Spatiotemporal Patterns of the Evolution of the Urban Heat Island Effect and Population Heat Exposure Risks in Xi’an, One of China’s Megacities, from 2003 to 2023
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Preprocessing
2.3. Identification of UHI Spatiotemporal Distribution and Classification of UHI Intensity Levels
2.4. Framework for Identification and Assessment of Population Heat Exposure Risk Areas
3. Results
3.1. Spatial and Temporal Characteristics of UHI
3.1.1. Temporal and Spatial Distribution of Daytime UHI
3.1.2. Temporal and Spatial Distribution of Nighttime UHI
3.2. Spatial and Temporal Characteristics of Population Heat Exposure Risk
3.2.1. Temporal and Spatial Distribution of Population Heat Exposure Risk in Daytime
3.2.2. Temporal and Spatial Distribution of Population Heat Exposure Risk at Night
3.3. Space–Time Trend Pattern Division of UHI
3.3.1. Space–Time Trend Pattern Division of UHI in Daytime
3.3.2. Space–Time Trend Pattern Division of UHI at Night
3.4. Space–Time Trend Pattern Division of Population
3.5. Space–Time Trend Pattern Division of Heat Exposure Risk
3.5.1. Space–Time Trend Pattern Division of Heat Exposure Risk in Daytime
3.5.2. Space–Time Trend Pattern Division of Heat Exposure Risk at Night
4. Discussion
4.1. Potential Reasons for Changes in Urban Heat Island and Population Heat Exposure Distribution
4.2. The Influence of Population Density and Heat Island Intensity on Population Heat Risk
4.3. Research Deficiencies and Policy Recommendations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LST | Land Surface Temperature |
UHI | Urban Heat Island |
LCZ | Local Climate Zones |
SUHI | Surface Urban Heat Island |
std | standard deviation |
DI | Discomfort Index |
UDI | UHI discomfort index |
EUHIraster | UHI exposure index at the raster scale |
References
- Wu, Y.-C.; Lu, C.-L.; Lin, T.-P. Evaluating the effectiveness of tree canopy and building shade in urban heat mitigation using solar radiation transmittance. Urban Clim. 2025, 62, 102522. [Google Scholar] [CrossRef]
- Liu, L.; Xia, B.; Zhang, L. Outdoor thermal comfort of urban river landscape belt in China’s cold region: A case study of Xi’an. Urban Clim. 2023, 48, 101406. [Google Scholar] [CrossRef]
- Yao, R.; Huang, X.; Zhang, Y.; Wang, L.; Li, J.; Yang, Q. Estimation of the surface urban heat island intensity across 1031 global cities using the regression-modification-estimation (RME) method. J. Clean. Prod. 2024, 434, 140231. [Google Scholar] [CrossRef]
- Pérez, I.A.; García, M.Á.; Rasekhi, S.; Pazoki, F.; Fernández-Duque, B. Extension and trend of the London urban heat island under Lamb weather types. Sustain. Cities Soc. 2024, 114, 105743. [Google Scholar] [CrossRef]
- Ming, Y.; Liu, Y.; Liu, X.; Tian, Z. Demographic disparity in diurnal surface urban Heat Island exposure across local climate zones: A case study of Chongqing, China. Sci. Total Environ. 2024, 923, 171203. [Google Scholar] [CrossRef]
- Liu, D.; Zhou, R.; Ma, Q.; He, T.; Fang, X.; Xiao, L.; Hu, Y.; Li, J.; Shao, L.; Gao, J. Spatio-temporal patterns and population exposure risks of urban heat island in megacity Shanghai, China. Sustain. Cities Soc. 2024, 108, 105500. [Google Scholar] [CrossRef]
- Masson, V.; Lemonsu, A.; Hidalgo, J.; Voogt, J. Urban Climates and Climate Change. Annu. Rev. Environ. Resour. 2020, 45, 411–444. [Google Scholar] [CrossRef]
