Assessment of Potential Landslide Scenarios Using Morphometry, Geomorphological Constraints, and Run-Out Analysis: A Case Study from Central Apennines (Italy)
Abstract
1. Introduction
2. Study Area

3. Materials and Methods
3.1. Morphometric Analysis
3.2. Geomorphological Analysis
3.3. Run-Out Analysis
- Digital Elevation Model (DEM);
- Release information (e.g., input hydrograph and/or block release);
- Friction parameters (μ and ξ);
- Calculation domain (spatial extension of the run-out patterns).
4. Results
4.1. Morphometric Features
4.2. Geomorphological Features
4.3. Run-Out Modeling
4.3.1. First Potential Landslide Scenario
4.3.2. Second Potential Landslide Scenario
5. Discussion
5.1. Morphometric and Geomorphological Constraints for Run-Out Modeling
5.2. Potential Triggering Mechanisms of Landslide Scenarios
5.3. Assumptions and Limitations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alcántara-Ayala, I. Landslides in a changing world. Landslides 2025, 22, 2851–2865. [Google Scholar] [CrossRef]
- Miccadei, E.; Carabella, C.; Paglia, G. Landslide Hazard and Environment Risk Assessment. Land 2022, 11, 428. [Google Scholar] [CrossRef]
- Yang, M.; Cui, S.; Jian, T. Global research trends in seismic landslide: A bibliometric analysis. Earthq. Res. Adv. 2025, 5, 100329. [Google Scholar] [CrossRef]
- Fidan, S.; Tanyaş, H.; Akbaş, A.; Lombardo, L.; Petley, D.N.; Görüm, T. Understanding fatal landslides at global scales: A summary of topographic, climatic, and anthropogenic perspectives. Nat. Hazards 2024, 120, 6437–6455. [Google Scholar] [CrossRef]
- Benz, S.A.; Blum, P. Global detection of rainfall-triggered landslide clusters. Nat. Hazards Earth Syst. Sci. 2019, 19, 1433–1444. [Google Scholar] [CrossRef]
- Gariano, S.L.; Guzzetti, F. Landslides in a changing climate. Earth-Sci. Rev. 2016, 162, 227–252. [Google Scholar] [CrossRef]
- Huggel, C.; Gruber, S.; Korup, O. Landslide hazards and climate change in high mountains. In Treatise on Geomorphology; Shroder, J., James, L.A., Harden, C.P., Clague, J.J., Eds.; Academic Press: San Diego, CA, USA, 2013; Volume 13, pp. 288–301. [Google Scholar] [CrossRef]
- Gracheva, R.; Golyeva, A. Landslides in Mountain Regions: Hazards, Resources and Information. In Geophysical Hazards; Beer, T., Ed.; International Year of Planet Earth; Springer: Dordrecht, The Netherlands, 2010; pp. 249–260. [Google Scholar] [CrossRef]
- Emberson, R.; Kirschbaum, D.B.; Amatya, P.; Tanyas, H.; Marc, O. Insights from the topographic characteristics of a large global catalog of rainfall-induced landslide event inventories. Nat. Hazards Earth Syst. Sci. 2022, 22, 1129–1149. [Google Scholar] [CrossRef]
- Argentin, A.L.; Robl, J.; Prasicek, G.; Hergarten, S.; Hölbling, D.; Abad, L.; Dabiri, Z. Controls on the formation and size of potential landslide dams and dammed lakes in the Austrian Alps. Nat. Hazards Earth Syst. Sci. 2021, 21, 1615–1637. [Google Scholar] [CrossRef]
- Ortiz-Giraldo, L.; Botero, B.A.; Vega, J. An integral assessment of landslide dams generated by the occurrence of rainfall-induced landslide and debris flow hazard chain. Front. Earth Sci. 2023, 11, 1157881. [Google Scholar] [CrossRef]
