Does Land Management Intensity Influence Pollinator Assemblages and Plant–Pollinator Interactions in the Lowlands of Terceira Island (Azores)?
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Design and Techniques
2.3. Data Analysis
3. Results
3.1. Alpha Diversity and Environmental Drivers
3.2. Differences in Species Composition Between Land Uses
3.3. Plant–Pollinator Networks in the Different Land Uses
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Newbold, T.; Hudson, L.N.; Hill, S.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef]
- Fulvio, F.D.; Forsell, N.; Korosuo, A.; Obersteiner, M.; Hellweg, S. Spatially explicit LCA analysis of biodiversity losses due to different bioenergy policies in the European Union. Sci. Total Environ. 2019, 651, 1505–1516. [Google Scholar] [CrossRef]
- Brondízio, E.S.; Settele, J.; Díaz, S.; Ngo, H.T. Global Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES Secretariat: Bonn, Germany, 2019; p. 1144. [Google Scholar]
- Davison, C.W.; Rahbek, C.; Morueta-Holme, N. Land-use change and biodiversity: Challenges for assembling evidence on the greatest threat to nature. Glob. Change Biol. 2021, 27, 5414–5429. [Google Scholar] [CrossRef]
- Moreira, H.; Kuipers, K.J.J.; Posthuma, L.; Zijp, M.C.; Hauck, M.; Huijbregts, M.A.J.; Schipper, A.M. Threats of land use to the global diversity of vascular plants. Divers. Distrib. 2023, 29, 688–697. [Google Scholar] [CrossRef]
- Olivier, T.; Thébault, E.; Elias, M.; Fontaine, B.; Fontaine, C. Urbanization and agricultural intensification destabilize animal communities differently than diversity loss. Nat. Commun. 2020, 11, 2686. [Google Scholar] [CrossRef] [PubMed]
- Chitchak, N.; Hassa, P.; Traiperm, P.; Stewart, A.B. Who pollinates exotic plants? A global assessment across native and exotic ranges. Glob. Ecol. Conserv. 2024, 54, e03185. [Google Scholar] [CrossRef]
- Whittaker, R.J.; Fernández-Palacios, J.M. Island Biogeography: Ecology, Evolution, and Conservation, 2nd ed.; Oxford University Press: New York, NY, USA, 2007. [Google Scholar]
- Russell, J.C.; Kueffer, C. Island biodiversity in the Anthropocene. Annu Rev. Environ. Resour. 2019, 44, 31–60. [Google Scholar] [CrossRef]
- Fernández-Palacios, J.M.; Kreft, H.; Irl, S.D.; Norder, S.; Ah-Peng, C.; Borges, P.A.V.; Burns, K.C.; de Nascimento, L.; Meyer, J.-Y.; Montes, E.; et al. Scientists’ warning—The outstanding biodiversity of islands is in peril. Glob. Ecol. Conserv. 2021, 31, e01847. [Google Scholar] [CrossRef]
- Fernández-Palacios, J.M.; Fructuoso, M.; Illera, J.C.; Rando, J.C.; de Nascimento, L.; Fernández-Palacios, E.; Patiño, J.; Otto, R.; Castilla-Beltrán, Á.; González, E.M.; et al. A synthesis of terrestrial species extinctions in the Macaronesian Islands and their correspondence with human occupancy. PNAS Nexus 2025, 4, pgaf215. [Google Scholar] [CrossRef]
- Connor, S.E.; van Leeuwen, J.F.; Rittenour, T.M.; van der Knaap, W.O.; Ammann, B.; Björck, S. The ecological impact of oceanic island colonization—A palaeoecological perspective from the Azores. J. Biogeogr. 2012, 39, 1007–1023. [Google Scholar] [CrossRef]
- Rego, C.; Boieiro, M.; Vieira, V.; Borges, P.A.V. The biodiversity of terrestrial arthropods in Azores. Ibero Divers. Entomológica 2015, 5, 1–24. [Google Scholar]
- Elias, R.B.; Gil, A.; Silva, L.; Fernández-Palacios, J.M.; Azevedo, E.B.; Reis, F. Natural zonal vegetation of the Azores Islands: Characterization and potential distribution. Phytocoenologia 2016, 46, 107–123. [Google Scholar] [CrossRef]