- Wang, B.; Gao, M.; Li, Y.; Li, Z.; Liu, Z.; Zhang, X.; Wen, Y. Unraveling the effects of extreme heat conditions on urban heat environment: Insights from local climate zones and integrated temperature data. Sustain. Cities Soc. 2025, 122, 106254. [Google Scholar] [CrossRef]
- Galdies, C.; Lau, H.S. Urban Heat Island Effect, Extreme Temperatures and Climate Change: A Case Study of Hong Kong SAR. In Climate Change, Hazards and Adaptation Options: Handling the Impacts of a Changing Climate; Leal Filho, W., Nagy, G.J., Borga, M., Chávez Muñoz, P.D., Magnuszewski, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 369–388. [Google Scholar] [CrossRef]
- He, Y.; Wang, Z.; Wong, H.M.; Chen, G.; Ren, C.; Luo, M.; Li, Y.; Lee, T.-C.; Chan, P.W.; Ho, J.Y.-E.; et al. Spatial-temporal changes of compound temperature-humidity extremes in humid subtropical high-density cities: An observational study in Hong Kong from 1961 to 2020. Urban Clim. 2023, 51, 101669. [Google Scholar] [CrossRef]
- Songsom, V.; Jaruk, P.; Suteerasak, T. Examining the spatiotemporal dynamics of urban heat island and its impact on air pollution in Thailand. Environ. Chall. 2025, 19, 101120. [Google Scholar] [CrossRef]
- Ding, Y.; Feng, H.; Zou, B.; Nie, Y. Heterogeneous air pollution controls its correlation to urban heat island: A satellite perspective. Adv. Space Res. 2022, 69, 4252–4262. [Google Scholar] [CrossRef]
- Chang, Y.; Guo, X. Disparities in the impact of urban heat island effect on particulate pollutants at different pollution stages—A case study of the “2 + 36” cities. Urban Clim. 2025, 59, 102273. [Google Scholar] [CrossRef]
- Ebi, K.L.; Capon, A.; Berry, P.; Broderick, C.; de Dear, R.; Havenith, G.; Honda, Y.; Kovats, R.S.; Ma, W.; Malik, A.; et al. Hot weather and heat extremes: Health risks. Lancet 2021, 398, 698–708. [Google Scholar] [CrossRef]
- Cleland, S.E.; Steinhardt, W.; Neas, L.M.; West, J.J.; Rappold, A.G. Corrigendum to “Urban heat island impacts on heat-related cardiovascular morbidity: A time series analysis of older adults in US metropolitan areas” [Environ. Int. 178 (2023) 108005]. Environ. Int. 2025, 202, 109613. [Google Scholar] [CrossRef]
- Huang, H.; Deng, X.; Yang, H.; Zhou, X.; Jia, Q. Spatio-Temporal Mechanism Underlying the Effect of Urban Heat Island on Cardiovascular Diseases. Iran. J. Public Health 2020, 49, 1455–1466. [Google Scholar] [CrossRef]
- Bi, X.; Wu, C.; Wang, Y.; Li, J.; Wang, C.; Hahs, A.; Mavoa, S.; Song, C.; Konrad, C.; Emch, M. Changes in the associations between heatwaves and human mortality during two extreme hot summers in Shanghai, China. Sustain. Cities Soc. 2023, 95, 104581. [Google Scholar] [CrossRef]
- Yadav, N.; Rajendra, K.; Awasthi, A.; Singh, C.; Bhushan, B. Systematic exploration of heat wave impact on mortality and urban heat island: A review from 2000 to 2022. Urban Clim. 2023, 51, 101622. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, X.; Wang, H.; Geng, X.; Gu, J.; Fan, Z.; Wang, X.; Liao, C. Unraveling the global economic and mortality effects of rising urban heat island intensity. Sustain. Cities Soc. 2024, 116, 105902. [Google Scholar] [CrossRef]
- Jia, W.; Ren, G.; Jin, F.; He, J.; Zhang, P. Spatial-temporal characteristics of the urban heat island effect in Xiamen, China. Urban Clim. 2023, 52, 101725. [Google Scholar] [CrossRef]