- Fan, X.; Scaringi, G.; Korup, O.; West, A.J.; van Westen, C.J.; Tanyas, H.; Hovius, N.; Hales, T.C.; Jibson, R.W.; Allstadt, K.E.; et al. Earthquake-Induced Chains of Geologic Hazards: Patterns, Mechanisms, and Impacts. Rev. Geophys. 2019, 57, 421–503. [Google Scholar] [CrossRef]
- Nikolova, V.; Kamburov, A.; Rizova, R. Morphometric analysis of debris flows basins in the Eastern Rhodopes (Bulgaria) using geospatial technologies. Nat. Hazards 2021, 105, 159–175. [Google Scholar] [CrossRef]
- Zou, Q.; Cui, P.; He, J.; Lei, Y.; Li, S. Regional risk assessment of debris flows in China—An HRU-based approach. Geomorphology 2019, 340, 84–102. [Google Scholar] [CrossRef]
- Rashid, M.A.; Leonelli, G.; Chelli, A. Quantitative characterization of geomorphological and topographical features of debris-flow channels at the Alpe di Succiso mountain, Northern Apennines (Italy). J. Maps 2024, 20, 1–13. [Google Scholar] [CrossRef]
- Peethambaran, B.; Nandakumar, V.; Sweta, K. Engineering geological investigation and runout modelling of the disastrous Taliye landslide, Maharashtra, India of 22 July 2021. Nat. Hazards 2023, 117, 3257–3272. [Google Scholar] [CrossRef]
- Gao, D.; Li, K.; Cai, Y.; Wen, T. Landslide Displacement Prediction Based on Time Series and PSO-BP Model in Three Georges Reservoir, China. J. Earth Sci. 2024, 35, 1079–1082. [Google Scholar] [CrossRef]
- Ali, S.; Haider, R.; Abbas, W.; Basharat, M.; Reicherter, K. Empirical assessment of rockfall and debris flow risk along the Karakoram Highway, Pakistan. Nat. Hazards 2021, 106, 2437–2460. [Google Scholar] [CrossRef]
- Horton, P.; Jaboyedoff, M.; Rudaz, B.; Zimmermann, M. Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale. Nat. Hazards Earth Syst. Sci. 2013, 13, 869–885. [Google Scholar] [CrossRef]
- Wen, T.; Chen, N.; Huang, D.; Wang, Y. A medium-sized landslide leads to a large disaster in Zhenxiong, Yunnan, China: Characteristics, mechanism and motion process. Landslides 2025, 22, 3365–3383. [Google Scholar] [CrossRef]
- Wang, Z.; Wen, T.; Chen, N.; Tang, R. Assessment of Landslide Susceptibility Based on the Two-Layer Stacking Model—A Case Study of Jiacha County, China. Remote Sens. 2025, 17, 1177. [Google Scholar] [CrossRef]
- Christen, M.; Kowalski, J.; Bartelt, P. RAMMS. Numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg. Sci. Technol. 2010, 63, 1–14. [Google Scholar] [CrossRef]
- Hungr, O.; McDougall, S. Two numerical models for landslide dynamic analysis. Comput. Geosci. 2009, 35, 978–992. [Google Scholar] [CrossRef]
- Mergili, M.; Fischer, J.T.; Krenn, J.; Pudasaini, S.P. r.avaflow v1, an advanced open-source computational framework for the propagation and interaction of two-phase mass flows. Geosci. Model. Dev. 2017, 10, 553–569. [Google Scholar] [CrossRef]
- Pitman, E.B.; Nichita, C.C.; Patra, A.; Bauer, A.; Sheridan, M.; Bursik, M. Computing granular avalanches and landslides. Phys. Fluids 2013, 15, 3638–3646. [Google Scholar] [CrossRef]
- Dash, R.K.; Kanungo, D.P.; Malet, J.P. Runout modelling and hazard assessment of Tangni debris flow in Garhwal Himalayas, India. Environ. Earth Sci. 2021, 80, 338. [Google Scholar] [CrossRef]
- Ullah, I.; Shafique, M.; Ali Khattak, G.; Shah, A. Debris flow simulations for hazard, vulnerability and risk assessment in the Karkorum mountain ranges, northern Pakistan. Remote Sens. Appl. Soc. Environ. 2024, 36, 101329. [Google Scholar] [CrossRef]
