, China. Energy 2025, 328, 136373. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Y.; Zhang, G. Spatial-Temporal Distribution Pattern and Driving Factors of Agricultural Carbon Sinks in Beijing-Tianjin-Hebei Region from the Perspective of Carbon Neutrality. J. Agric. Sci. 2024, 162, 1–18. [Google Scholar] [CrossRef]
- Jin, M.; Feng, Y.; Wang, S.; Chen, N.; Cao, F. Can the Development of the Rural Digital Economy Reduce Agricultural Carbon Emissions? A Spatiotemporal Empirical Study Based on China’s Provinces. Sci. Total Environ. 2024, 939, 173437. [Google Scholar] [CrossRef]
- Wang, Y.; Li, W.; Li, G.; Tan, S. Assessing the Impact of Regional Coordinated Development on a Low-Carbon Future: Evidence from the Beijing-Tianjin-Hebei Coordinated Development Strategy. J. Clean. Prod. 2024, 481, 144140. [Google Scholar] [CrossRef]
- Wei, Y.M.; Chen, K.; Kang, J.N.; Chen, W.; Wang, X.Y.; Zhang, X. Policy and Management of Carbon Peaking and Carbon Neutrality: A Literature Review. Engineering 2022, 14, 52–63. [Google Scholar] [CrossRef]
- Xu, R.; Zhang, Z. Exploring the Carbon Rebound Effect of Agriculture and Policy Response: Lessons from Zero Growth of Fertiliser Action. Environ. Res. 2025, 285, 122455. [Google Scholar] [CrossRef] [PubMed]
- Fang, F. Research of spatial and temporal pattern of agricultural production efficiency and its convergence in Beijing-Tianjin-Hebei Region. World Reg. Stud. 2019, 28, 130–140. [Google Scholar]
- Yang, J. Huang Xin the 30 m Annual Land Cover Datasets and Its Dynamics in China from 1985 to 2023. Earth Syst. Sci. Data 2024, 13, 3907–3925. [Google Scholar] [CrossRef]
- Pearce, J.K.; Hofmann, H. Potential Methane Emissions from Aquifer and Coal Seam Gas Groundwater Extraction: Effect of Open and Closed Sampling Methods and New Emission Factors. J. Hydrol. 2025, 658, 133228. [Google Scholar] [CrossRef]
- Mantoam, E.J.; Angnes, G.; Mekonnen, M.M.; Romanelli, T.L. Energy, Carbon and Water Footprints on Agricultural Machinery. Biosyst. Eng. 2020, 198, 304–322. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, H.B. Characteristics, influence factors, and prediction of agricultural carbon emissions in Shandong Province. Chin. J. Eco-Agric. 2022, 30, 558–569. [Google Scholar]
- Wang, L.; Bai, Y.; Wang, J.; Qin, F.; Liu, C.; Zhou, Z.; Jiao, X. A Transferable Learning Classification Model and Carbon Sequestration Estimation of Crops in Farmland Ecosystem. Remote Sens. 2022, 14, 5216. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, J.B. Regional Differentiation Research on Net Carbon Effect of Agricultural Production in China. J. Nat. Resour. 2013, 28, 1298–1309. [Google Scholar]
- Cao, Z.H.; Qin, S.; Hao, J.M. Spatio-Temporal Evolution and Agglomer-Ation Characteristics of Agricultural Production Carbon Sink in Henan Province. Chin. J. Eco-Agric. 2018, 26, 1283–1290. [Google Scholar]
- Han, Z.Y.; Meng, Y.L.; Xu, J.; Wu, Y.; Zhou, Z.G. Temporal and Spatial Dif- Ference in Carbon Footprint of Regional Farmland Ecosystem—Taking Jiangsu Province as a Case. J. Agro-Environ. Sci. 2012, 31, 1034–1041. [Google Scholar]