- Fernández-Palacios, J.M.; Arévalo, J.R.; Balguerías, E.; Barone, R.; De Nascimento, L.; Elias, R.B.; Delgado, J.D.; Fernández-Lugo, S.; Méndez, J.; Menezes de Sequeira, M.; et al. La Laurisilva. Canarias, Madeira y Azores; Macaronesia Editorial: Santa Cruz de Tenerife, Spain, 2017; p. 420. [Google Scholar]
- Rando, J.C.; Alcover, J.A.; Olson, S.L.; Pieper, H. A new species of extinct scops owl (Aves: Strigiformes: Strigidae: Otus) from São Miguel Island (Azores Archipelago, North Atlantic Ocean). Zootaxa 2013, 3647, 343–357. [Google Scholar] [CrossRef] [PubMed]
- Alcover, J.A.; Pieper, H.; Pereira, F.; Rando, J.C. Five new extinct species of rails (Aves: Gruiformes: Rallidae) from the Macaronesian Islands (North Atlantic Ocean). Zootaxa 2015, 4057, 151–190. [Google Scholar] [CrossRef]
- Rando, J.C.; Pieper, H.; Olson, S.L.; Pereira, F.; Alcover, J.A. A new extinct species of large bullfinch (Aves: Fringillidae: Pyrrhula) from Graciosa Island (Azores, North Atlantic Ocean). Zootaxa 2017, 4273, 501–519. [Google Scholar] [CrossRef]
- Triantis, K.A.; Borges, P.A.V.; Ladle, R.J.; Hortal, J.; Cardoso, P.; Gaspar, C.; Dinis, F.; Mendonça, E.P.; Silveira, L.M.A.; Gabriel, R.; et al. Extinction debt on oceanic islands. Ecography 2010, 33, 285–294. [Google Scholar] [CrossRef]
- Terzopoulou, S.; Rigal, F.; Whittaker, R.J.; Borges, P.A.V.; Triantis, K.A. Drivers of extinction: The case of Azorean beetles. Biol. Lett. 2015, 11, 20150273. [Google Scholar] [CrossRef]
- Oyarzabal, G.; Pozsgai, G.; Tsafack, N.; Cardoso, P.; Rigal, F.; Boieiro, M.; Santos, A.M.C.; Amorim, I.R.; Malumbres-Olarte, J.; Costa, R.; et al. Species traits may predict extinction risk of Azorean endemic arthropods. Insect Conserv. Divers. 2025, 18, 545–551. [Google Scholar] [CrossRef]
- Cardoso, P.; Aranda, S.C.; Lobo, J.M.; Dinis, F.; Gaspar, C.; Borges, P.A.V. A spatial scale assessment of habitat effects on arthropod communities of an oceanic island. Acta Oecol. 2009, 35, 590–597. [Google Scholar] [CrossRef]
- Meijer, S.S.; Whittaker, R.J.; Borges, P.A.V. The effects of land-use change on arthropod richness and abundance on Santa Maria Island (Azores): Unmanaged plantations favour endemic beetles. J. Insect Conserv. 2011, 15, 505–522. [Google Scholar] [CrossRef]
- Sánchez-Ortiz, K.; Taylor, K.J.M.; De Palma, A.; Essl, F.; Dawson, W.; Kreft, H.; Pergl, J.; Pyšek, P.; van Kleunen, M.; Weigelt, P.; et al. Effects of land-use change and related pressures on alien and native subsets of island communities. PLoS ONE 2020, 15, e0227169. [Google Scholar] [CrossRef]
- Ollerton, J. Pollinators & Pollination: Nature and Society; Pelagic Publishing: Exeter, UK, 2021; p. 289. [Google Scholar]
- Tscharntke, T. Disrupting plant-pollinator systems endangers food security. One Earth 2021, 4, 1217–1219. [Google Scholar] [CrossRef]
- Vanbergen, A.J. and the Insect Pollinators Initiative. Threats to an ecosystem service: Pressures on pollinators. Front. Ecol. Environ. 2013, 11, 251–259. [Google Scholar] [CrossRef]
- Potts, S.G.; Imperatriz-Fonseca, V.L.; Ngo, H.T. The Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on Pollinators, Pollination and Food Production; Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services: Bonn, Germany, 2016. [Google Scholar] [CrossRef]
- Traveset, A.; Tur, C.; Trøjelsgaard, K.; Heleno, R.; Castro-Urgal, R.; Olesen, J.M. Global patterns of mainland and insular pollination networks. Glob. Ecol. Biogeogr. 2015, 25, 880–890. [Google Scholar] [CrossRef]
- Biella, P.; Ssymank, A.; Galimberti, A.; Galli, P.; Perlík, M.; Ramazzotti, F.; Rota, A.; Tommasi, N. Updating the list of flower-visiting bees, hoverflies and wasps in the central atolls of Maldives, with notes on land-use effects. Biodivers. Data J. 2022, 10, e85107. [Google Scholar] [CrossRef] [PubMed]