- Almagià, R. Studi Geografici Sulle Frane in Italia; Società Geografica Italiana: Rome, Italy, 1910; pp. 1–431. [Google Scholar]
- Trigila, A.; Iadanza, C.; Bussettini, M.; Lastoria, B. Dissesto Idrogeologico in Italia: Pericolosità e Indicatori di Rischio; Rapporti 356/2021; ISPRA: Rome, Italy, 2021; ISBN 978-88-448-1085-6. [Google Scholar]
- Zei, C.; Tarabusi, G.; Ciuccarelli, C.; Burrato, P.; Sgattoni, G.; Taccone, R.C.; Mariotti, D. CFTIlandslides, Italian database of historical earthquake-induced landslides. Sci. Data 2024, 11, 834. [Google Scholar] [CrossRef] [PubMed]
- Peruccacci, S.; Gariano, S.L.; Melillo, M.; Solimano, M.; Guzzetti, F.; Brunetti, M.T. The ITAlian rainfall-induced LandslIdes CAtalogue, an extensive and accurate spatio-temporal catalogue of rainfall-induced landslides in Italy. Earth Syst. Sci. 2023, 15, 2863–2877. [Google Scholar] [CrossRef]
- Guzzetti, F.; Cardinali, M. Debris flows phenomena in the Central Apennines of Italy. Terra Nova 1991, 3, 619–627. [Google Scholar] [CrossRef]
- Farabollini, P.; De Pari, P.; Discenza, M.E.; Minnillo, M.; Carabella, C.; Paglia, G.; Miccadei, E. Geomorphological evidence of debris flows and landslides in the Pescara del Tronto area (Sibillini Mts, Marche Region, Central Italy). J. Maps 2020, 17, 90–99. [Google Scholar] [CrossRef]
- Bianchi Fasani, G.; Di Luzio, E.; Esposito, C.; Evans, S.G.; Scarascia Mugnozza, G. Quaternary, catastrophic rock avalanches in the Central Apennines (Italy): Relationships with inherited tectonic features, gravity-driven deformations and the geodynamic frame. Geomorphology 2014, 211, 22–42. [Google Scholar] [CrossRef]
- Tacconi Stefanelli, C.; Catani, F.; Casagli, N. Geomorphological investigations on landslide dams. Geoenvironmental Disasters 2015, 2, 21. [Google Scholar] [CrossRef]
- Nicoletti, P.; Parise, M.; Miccadei, E. The Scanno rock avalanche (Abruzzi, south-central Italy). Boll. Soc. Geol. Ital. 1993, 112, 523–535. [Google Scholar]
- Calista, M.; Menna, V.; Mancinelli, V.; Sciarra, N.; Miccadei, E. Rockfall and Debris Flow Hazard Assessment in the SW Escarpment of Montagna del Morrone Ridge (Abruzzo, Central Italy). Water 2020, 12, 1206. [Google Scholar] [CrossRef]
- RAMMS::DEBRISFLOW User Manual (v1.8.0). WSL Institute for Snow and Avalanche Research SLF. Available online: https://ramms.ch/ramms-debrisflow/ (accessed on 21 June 2024).
- Parotto, M.; Cavinato, G.P.; Miccadei, E.; Tozzi, M. Line CROP 11: Central Apennines. In CROP Atlas: Seismic Reflection Profiles of the Italian Crust; Scrocca, D., Doglioni, C., Innocenti, F., Manetti, P., Mazzotti, A., Bertelli, L., Burbi, L., D’Offizi, S., Eds.; Memorie Descrittive della Carta Geologica d’Italia: Rome, Italy, 2004; pp. 145–153. [Google Scholar]
- Colacicchi, R. Geologia della Marsica Orientale. Geol. Rom. 1967, VI, 189–316. [Google Scholar]
- Accordi, G.; Carbone, F.; Civitelli, G.; Corda, L.; De Rita, D.; Esu, D.; Funiciello, R.; Kotsakis, T.; Mariotti, G.; Sposato, A. Carta delle litofacies del Lazio-Abruzzo ed aree limitrofe. CNR—Progetto Finalizzato “Geodinamica”, Rome, Italy. Quad. Ric. Sci. 1988, 114, 1–223. [Google Scholar]
- Cavinato, G.P.; Carusi, C.; Dall’Asta, M.; Miccadei, E.; Piacentini, T. Sedimentary and tectonic evolution of Plio–Pleistocene alluvial and lacustrine deposits of Fucino Basin (central Italy). Sediment. Geol. 2002, 148, 29–59. [Google Scholar] [CrossRef]