- Luo, J.; Zhao, Z.; Pang, J. Spatiotemporal Characteristics and Dynamic Prediction of Agricultural Carbon Compensation Potential in the Middle and Lower Reaches of the Yellow River Basin. Environ. Sci. Pollut. Res. 2025, 32, 1903–1917. [Google Scholar] [CrossRef]
- Yan, K.; Tang, D.T.; Gan, T.Q. Quantitative Evaluation and Dynamic Evolution of the Synergistic Effect of Agricultural Pollution and Carbon Reduction in China:An Analysis Based on Marginal Abatement Cost. CRE 2024, 9, 22–41. [Google Scholar]
- Hirth, L.; Khanna, T.M.; Ruhnau, O. How Aggregate Electricity Demand Responds to Hourly Wholesale Price Fluctuations. Energy Econ. 2024, 135, 107652. [Google Scholar] [CrossRef]
- Brown, T.; Neumann, F.; Riepin, I. Price Formation without Fuel Costs: The Interaction of Demand Elasticity with Storage Bidding. Energy Econ. 2025, 147, 108483. [Google Scholar] [CrossRef]
- Li, R.; Li, L.; Wang, Q. The Impact of Energy Efficiency on Carbon Emissions: Evidence from the Transportation Sector in Chinese 30 Provinces. Sustain. Cities Soc. 2022, 82, 103880. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, S.; Lei, Y.; Li, S.; Li, L. Exploring Spatial Characteristics of City-Level CO2 Emissions in China and Their Influencing Factors from Global and Local Perspectives. Sci. Total Environ. 2021, 754, 142206. [Google Scholar] [CrossRef]
- Li, Y.; Xue, C.; Chai, C.; Li, W.; Li, N.; Yao, S. Influencing Factors and Spatiotemporal Heterogeneity of Net Carbon Sink of Conservation Tillage: Evidence from China. Environ. Sci. Pollut. Res. 2023, 30, 110913–110930. [Google Scholar] [CrossRef]
- Luo, J.; Huang, M.; Bai, Y. Promoting Green Development of Agriculture Based on Low-Carbon Policies and Green Preferences: An Evolutionary Game Analysis. Environ. Dev. Sustain. 2023, 26, 6443–6470. [Google Scholar] [CrossRef]
- Song, Y.M.; Li, A. Spatiotemporal Differentiation Pattern and Emission Reduction Optimization Path of Carbon Emissions in Beijing-Tianjin-Hebei Region. Soil Water Conserv. China 2024, 44, 408–417. [Google Scholar]
- Zhang, J.T.; Shi, H.; Tian, H.Q.; Lu, F.; Xu, X.Y.; Liu, D.; Gang, C.C.; Fang, S.M.; Qin, X.Y.; Pan, N.Q. Spatial-temporal changes in and influencing mechanisms for cropland soil organic carbon storage in the North China Plain from 1981 to 2019. Acta Ecol. Sin. 2022, 42, 9560–9576. [Google Scholar] [CrossRef]
- Fang, F.; Wang, F.; Shi, Z.L.; Zhen, X.Q.; Shao, Y.H.; Li, X.; Qiu, L. Quantitative Estimation on Straw Nutrient Resources and Emission of Pollutants from Straw Burning in Beijing-Tianjin-Hebei Region. Trans. Chin. Soc. Agric. Eng. 2017, 33, 1–6. [Google Scholar]
- Su, K.; Chen, H.; Gan, C. Spatial Differentiation and Dynamic Evolution of Agricultural Carbon Emissions in Fujian Province of China. Nat. Environ. Pollut. Technol. 2022, 21, 1015–1025. [Google Scholar] [CrossRef]
- Yang, P.; Peng, S.; Benani, N.; Dong, L.; Li, X.; Liu, R.; Mao, G. An Integrated Evaluation on China’s Provincial Carbon Peak and Carbon Neutrality. J. Clean. Prod. 2022, 377, 134497. [Google Scholar] [CrossRef]