- Goulson, D. Effects of introduced bees on native ecosystems. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 1–26. [Google Scholar] [CrossRef]
- Shell, W.A.; Rehan, S.M. Range expansion of the Small Carpenter Bee Ceratina smaragdula across the Hawaiian archipelago with potential ecological implications for native pollinator systems. Pac. Sci. 2017, 71, 1–15. [Google Scholar] [CrossRef]
- Valido, A.; Rodríguez-Rodríguez, M.C.; Jordano, P. Honeybees disrupt the structure and functionality of plant-pollinator networks. Sci. Rep. 2019, 9, 4711. [Google Scholar] [CrossRef]
- Picanço, A.; Rigal, F.; Matthews, T.J.; Cardoso, P.; Borges, P.A.V. Impact of land-use change on flower-visiting insect communities on an oceanic island. Insect Conserv. Divers. 2017, 10, 211–223. [Google Scholar] [CrossRef]
- Boieiro, M.; Ferreira, M.; Ceia-Hasse, A.; Esposito, F.; Santos, R.; Pozsgai, G.; Borges, P.A.V.; Rego, C. The Effects of Disturbance on Plant–Pollinator Interactions in the Native Forests of an Oceanic Island (Terceira, Azores). Insects 2025, 16, 14. [Google Scholar] [CrossRef]
- Morais, T.G.; Teixeira, R.F.M.; Rodrigues, N.R.; Domingos, T. Carbon Footprint of Milk from Pasture-Based Dairy Farms in Azores, Portugal. Sustainability 2018, 10, 3658. [Google Scholar] [CrossRef]
- Melo, C.D.; Walker, C.; Rodríguez-Echeverría, S.; Borges, P.A.V.; Freitas, H. Species composition of arbuscular mycorrhizal fungi differ in semi-natural and intensively managed pastures in an isolated oceanic island (Terceira, Azores). Symbiosis 2014, 64, 73–85. [Google Scholar] [CrossRef]
- Wallon, S.; Rigal, F.; Melo, C.D.; Elias, R.B.; Borges, P.A.V. Unveiling Arthropod Responses to Climate Change: A Functional Trait Analysis in Intensive Pastures. Insects 2024, 15, 677. [Google Scholar] [CrossRef] [PubMed]
- Schafer, H. Flora of the Azores: A Field Guide; Margraf Verlag: Weikersheim, Germany, 2005. [Google Scholar]
- Flora-On: Flora de Portugal Interactiva; Sociedade Portuguesa de Botânica. Available online: https://acores.flora-on.pt/ (accessed on 15 September 2025).
- Borges, P.A.V.; Abreu, C.; Aguiar, A.M.F.; Carvalho, P.; Jardim, R.; Melo, I.; Oliveira, P.; Sérgio, C.; Serrano, A.R.M.; Vieira, P. A List of the Terrestrial Fungi, Flora and Fauna of Madeira and Selvagens Archipelagos; Direcção Regional do Ambiente da Madeira and Universidade dos Açores: Funchal, Portugal; Angra do Heroísmo, Portugal, 2008. [Google Scholar]
- Borges, P.A.V.; Costa, A.; Cunha, R.; Gabriel, R.; Vitor, G.; Martins, A.F.; Ireneia, M.; Parente, M.; Raposeiro, P.; Rodrigues, P.; et al. A List of the Terrestrial and Marine Biota from the Azores; Princípia Editora, Lda: Cascais, Portugal, 2010. [Google Scholar]
- Arechavaleta, M.; Rodríguez, S.; Zurita, N.; García, A. Lista de Especies Silvestres de Canarias. Hongos, Plantas y Animales Terrestres; Gobierno de Canarias: Santa Cruz de Tenerife, Spain, 2008. [Google Scholar]
- Serrano, A.R.M.; Borges, P.A.V.; Boieiro, M.; Oromí, P. Terrestrial Arthropods of Macaronesia—Biodiversity, Ecology and Evolution; Sociedade Portuguesa de Entomologia: Lisboa, Portugal, 2010. [Google Scholar]
- Borges, P.; Lamelas-Lopez, L.; Andrade, R.; Lhoumeau, S.; Vieira, V.; Soares, A.O.; Borges, I.; Boieiro, M.; Cardoso, P.; Crespo, L.C.; et al. An updated checklist of Azorean arthropods (Arthropoda). Biodivers. Data J. 2022, 10, e97682. [Google Scholar] [CrossRef] [PubMed]
- Pollard, E.; Yates, T.J. Monitoring Butterflies for Ecology and Conservation; Chapman & Hall: London, UK, 1993. [Google Scholar]