- Piacentini, T.; Miccadei, E. The role of drainage systems and intermontane basins in the quaternary landscape of the Central Apennines chain (Italy). Rend. Fis. Acc. Lincei 2014, 25, 139–150. [Google Scholar] [CrossRef]
- Patacca, E.; Scandone, P. Geology of the southern Apennines. Boll. Della Soc. Geol. Ital. 2007, 7, 75–119. [Google Scholar]
- D’Agostino, V.; Marchi, L. Debris Flow Magnitude in the Eastern Italian Alps: Data Collection and Analysis. Phys. Chem. Earth Part C 2001, 26, 657–663. [Google Scholar] [CrossRef]
- Galadini, F.; Messina, P. Characterisation of the recent tectonics of the Upper Sangro River Valley (Abruzzi Apennine, Central Italy). Ann. Geofis. 1993, 36, 277–285. [Google Scholar] [CrossRef]
- Ascione, A.; Cinque, A.; Miccadei, E.; Villani, F.; Berti, C. The Plio-Quaternary uplift of the Apennine chain: New data from the analysis of topography and river valleys in Central Italy. Geomorphology 2008, 102, 105–118. [Google Scholar] [CrossRef]
- Guerts, A.H.; Whittaker, A.C.; Gawthorpe, R.L.; Cowie, P.A. Transient landscape and stratigraphic responses to drainage integration in the actively extending central Italian Apennines. Geomorphology 2020, 353, 107013. [Google Scholar] [CrossRef]
- Miccadei, E.; Piacentini, T.; Buccolini, M. Long-term geomorphological evolution in the Abruzzo area (Central Apennines, Italy): Twenty years of research. Geol. Carpathica 2017, 68, 19–28. [Google Scholar] [CrossRef]
- Giraudi, C. The Apennine glaciations in Italy. Dev. Quat. Sci. 2004, 2, 215–223. [Google Scholar] [CrossRef]
- Esposito, G.; Mancinelli, V.; Paglia, G.; Ciavattella, F.; D’Amico, D.; Sulli, C.; Sammarone, L.; Miccadei, E. The geodiversity of the Abruzzo, Lazio, and Molise National Park (Central Italy). J. Maps 2023, 19, 2243302. [Google Scholar] [CrossRef]
- Carafa, M.M.C.; Galvani, A.; Di Naccio, D.; Kastelic, V.; Di Lorenzo, C.; Miccolis, S.; Sepe, V.; Pietrantonio, G.; Gizzi, C.; Massucci, A.; et al. Partitioning the Ongoing Extension of the Central Apennines (Italy): Fault Slip Rates and Bulk Deformation Rates from Geodetic and Stress Data. J. Geophys. Res. Solid. Earth 2020, 125, e2019JB018956. [Google Scholar] [CrossRef]
- Guidoboni, E.; Ferrari, G.; Mariotti, D.; Comastri, A.; Tarabusi, G.; Sgattoni, G.; Valensise, G. CFTI5Med, Catalogo dei Forti Terremoti in Italia (461 a.C.-1997) e Nell’area Mediterranea (760 a.C.-1500); Istituto Nazionale di Geofisica e Vulcanologia (INGV): Rome, Italy, 2018. [Google Scholar] [CrossRef]
- Guidoboni, E.; Ferrari, G.; Tarabusi, G.; Sgattoni, G.; Comastri, A.; Mariotti, D.; Ciuccarelli, C.; Bianchi, M.G.; Valensise, G. CFTI5Med, the new release of the catalogue of strong earthquakes in Italy and in the Mediterranean area. Sci. Data 2019, 6, 80. [Google Scholar] [CrossRef]
- Rovida, A.; Locati, M.; Camassi, R.; Lolli, B.; Gasperini, P.; Antonucci, A. Catalogo Parametrico dei Terremoti Italiani (CPTI15), Versione 4.0; Istituto Nazionale di Geofisica e Vulcanologia (INGV): Rome, Italy, 2022. [Google Scholar] [CrossRef]
- ISIDe Working Group. Italian Seismological Instrumental and Parametric Database (ISIDe); Istituto Nazionale di Geofisica e Vulcanologia (INGV): Rome, Italy, 2007. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Di Lena, B.; Antenucci, F.; Mariani, L. Space and time evolution of the Abruzzo precipitation. Ital. J. Agrometeorol. 2012, 1, 5–20. [Google Scholar]