- Qiao, X.; Liu, L.; Li, Y.; Yang, Y.; Dai, Y.; Zhang, J.; Zhang, J.; Zheng, J.; Zhao, S. Spatio-temporal evolution and simulation prediction of heat island effect in shrinking cities in China based on improved CA-Markov modeling. Sustain. Cities Soc. 2025, 130, 106583. [Google Scholar] [CrossRef]
- Yin, S.; Xiao, S.; Ding, X.; Fan, Y. Improvement of spatial-temporal urban heat island study based on local climate zone framework: A case study of Hangzhou, China. Build. Environ. 2024, 248, 111102. [Google Scholar] [CrossRef]
- Peng, X.; Zhou, Y.; Fu, X.; Xu, J. Study on the spatial-temporal pattern and evolution of surface urban heat island in 180 shrinking cities in China. Sustain. Cities Soc. 2022, 84, 104018. [Google Scholar] [CrossRef]
- Xu, H.; Li, C.; Hu, Y.; Kong, R.; Wang, Q.; Zhou, Y. Long-term temporal and spatial divergence patterns of urban heat risk in the Beijing–Tianjin–Hebei urban agglomeration. Urban Clim. 2024, 56, 102085. [Google Scholar] [CrossRef]
- Badugu, A.; Arunab, K.; Mathew, A.; Sarwesh, P. Spatial and temporal analysis of urban heat island effect over Tiruchirappalli city using geospatial techniques. Geod. Geodyn. 2023, 14, 275–291. [Google Scholar] [CrossRef]
- Amorim, M.C.d.C.T.; Dubreuil, V.; Teixeira, D.C.F.; Amorim, A.T.; Brabant, C. Exceptional heat island intensities also occur in medium-sized cities. Urban Clim. 2024, 53, 101821. [Google Scholar] [CrossRef]
- Wang, C.; Chen, J.; Wang, Q.; Li, D.; Zhu, M.; Gan, Z.; Qin, M.; Zhang, Y. The polycentricity of urban population will lead to improvements in urban heat island effect: Evidence from the Yangtze river delta in China. Sustain. Futures 2025, 9, 100510. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, C.; Yang, H.; Ma, Z. How do morphology factors affect urban heat island intensity? an approach of local climate zones in a fast-growing small city, Yangling, China. Ecol. Indic. 2024, 161, 111972. [Google Scholar] [CrossRef]
- Liu, W.; Zhao, H.; Sun, S.; Xu, X.; Huang, T.; Zhu, J. Green Space Cooling Effect and Contribution to Mitigate Heat Island Effect of Surrounding Communities in Beijing Metropolitan Area. Front. Public Health 2022, 10, 870403. [Google Scholar] [CrossRef]
- Lai, J.; Zhan, W.; Voogt, J.; Quan, J.; Huang, F.; Zhou, J.; Bechtel, B.; Hu, L.; Wang, K.; Cao, C.; et al. Meteorological controls on daily variations of nighttime surface urban heat islands. Remote Sens. Environ. 2021, 253, 112198. [Google Scholar] [CrossRef]
- Yang, H.; Wu, Z.; Qiu, S.; Wu, F.; Dawson, R.J.; Ford, A.; Barr, S. Surface urban heat island variations under the 3-decadal urban expansion in China: Patterns and driving factors. Sustain. Cities Soc. 2025, 130, 106640. [Google Scholar] [CrossRef]
- Li, H.; Zhou, Y.; Jia, G.; Zhao, K.; Dong, J. Quantifying the response of surface urban heat island to urbanization using the annual temperature cycle model. Geosci. Front. 2022, 13, 101141. [Google Scholar] [CrossRef]
- Macintyre, H.L.; Heaviside, C.; Cai, X.; Phalkey, R. The winter urban heat island: Impacts on cold-related mortality in a highly urbanized European region for present and future climate. Environ. Int. 2021, 154, 106530. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Zhang, L.; Schlink, U.; Hu, X.; Meng, Q.; Gao, J. Impact of urban land use and anthropogenic heat on winter and summer outdoor thermal comfort in Beijing. Urban Clim. 2025, 59, 102306. [Google Scholar] [CrossRef]