- Rojo, S.; Isidro, P.M.; Perez-Bañón, C.; Marcos-García, M.A. Revision of the hoverflies (Diptera: Syrphidae) from the Azores archipelago with notes on Macaronesian syrphid fauna. Arquipélago. Life Mar. Sci. 1997, 15, 65–82. [Google Scholar]
- Prado e Castro, C.; Szpila, K.; Martínez-Sánchez, A.I.; Rego, C.; Silva, I.; Serrano, A.R.M.; Boieiro, M. The blowflies of the Madeira Archipelago: Species diversity, distribution and identification (Diptera, Calliphoridaes. l.). ZooKeys 2016, 634, 101–123. [Google Scholar] [CrossRef]
- Weissmann, J.A.; Picanço, A.; Borges, P.A.V.; Schaefer, H. Bees of the Azores: An annotated checklist (Apidae, Hymenoptera). Zookeys 2017, 642, 63–95. [Google Scholar] [CrossRef]
- Rego, C.; Smit, J.; Aguiar, A.; Cravo, D.; Penado, A.; Boieiro, M. A pictorial key for identification of the hoverflies (Diptera: Syrphidae) of the Madeira Archipelago. Biodivers. Data J. 2022, 10, e78518. [Google Scholar] [CrossRef]
- Hill, M.O. Diversity and evenness: A unifying notation and its consequences. Ecology 1973, 54, 427–432. [Google Scholar] [CrossRef]
- Chao, A.; Gotelli, N.J.; Hsieh, T.C.; Sander, E.L.; Ma, K.H.; Colwell, R.K.; Ellison, A.M. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 2014, 84, 45–67. [Google Scholar] [CrossRef]
- Oksanen, J.; Simpson, G.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.; O’hara, R.; Solymos, P.; Stevens, M.H.H.; Wagner, H. vegan: Community Ecology Package. R Package Version 2.7-1. 2025. Available online: https://CRAN.R-project.org/package=vegan (accessed on 2 May 2025).
- Cardoso, P.; Mammola, S.; Rigal, F.; Hilario, R.; Carvalho, J. BAT: Biodiversity Assessment Tools. R package Version 2.11.0. 2025. Available online: https://CRAN.R-project.org/package=BAT (accessed on 2 May 2025).
- Wang, Y.; Naumann, U.; Wright, S.T.; Warton, D.I. mvabund—An R package for model-based analysis of multivariate abundance data. Methods Ecol. Evol. 2012, 3, 471–474. [Google Scholar] [CrossRef]
- Wang, Y.; Naumann, U.; Eddelbuettel, D.; Wilshire, J.; Warton, D. mvabund: Statistical Methods for Analysing Multivariate Abundance Data. 2022. Available online: https://cran.r-project.org/web/packages/mvabund/ (accessed on 15 September 2025).
- Zuur, A.; Ieno, E.N.; Walker, N.; Saveliev, A.A.; Smith, G.M. Mixed Effects Models and Extensions in Ecology with R; Springer: New York, NY, USA, 2009. [Google Scholar]
- Crawley, M.J. The R Book; John Wiley & Sons Ltd.: Chichester, UK, 2013. [Google Scholar]
- O’Hara, R.B.; Kotze, D.J. Do not log-transform count data. Methods Ecol. Evol. 2010, 1, 118–122. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach; Springer: New York, NY, USA, 2002. [Google Scholar]
- Mollie, E.B.; Kristensen, K.; Koen, J.; Magnusson, A.; Casper, W.B.; Nielsen, A.; Hans, J.S.; Mächler, M.; Benjamin, M.B. glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling. R J. 2017, 9, 378–400. [Google Scholar] [CrossRef]
- Dormann, C.F.; Gruber, B.; Fründ, J. Introducing the bipartite Package: Analyzing Ecological Networks. Interaction 2008, 8, 8–11. [Google Scholar]
- Soares, R.G.S.; Ferreira, P.A.; Lopes, L.E. Can plant-pollinator network metrics indicate environmental quality? Ecol. Indic. 2017, 78, 361–370. [Google Scholar] [CrossRef]
- Dinno, A. dunn.test: Dunn’s Test of Multiple Comparisons Using Rank Sums. 2024. Available online: https://cran.r-project.org/web/packages/dunn.test (accessed on 15 September 2025).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2025; Available online: https://www.R-project.org/ (accessed on 2 May 2025).