- Ma, Y.; Li, J.; Cao, W.; Yin, C.; Huang, L. Projecting the carbon sink potential and contribution of Grain for Green Program in the Beijing-Tianjin-Hebei region. Acta Geogr. Sin. 2024, 79, 732–746. [Google Scholar]
- Burke, T.; Rowland, C.; Whyatt, J.D.; Blackburn, G.A.; Abbatt, J. Achieving National Scale Targets for Carbon Sequestration through Afforestation: Geospatial Assessment of Feasibility and Policy Implications. Environ. Sci. Policy 2021, 124, 279–292. [Google Scholar] [CrossRef]
- Chen, X.; Lin, B. Towards Carbon Neutrality by Implementing Carbon Emissions Trading Scheme: Policy Evaluation in China. Energy Policy 2021, 157, 112510. [Google Scholar] [CrossRef]
- Du, Y.; Liu, H.; Huang, H.; Li, X. The Carbon Emission Reduction Effect of Agricultural Policy—Evidence from China. J. Clean. Prod. 2023, 406, 137005. [Google Scholar] [CrossRef]
- Jia, L.-L.; Sun, Y.; Liu, K.; Yang, Y.; Huang, S.; Yang, J.; Liu, M. Soil Fertility Status of Farmland and Its Change in Different Ecological Region of Hebei Province. Chin. J. Soil. Sci. 2018, 49, 367–376. [Google Scholar]
- Ma, B.; Li, Y.; Zhou, B.; Jian, Y.; Zhang, C.; An, J. The Green Development Mechanism of the Beijing-Tianjin-Hebei Coordinated Development Strategy in China: Novel Evidence of Green Finance. Int. Rev. Econ. Financ. 2025, 98, 103941. [Google Scholar] [CrossRef]
- Miao, J.; Pan, P.; Liu, B.; Yuan, X.; Pan, Z.; Li, L.; Wang, X.; Wang, Y.; Cao, Y.; Zhang, T. Research on Grain Supply and Demand Matching in the Beijing–Tianjin–Hebei Region Based on Ecosystem Service Flows. J. Integr. Agric. 2025; in press. [Google Scholar]
- Xu, M.; Niu, L.; Wang, X.; Zhang, Z. Evolution of Farmland Landscape Fragmentation and Its Driving Factors in the Beijing-Tianjin-Hebei Region. J. Clean. Prod. 2023, 418, 138031. [Google Scholar] [CrossRef]
- Liang, L.; Wang, H.; Huai, H.; Tang, X. Study of the Decoupling Patterns between Agricultural Development and Agricultural Carbon Emissions in Beijing Tianjin Hebei Region from 2000 to 2020. Land 2024, 13, 839. [Google Scholar] [CrossRef]
- Shen, X.; Li, J.; Yin, Y.; Tang, J.; Qian, B.; Lin, X.; Wang, Z. Multi-Objective Optimal Scheduling Considering Low-Carbon Operation of Air Conditioner Load with Dynamic Carbon Emission Factors. Front. Energy Res. 2024, 12, 1360573. [Google Scholar] [CrossRef]
- Huang, Y.; Li, Z.; Shi, M. Prediction of Plant Carbon Sink Potential in Beijing-Tianjin-Hebei Region of China. Environ. Dev. Sustain. 2022, 26, 3529–3556. [Google Scholar] [CrossRef]
- Liu, X.; Xin, L. Spatial and Temporal Evolution and Greenhouse Gas Emissions of China’s Agricultural Plastic Greenhouses. Sci. Total Environ. 2023, 863, 160810. [Google Scholar] [CrossRef] [PubMed]















| Carbon Emission (C) | Carbon Emission Source (Ei) | Carbon Emission Factor (δi) | Source of Data | |
|---|---|---|---|---|
| Agricultural energy consumption (C) | Total mechanical power/(kg·kw−1) | 0.18 | Mantoam et al. [43] | |