- Scorzini, A.R.; Leopardi, M. Precipitation and temperature trends over central Italy (Abruzzo Region): 1951–2012. Theor. Appl. Climatol. 2019, 135, 959–977. [Google Scholar] [CrossRef]
- Curci, G.; Guijarro, J.A.; Di Antonio, L.; Di Bacco, M.; Di Lena, B.; Scorzini, A.R. Building a local climate reference dataset: Application to the Abruzzo region (Central Italy), 1930–2019. Int. J. Climatol. 2021, 41, 4414–4436. [Google Scholar] [CrossRef]
- Erener, A.; Düzgün, H.S.B. Landslide susceptibility assessment: What are the effects of mapping unit and mapping method? Environ. Earth Sci. 2012, 66, 859–877. [Google Scholar] [CrossRef]
- Chang, Z.; Catani, F.; Huang, F.; Liu, G.; Meena, S.R.; Huang, J.; Zhou, C. Landslide susceptibility prediction using slope unit-based machine learning models considering the heterogeneity of conditioning factors. J. Rock Mech. Geotech. Eng. 2023, 15, 1127–1143. [Google Scholar] [CrossRef]
- Romshoo, S.A.; Bhat, S.A.; Rashid, I. Geoinformatics for assessing the morphometric control on hydrological response at watershed scale in the upper Indus Basin. J. Earth Syst. Sci. 2012, 121, 659–686. [Google Scholar] [CrossRef]
- Strahler, A.N. Dynamic basis of geomorphology. Bull. Geol. Soc. Am. 1952, 63, 923–938. [Google Scholar] [CrossRef]
- Wilson, J.P.; Gallant, J.C. Digital Terrain Analysis. In Terrain Analysis: Principles and Applications; Wilson, J.P., Gallant, J.C., Eds.; John Wiley & Sons: New York, NY, USA, 2000; pp. 1–27. [Google Scholar]
- Hungr, O.; Wilson, P. Stability of slopes curved in plain—An example. In Proceedings of the 59th Canadian Geotechnical Conference, Vancouver, BC, Canada, 1–4 October 2006. [Google Scholar]
- Melton, M.A. The geomorphic and paleoclimatic significance of alluvial deposits in southern Arizona. J. Geol. 1965, 73, 1–38. [Google Scholar] [CrossRef]
- Wilford, D.J.; Sakals, M.E.; Innes, J.L.; Sidle, R.C.; Bergerud, W.A. Recognition of debris flow, debris flood and flood hazard through watershed morphometrics. Landslides 2004, 1, 61–66. [Google Scholar] [CrossRef]
- Welsh, A.; Davies, T. Identification of alluvial fans susceptible to debris-flow hazards. Landslides 2011, 8, 183–194. [Google Scholar] [CrossRef]
- Campobasso, C.; Carton, A.; Chelli, A.; D’Orefice, M.; Dramis, F.; Graciotti, R.; Guida, D.; Pambianchi, G.; Peduto, F.; Pellegrini, L. Aggiornamento ed integrazioni delle linee guida della carta Geomorfologica d’Italia alla scala 1:50.000. In Quaderni del Servizio Geologico d’Italia; Serie III, Servizio Geologico d’Italia: Rome, Italy, 2021; pp. 1–153. [Google Scholar]
- Smith, M.J.; Paron, P.; Griffiths, J. Geomorphological Mapping, Methods and Applications; Developments in Earth Surface Processes; Elsevier Science: Amsterdam, The Netherlands, 2011; Volume 15, pp. 1–610. ISBN 9780444534460. [Google Scholar]
- Seijmonsbergen, A.C. The modern geomorphological map. In Treatise on Geomorphology; Elsevier: Amsterdam, The Netherlands, 2013; pp. 35–52. [Google Scholar] [CrossRef]
- Gustavsson, M.; Kolstrup, E.; Seijmonsbergen, A.C. A new symbol and GIS based detailed geomorphological mapping system: Renewal of a scientific discipline for understanding landscape development. Geomorphology 2006, 77, 90–111. [Google Scholar] [CrossRef]