- Boieiro, M.; Oliveira, R.; Costa, R.; Borges, P.A.V. Unveiling Azorean Pollinators: A Critical Step for Biodiversity and Conservation. 1.2. Available online: https://www.gbif.org/dataset/db765f95-20f4-49ef-8fe4-b57228200a2e (accessed on 21 November 2024).
- Boieiro, M.; Oliveira, R.; Costa, R.; Borges, P.A.V. Pollinator species richness and abundance across diverse habitat-types on Terceira Island (Azores, Portugal). Biodivers. Data J. 2025, 13, e142482. [Google Scholar] [CrossRef]
- de Aguiar, M.A.M.; Newman, E.A.; Pires, M.M.; Yeakel, J.D.; Boettiger, C.; Burkle, L.A.; Gravel, D.; Guimarães, P.R.; O’donnell, J.L.; Poisot, T.; et al. Revealing biases in the sampling of ecological interaction networks. PeerJ 2019, 7, e7566. [Google Scholar] [CrossRef]
- Vizentin-Bugoni, J.; Maruyama, P.K.; Debastiani, V.J.; Duarte, L.d.S.; Dalsgaard, B.; Sazima, M. Influences of sampling effort on detected patterns and structuring processes of a Neotropical plant–hummingbird network. J. Anim. Ecol. 2016, 85, 262–272. [Google Scholar] [CrossRef]
- Blüthgen, N.; Staab, M. A critical evaluation of network approaches for studying species interactions. Annu. Rev. Ecol. Evol. Syst. 2024, 55, 65–88. [Google Scholar] [CrossRef]
- Sjödin, N.E.; Bengtsson, J.; Ekbom, B. The influence of grazing intensity and landscape composition on the diversity and abundance of flower-visiting insects. J. Appl. Ecol. 2008, 45, 763–772. [Google Scholar] [CrossRef]
- Lázaro, A.; Tscheulin, T.; Devalez, J.; Nakas, G.; Stefanaki, A.; Hanlidou, E.; Petanidou, T. Moderation is best: Effects of grazing intensity on plant–flower visitor networks in Mediterranean communities. Ecol. Appl. 2016, 26, 796–807. [Google Scholar] [CrossRef] [PubMed]
- Oleques, S.S.; Vizentin-Bugoni, J.; Overbeck, G.E. Influence of grazing intensity on patterns and structuring processes in plant–pollinator networks in a subtropical grassland. Arthropod-Plant Interact. 2019, 13, 757–770. [Google Scholar] [CrossRef]
- Rakosy, D.; Motivans, E.; Ştefan, V.; Nowak, A.; Świerszcz, S.; Feldmann, R.; Kühn, E.; Geppert, C.; Venkataraman, N.; Sobieraj-Betlińska, A.; et al. Intensive grazing alters the diversity, composition and structure of plant-pollinator interaction networks in Central European grasslands. PLoS ONE 2022, 17, e0263576. [Google Scholar] [CrossRef] [PubMed]
- Neacă, A.M.; Meis, J.; Knight, T.; Rakosy, D. Intensive pasture management alters the composition and structure of plant-pollinator interactions in Sibiu, Romania. PeerJ 2024, 12, e16900. [Google Scholar] [CrossRef]
- Fletcher, R.J.; Green, R.E.; Bladon, E.K.; Atkinson, P.W.; Phalan, B.T.; Williams, D.; Visconti, P.; Balmford, A. Beyond Species Richness for Biological Conservation. Conserv. Lett. 2025, 18, e13124. [Google Scholar] [CrossRef]
- Olesen, J.M.; Eskildsen, L.I.; Venkatasamy, S. Invasion of pollination networks on oceanic islands: Importance of invader complexes and endemic super generalists. Divers. Distrib. 2002, 8, 181–192. [Google Scholar] [CrossRef]
- Weissmann, J.A.; Schaefer, H. The importance of generalist pollinator complexes for endangered island endemic plants. Arquipél. Life Mar. Sci. 2017, 35, 23–40. [Google Scholar]
- Oliveira, C.; Mesquita, C.; Aguiar, F.; Castro, I.; Vieira, P. Plano Estratégico para a Apicultura nos Açores 2020–2029; Governo dos Açores: Açores, Portugal, 2020. Available online: https://agricultura.azores.gov.pt/manuais/agricultura-2/apicultura/ (accessed on 2 May 2025).