| Irrigation/(kg·hm−2) | 266.48 | * IREEA | ||
| Diesel/(kg·kg−1) | 0.593 | * IPCC | ||
| Agricultural land use (C) | Fertilizer/(kg·kg−1) | 0.896 | * IREEA | |
| Pesticide/(kg·kg−1) | 4.934 | |||
| Plastic film/(kg·kg−1) | 5.18 | |||
| Plowing/(kg·hm−2) | 312.6 | * IABCAU | ||
| Crop cultivation | CH4 | Rice/(kg·hm−2) | 234 | Liu et al. [44] |
| N2O | Rice/(kg·hm−2) | 0.24 | ||
| Wheat/(kg·hm−2) | 1.75 | |||
| Corn/(kg·hm−2) | 2.532 | |||
| Beans/(kg·hm−2) | 2.29 | |||
| Potato/(kg·hm−2) | 0.948 | |||
| Oilseed/(kg·hm−2) | 0.95 | |||
| Vegetables/(kg·hm−2) | 4.21 | |||
| Name of Crop | * Carbon Content Coefficient (kgC/kg) | * Water-Cut Ratio (kg/kg) | * Coefficient of Economy (kg/kg) |
|---|---|---|---|
| Rice | 0.414 | 0.12 | 0.45 |
| Wheat | 0.485 | 0.12 | 0.4 |
| Corn | 0.471 | 0.13 | 0.4 |
| Beans | 0.45 | 0.13 | 0.34 |
| Potato | 0.423 | 0.7 | 0.7 |
| Peanut | 0.45 | 0.1 | 0.43 |
| Canola seed | 0.25 | 0.1 | 0.45 |
| Sunflower seed | 0.45 | 0.1 | 0.3 |
| Cotton | 0.45 | 0.08 | 0.1 |
| Vegetables | 0.45 | 0.9 | 0.55 |
| Fruit | 0.45 | 0.9 | 0.6 |
| Type | Year | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Agricultural carbon offset rate | Moran’s I value | 0.049 | 0.045 | 0.044 | 0.058 | 0.063 | 0.056 | 0.052 | 0.063 | 0.066 | 0.070 |
| p value | 0.013 | 0.016 | 0.019 | 0.004 | 0.002 | 0.006 | 0.007 | 0.002 | 0.001 | 0.001 |
| Agricultural Zone | Compensation Focus | Basis for Compensation |
|---|---|---|
| * I | Planting high carbon sink crops, reducing emissions from facility agriculture | Carbon sink surplus, policy responsiveness |
| * II | Application of low-carbon technologies for specialty agricultural products | Carbon source elasticity reduction, industrial driving effect |
| * III | Reduction in chemical fertilizer use and comprehensive utilization of crop residues | Carbon emission reduction per unit area, scale |
| * IV | Soil and water conservation and enhancement of carbon sinks in forestry and fruit farming | Ecological vulnerability, carbon sink stability |
| * V | Ecological restoration and promotion of low-carbon production models | Ecological function importance, carbon sink level improvement |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, L.; Fu, M.; Zhang, K.; Han, X.; Xiong, Y. Evolution and Elasticity of Agricultural Carbon Balance in Beijing, Tianjin, and Hebei. Land 2025, 14, 2132. https://doi.org/10.3390/land14112132
Tan L, Fu M, Zhang K, Han X, Xiong Y. Evolution and Elasticity of Agricultural Carbon Balance in Beijing, Tianjin, and Hebei. Land. 2025; 14(11):2132. https://doi.org/10.3390/land14112132
Chicago/Turabian StyleTan, Litian, Meichen Fu, Kexin Zhang, Xiangxue Han, and Yuqing Xiong. 2025. "Evolution and Elasticity of Agricultural Carbon Balance in Beijing, Tianjin, and Hebei" Land 14, no. 11: 2132. https://doi.org/10.3390/land14112132
APA StyleTan, L., Fu, M., Zhang, K., Han, X., & Xiong, Y. (2025). Evolution and Elasticity of Agricultural Carbon Balance in Beijing, Tianjin, and Hebei. Land, 14(11), 2132. https://doi.org/10.3390/land14112132