- Cesca, M.; D’Agostino, V. Comparison between FLO-2D and RAMMS in debris-flow modelling: A case study in the Dolomites. WIT Trans. Eng. Sci. 2008, 60, 197–206. [Google Scholar] [CrossRef]
- Mikoš, M.; Bezak, N. Debris Flow Modelling Using RAMMS Model in the Alpine Environment with Focus on the Model Parameters and Main Characteristics. Front. Earth Sci. 2021, 8, 605061. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, A.; Singh, K. A Comprehensive Review on Debris Flow Landslide Assessment Using Rapid Mass Movement Simulation (RAMMS). Geotech. Geol. Eng. 2024, 42, 5447–5475. [Google Scholar] [CrossRef]
- Gan, J.; Zhang, Y.X. Numerical Simulation of Debris Flow Runout Using RAMMS: A Case Study of Luzhuang Gully in China. CMES 2019, 121, 981–1009. [Google Scholar] [CrossRef]
- Christen, M.; Bühler, Y.; Bartelt, P.; Leine, R.; Glover, J.; Schweizer, J.; Graf, C.; McArdell, B.W.; Gerber, W.; Deubelbeiss, Y.; et al. Integral hazard management using a unified software environment: Numerical simulation tool “RAMMS” for gravitational natural hazards. In Proceedings of the 12th Congress Interpraevent, Grenoble, France, 23–26 April 2012. [Google Scholar]
- Hungr, O.; Morgan, G.; Kellerhals, R. Quantitative analysis of debris torrent hazards for design of remedial measures. Can. Geotech. J. 1984, 21, 663–677. [Google Scholar] [CrossRef]
- Mizuyama, T.; Kobashi, S.; Ou, G. Prediction of debris flow peak discharge. In Proceedings of the International Symposium INTERPRAEVENT, Bern, Switzerland, 29 June–3 July 1992; pp. 99–108. [Google Scholar]
- Mitchell, A.; Zubrycky, S.; McDougall, S.; Aaron, J.; Jacquemart, M.; Hübl, J.; Kaitna, R.; Graf, C. Variable hydrograph inputs for a numerical debris-flow runout model. Nat. Hazards Earth Syst. Sci. 2022, 22, 1627–1654. [Google Scholar] [CrossRef]
- Rickenmann, D. Empirical Relationships for Debris Flows. Nat. Hazards 1999, 19, 47–77. [Google Scholar] [CrossRef]
- Marchi, L.; Tecca, P.R. Magnitudo delle colate detritiche nelle Alpi Orientali Italiane. Geoing. Ambient. E Mineraria 1996, 33, 79–86. [Google Scholar]
- Franzi, L.; Bianco, G. A Statistical Method to Predict Debris Flow Deposited Volumes on a Debris Fan. Phys. Chem. Earth Part. C 2001, 26, 683–688. [Google Scholar] [CrossRef]
- Marchi, L.; D’Agostino, V. Estimation of debris-flow magnitude in the Eastern Italian Alps. Earth Surf. Process. Landf. 2003, 29, 207–220. [Google Scholar] [CrossRef]
- Palumbo, M.; Ascione, A.; Santo, A.; Santangelo, N. Evaluation of sediment budgets in catchments prone to flash flood-related debris flows: A case study from the southern Apennines (Italy). Geomorphology 2024, 454, 109174. [Google Scholar] [CrossRef]
- D’Agostino, V. Analisi quantitativa e qualitativa del trasporto solido torrentizio nei bacini montani del Trentino Orientale. In Scritti Dedicati a Giovanni Tournon; Associazione Italiana di Ingegneria Agraria—Associazione Idrotecnica Italiana: Novara, Italy, 1996; pp. 111–123. [Google Scholar]
- Voellmy, A. On the destructive force of avalanche, Translation No. 2, Avalanche Study Center, United States Department of Agriculture, USA. 1955. Available online: https://collections.lib.utah.edu/ark:/87278/s6sq8xc1 (accessed on 10 March 2024).