- Borges, P.A.; Reut, M.; Ponte, N.B.; Quartau, J.A.; Fletcher, M.; Sousa, A.B.; Pollet, M.; Soares, A.O.; Marcelino, J.; Rego, C.; et al. New records of exotic spiders and insects to the Azores, and new data on recently introduced species. Arquipel. Life Mar. Sci. 2013, 30, 57–70. [Google Scholar]
- Borges, P.A.V.; Rigal, F.; Ros-Prieto, A.; Cardoso, P. Increase of insular exotic arthropod diversity is a fundamental dimension of the current biodiversity crisis. Insect Conserv. Divers. 2020, 13, 508–518. [Google Scholar] [CrossRef]
- Borges, P.; Lamelas-Lopez, L.; Stüben, P.; Ros-Prieto, A.; Gabriel, R.; Boieiro, M.; Tsafack, N.; Ferreira, M.T. SLAM Project—Long Term Ecological Study of the Impacts of Climate Change in the Natural Forest of Azores: II—A survey of exotic arthropods in disturbed forest habitats. Biodivers. Data J. 2022, 10, e81410. [Google Scholar] [CrossRef]
- Boieiro, M.; Leite, A.; Rego, C.; Varga-Szilay, Z.; Borges, P.A.V. Two alien insect species are new records at the family-level to the Azores archipelago (Portugal). BioInvasions Rec. 2023, 12, 535–543. [Google Scholar] [CrossRef]
- Boieiro, M.; Varga-Szilay, Z.; Costa, R.; Crespo, L.; Leite, A.; Oliveira, R.; Pozsgai, G.; Rego, C.; Calado, H.R.; Teixeira, M.B.; et al. New findings of terrestrial arthropods from the Azorean Islands. Biodivers. Data J. 2024, 12, e136391. [Google Scholar] [CrossRef] [PubMed]
- Russo, L. Positive and negative impacts of non-native bee species around the World. Insects 2016, 7, 69. [Google Scholar] [CrossRef] [PubMed]
- Dupont, Y.L.; Hansen, D.; Valido, A.; Olesen, J.M. Impact of introduced honey bees on native pollination interactions of the endemic Echium wildpretii (Boraginaceae) on Tenerife, Canary Islands. Biol. Conserv. 2004, 118, 301–311. [Google Scholar] [CrossRef]
- Valido, A.; Rodríguez-Rodríguez, M.C.; Jordano, P. Impacto de la introducción de la abeja doméstica (Apis mellifera, Apidae) en el Parque Nacional del Teide (Tenerife, Islas Canarias). Ecosistemas 2014, 23, 58–66. [Google Scholar] [CrossRef]
- Magrach, A.; Tobajas, E.; Martin, P.A. Negative ecological impacts of honeybees begin at densities below recommended levels for crop pollination. J. Appl. Ecol. 2025, 62, 2089–2095. [Google Scholar] [CrossRef]
- Bartomeus, I.; Vilà, M.; Santamaría, L. Contrasting effects of invasive plants inplant-pollinator networks. Oecologia 2008, 155, 761–770. [Google Scholar] [CrossRef]
- Kremen, C.; Williams, N.M.; Aizen, M.A.; Gemmill-Herren, B.; LeBuhn, G.; Minckley, R.; Packer, L.; Potts, S.G.; Roulston, T.; Steffan-Dewenter, I.; et al. Pollination and other ecosystem services produced by mobile organisms: A conceptual framework for the effects of land-use change. Ecol. Lett. 2007, 10, 299–314. [Google Scholar] [CrossRef]
- Wratten, S.D.; Gillespie, M.; Decourtye, A.; Mader, E.; Desneux, N. Pollinator habitat enhancement: Benefits to other ecosystem services. Agric. Ecosyst. Environ. 2012, 159, 112–122. [Google Scholar] [CrossRef]
- CaraDonna, P.J.; Waser, N.M. Temporal flexibility in the structure of plant–pollinator interaction networks. Oikos 2020, 129, 1369–1380. [Google Scholar] [CrossRef]
- Földesi, R.; Howlett, B.G.; Grass, I.; Batáry, P. Larger pollinators deposit more pollen on stigmas across multiple plant species—A meta-analysis. J. Appl. Ecol. 2021, 58, 699–707. [Google Scholar] [CrossRef]
- Barrios, B.; Pena, S.R.; Salas, A.; Koptur, S. Butterflies visit more frequently, but bees are better pollinators: The importance of mouthpart dimensions in effective pollen removal and deposition. AoB Plants 2016, 8, plw001. [Google Scholar] [CrossRef]
- Jaca, J.; Nogales, M.; Traveset, A. Reproductive success of the Canarian Echium simplex (Boraginaceae) mediated by vertebrates and insects. Plant Biol. J. 2019, 21, 216–226. [Google Scholar] [CrossRef]
Natural Vegetation | Semi-Natural Pastures | Intensive Pastures | |
---|---|---|---|
Species richness | 9.9 ± 6.2 (4–21) | 10.6 ± 6.3 (4–21) | 9.3 ± 4.5 (4–16) |
Shannon | 6.6 ± 3.7 (2.2–12.4) | 7.2 ± 4.4 (2.7–16.1) | 6.2 ± 2.6 (3.1–9.8) |
Simpson | 5.2 ± 3.0 (1.7–10.6) | 5.6 ± 3.6 (2.3–12.9) | 4.9 ± 1.9 (2.4–8.5) |
Berger-Parker | 2.6 ± 5.2 (1.3–6.7) | 2.7 ± 6.9 (1.7–6.2) | 2.8 ± 9.3 (1.7–4.9) |
Land Use Types | |||
---|---|---|---|
Network Metrics | Natural Vegetation | Semi-Natural Pasture | Intensive Pasture |
Number of flowering plant species | 5.7 ± 1.3 a | 4.7 ± 0.8 a | 2.3 ± 0.2 b |
Number of pollinator species | 7.6 ± 1.6 ab | 8.4 ± 1.6 a | 5.5 ± 1.1 b |
Links per species | 0.92 ± 0.10 | 0.92 ± 0.07 | 0.80 ± 0.06 |
Connectance | 0.30 ± 0.04 a | 0.37 ± 0.04 a | 0.52 ± 0.04 b |
Nestedness | 28.2 ± 3.8 a | 28.2 ± 4.1 a | 40.8 ± 3.3 b |
Shannon diversity | 2.0 ± 0.3 | 2.0 ± 0.2 | 1.4 ± 0.1 |
Interaction evenness | 0.54 ± 0.03 | 0.59 ± 0.03 | 0.57 ± 0.03 |
Specialisation asymmetry | −0.08 ± 0.06 | −0.20 ± 0.08 | −0.30 ± 0.09 |
Generality | 1.8 ± 0.3 a | 1.7 ± 0.1 a | 1.2 ± 0.1 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boieiro, M.; Ceia-Hasse, A.; Oliveira, R.; Costa, R.; Borges, P.A.V. Does Land Management Intensity Influence Pollinator Assemblages and Plant–Pollinator Interactions in the Lowlands of Terceira Island (Azores)? Land 2025, 14, 2029. https://doi.org/10.3390/land14102029
Boieiro M, Ceia-Hasse A, Oliveira R, Costa R, Borges PAV. Does Land Management Intensity Influence Pollinator Assemblages and Plant–Pollinator Interactions in the Lowlands of Terceira Island (Azores)? Land. 2025; 14(10):2029. https://doi.org/10.3390/land14102029
Chicago/Turabian StyleBoieiro, Mário, Ana Ceia-Hasse, Raúl Oliveira, Ricardo Costa, and Paulo A. V. Borges. 2025. "Does Land Management Intensity Influence Pollinator Assemblages and Plant–Pollinator Interactions in the Lowlands of Terceira Island (Azores)?" Land 14, no. 10: 2029. https://doi.org/10.3390/land14102029
APA StyleBoieiro, M., Ceia-Hasse, A., Oliveira, R., Costa, R., & Borges, P. A. V. (2025). Does Land Management Intensity Influence Pollinator Assemblages and Plant–Pollinator Interactions in the Lowlands of Terceira Island (Azores)? Land, 14(10), 2029. https://doi.org/10.3390/land14102029