- Salm, B. Flow, flow transition and runout distances of flowing avalanches. Ann. Glaciol. 1993, 18, 221–226. [Google Scholar] [CrossRef]
- De Pedrini, A.; Ambrosi, C.; Scapozza, C. The 1513 Monte Crenone rock avalanche: Numerical model and geomorphological analysis. Geogr. Helv. 2022, 77, 21–37. [Google Scholar] [CrossRef]
- Di, Y.; Wei, Y.; Tan, W.; Xu, Q. Research on Development Characteristics and Landslide Dam Hazard Prediction of Zhuangfang Landslide in the Upper Reaches of the Nu River. Sustainability 2023, 15, 15036. [Google Scholar] [CrossRef]
- Vega, J.; Ortiz-Giraldo, L.; Botero, B.A.; Hidalgo, C.; Parra, J.C. Probabilistic Cascade Modeling for Enhanced Flood and Landslide Hazard Assessment: Integrating Multi-Model Approaches in the La Liboriana River Basin. Water 2024, 16, 2404. [Google Scholar] [CrossRef]
- Schraml, K.; Thomschitz, B.; McArdell, B.W.; Graf, C.; Kaitna, R. Modeling debris-flow runout patterns on two alpine fans with different dynamic simulation models. Nat. Hazards Earth Syst. Sci. 2015, 15, 1483–1492. [Google Scholar] [CrossRef]
- McDougall, S. Canadian Geotechnical Colloquium: Landslide runout analysis—Current practice and challenges. Can. Geotech. J. 2014, 54, 605–620. [Google Scholar] [CrossRef]
- Liu, B.; Hu, X.; Ma, G.; He, K.; Wu, M.; Liu, D. Back calculation and hazard prediction of a debris flow in Wenchuan meizoseismal area, China. Bull. Eng. Geol. Environ. 2021, 80, 3457–3474. [Google Scholar] [CrossRef]
- Mergili, M.; Jaboyedoff, M.; Pullarello, J.; Pudasaini, S.P. Back calculation of the 2017 Piz Cengalo–Bondo landslide cascade with r.avaflow: What we can do and what we can learn. Nat. Hazards Earth Syst. Sci. 2020, 20, 505–520. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). Guide to the Implementation of Education and Training Standards in Meteorology and Hydrology; WMO: Geneva, Switzerland, 2015. [Google Scholar]
- Pan, H.L.; Jiang, Y.J.; Wang, J.; Ou, G.Q. Rainfall threshold calculation for debris flow early warning in areas with scarcity of data. Nat. Hazards Earth Syst. Sci. 2018, 18, 1395–1409. [Google Scholar] [CrossRef]
- Li, Y.; Wang, M.; Ma, F.; Zhang, J.; Li, G.; Meng, X.; Chen, G.; Yue, D.; Guo, F.; Zhao, Y. Constructing Rainfall Threshold for Debris Flows of a Defined Hazardous Magnitude. Remote Sens. 2024, 16, 1265. [Google Scholar] [CrossRef]
- dos Santos, A.L.M.; Gonçalves, W.A.; Andrade, L.d.M.B.; Rodrigues, D.T.; Batista, F.F.; Lima, G.C.; Silva, C.M.S. Space–Time Characterization of Extreme Precipitation Indices for the Semiarid Region of Brazil. Climate 2024, 12, 43. [Google Scholar] [CrossRef]
- Petrucci, O.; Coscarelli, R. Flood and Landslide Damage in a Mediterranean Region: Identification of Descriptive Rainfall Indices Using a 40-Year Historical Series. Water 2023, 15, 3826. [Google Scholar] [CrossRef]
- Nugroho, S.; Wilis, R. The Decreasing Trend of Precipitation Observed at Watersheds in Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2018, 145, 012099. [Google Scholar] [CrossRef]
- Ciccarese, G.; Mulas, M.; Alberoni, P.P.; Truffelli, G.; Corsini, A. Debris flows rainfall thresholds in the Apennines of Emilia-Romagna (Italy) derived by the analysis of recent severe rainstorms events and regional meteorological data. Geomorphology 2020, 358, 107097. [Google Scholar] [CrossRef]
- Brunetti, M.T.; Peruccacci, S.; Rossi, M.; Luciani, S.; Valigi, D.; Guzzetti, F. Rainfall thresholds for the possible occurrence of landslides in Italy. Nat. Hazards Earth Syst. Sci. 2010, 10, 447–458. [Google Scholar] [CrossRef]
- Vennari, C.; Gariano, S.L.; Antronico, L.; Brunetti, M.T.; Iovine, G.; Peruccacci, S.; Terranova, O.; Guzzetti, F. Rainfall thresholds for shallow landslide occurrence in Calabria, southern Italy. Nat. Hazards Earth Syst. Sci. 2014, 14, 317–330. [Google Scholar] [CrossRef]
- DISS Working Group. Database of Individual Seismogenic Sources (DISS), Version 3.3.1: A Compilation of Potential Sources for Earthquakes Larger than M 5.5 in Italy and Surrounding Areas. Istituto Nazionale di Geofisica e Vulcanologia (INGV). 2025. Available online: https://diss.ingv.it/data/ (accessed on 5 August 2025).
- Stucchi, M.; Meletti, C.; Montaldo, V.; Crowley, H.; Calvi, G.M.; Boschi, E. Seismic Hazard Assessment (2003-2009) for the Italian Building Code. Bull. Seismol. Soc. Am. 2011, 101, 1885–1911. [Google Scholar] [CrossRef]
- Azhideh, S.; Barani, S.; Ferretti, G.; Scafidi, D. Earthquake-Induced Landslides in Italy: Evaluation of the Triggering Potential Based on Seismic Hazard. Appl. Sci. 2024, 14, 3435. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Q.; Liu, Q.; Xiao, R. A Numerical Study of Wave Propagation and Cracking Processes in Rock-Like Material under Seismic Loading Based on the Bonded-Particle Model Approach. Engineering 2022, 17, 140–145. [Google Scholar] [CrossRef]
- Carabella, C.; Cinosi, J.; Piattelli, V.; Burrato, P.; Miccadei, E. Earthquake-induced landslides susceptibility evaluation: A case study from the Abruzzo Region (Central Italy). Catena 2022, 208, 105729. [Google Scholar] [CrossRef]
- Keefer, D.K. Rock Avalanches Caused by Earthquakes: Source Characteristics. Science 1984, 223, 1288–1290. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Yu, C.; Li, Z.; Utili, S.; Frattini, P.; Crosta, G.; Peng, J. Triggering and recovery of earthquake accelerated landslides in Central Italy revealed by satellite radar observations. Nat. Commun. 2022, 13, 7278. [Google Scholar] [CrossRef] [PubMed]
- Schilirò, L.; Massaro, L.; Forte, G.; Santo, A.; Tommasi, P. Analysis of Earthquake-Triggered Landslides through an Integrated Unmanned Aerial Vehicle-Based Approach: A Case Study from Central Italy. Remote Sens. 2024, 16, 93. [Google Scholar] [CrossRef]









| Input Parameters | Value |
|---|---|
| Digital Elevation Model (DEM) resolution | 5 m |
| Hydrograph volume | 2.03 × 104 m3 |
| Estimated initial velocity | 10 m/s |
| Time associated with maximum flow discharge | 10 s |
| Angle of inflow direction | 100° |
| Friction coefficient μ | 0.17 |
| Turbulence coefficient ξ | 150 m/s2 |
| Density | 2500 kg/m3 |
| Simulation end time | 1305 s |
| Momentum percentage | 5% |
| Dump step time | 5 s |
| Input Parameters | Value |
|---|---|
| Digital Elevation Model (DEM) resolution | 5 m |
| Release depth | 1.5 m and 3.0 m |
| Release volume | 1.2 × 106 m3 |
| Friction coefficient μ | 0.17 |
| Turbulence coefficient ξ | 150 m/s2 |
| Density | 2500 kg/m3 |
| Simulation end time | 275 s |
| Momentum percentage | 5% |
| Dump step time | 5 s |
| Annual Average | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Rainfall (mm) | 1578 | Monthly Average | ||||||||||||
| Maximum in 1 h (mm) | 64 | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | |
| Maximum in 24 h (mm) | 310 | Rainfall (mm) | 141 | 142 | 123 | 117 | 95 | 98 | 46 | 58 | 115 | 176 | 262 | 235 |
| Rainy days (n°) | 115 | Rainy days (n°) | 10 | 10 | 11 | 11 | 11 | 8 | 6 | 5 | 8 | 10 | 12 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paglia, G.; Santucci, G.; Buccolini, M.; Miccadei, E. Assessment of Potential Landslide Scenarios Using Morphometry, Geomorphological Constraints, and Run-Out Analysis: A Case Study from Central Apennines (Italy). Land 2025, 14, 2109. https://doi.org/10.3390/land14112109
Paglia G, Santucci G, Buccolini M, Miccadei E. Assessment of Potential Landslide Scenarios Using Morphometry, Geomorphological Constraints, and Run-Out Analysis: A Case Study from Central Apennines (Italy). Land. 2025; 14(11):2109. https://doi.org/10.3390/land14112109
Chicago/Turabian StylePaglia, Giorgio, Giovanni Santucci, Marcello Buccolini, and Enrico Miccadei. 2025. "Assessment of Potential Landslide Scenarios Using Morphometry, Geomorphological Constraints, and Run-Out Analysis: A Case Study from Central Apennines (Italy)" Land 14, no. 11: 2109. https://doi.org/10.3390/land14112109
APA StylePaglia, G., Santucci, G., Buccolini, M., & Miccadei, E. (2025). Assessment of Potential Landslide Scenarios Using Morphometry, Geomorphological Constraints, and Run-Out Analysis: A Case Study from Central Apennines (Italy). Land, 14(11), 2109. https://doi.org/10.3390/land14112109