- Liang, T.; He, J.; Chen, L.; Yao, Z.; Zhang, L.; Che, H.; Gong, S. Simulation of the influence of a fine-scale urban underlying surface on the urban heat island effect in Beijing. Atmos. Res. 2021, 262, 105786. [Google Scholar] [CrossRef]
- Jandaghian, Z.; Arasteh, H.; Heidari, D.; Ghobadi, M.; Lacasse, M.; Gover, B. Cool wall claddings for a sustainable future: A comprehensive review on mitigating urban heat island effects and reducing carbon emissions in the built environment. Energy Build. 2025, 336, 115600. [Google Scholar] [CrossRef]
- Sheng, T.; Zhang, Z.; Qian, Z.; Ma, P.; Xie, W.; Zeng, Y.; Zhang, K.; Sun, Z.; Yu, J.; Chen, M. Examining urban agglomeration heat island with explainable AI: An enhanced consideration of anthropogenic heat emissions. Urban Clim. 2025, 59, 102251. [Google Scholar] [CrossRef]
- Zhang, S.; Breitner, S.; Stafoggia, M.; de’Donato, F.; Samoli, E.; Zafeiratou, S.; Katsouyanni, K.; Rao, S.; Diz-Lois Palomares, A.; Gasparrini, A.; et al. Effect modification of air pollution on the association between heat and mortality in five European countries. Environ. Res. 2024, 263, 120023. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Jia, B.; Li, T.; Yang, Y.; Fang, Y. Dynamic changes and drives of surface urban heat islands in China. City Environ. Interact. 2025, 27, 100203. [Google Scholar] [CrossRef]
- Zhang, Q.; Gu, L.; Jia, B.; Fang, Y. Summertime compound heat extremes change and population heat exposure distribution in China. J. Clean. Prod. 2024, 485, 144381. [Google Scholar] [CrossRef]
- Jia, R.; Liu, J.; He, T.; Han, D.; Xu, X.; Liu, L.; Sun, Z.; Qiao, Z. Population heat exposure risk from the perspective of urban heat island spatial expansion in China during 2005–2020. Urban Clim. 2024, 56, 101987. [Google Scholar] [CrossRef]
- Huang, X.; Li, L.; Yan, X.; Ji, W.; Zhao, K.; Zhao, X. Assessment of heat exposure risk for urban populations and spatio-temporal patterns: A perspective of urban functional zones in Xi’an, China. Urban Clim. 2024, 55, 101992. [Google Scholar] [CrossRef]
- Zhao, K.; Ning, Z.; Xu, C.; Zhao, X.; Huang, X. How do driving factors affect the diurnal variation of land surface temperature across different urban functional blocks? A case study of Xi’an, China. Sustain. Cities Soc. 2024, 114, 105738. [Google Scholar] [CrossRef]
- Zhao, S.; Dong, J.; Guo, F.; Zhang, H.; Zhu, P. Optimization of green space in high-density built-up areas based on cooling simulations: A case study in Xi’an, China. Urban Clim. 2024, 58, 102225. [Google Scholar] [CrossRef]
- Yuan, B.; Zhou, L.; Hu, F.; Zhang, Q. Diurnal dynamics of heat exposure in Xi’an: A perspective from local climate zone. Build. Environ. 2022, 222, 109400. [Google Scholar] [CrossRef]
- Yan, X.; Liu, J.; Zhang, W.; Wang, Z.; Jia, R.; Wang, L.; Liu, N.; Zhu, Y. Examination of green roofs’ cooling effects in a big city based on multi-source remote sensing data: An example from central Xi’an, China. Sustain. Cities Soc. 2025, 130, 106545. [Google Scholar] [CrossRef]
- Samra, R.M.A. Investigating and mapping day-night urban heat island and its driving factors using Sentinel/MODIS data and Google Earth Engine. Case study: Greater Cairo, Egypt. Urban Clim. 2023, 52, 101729. [Google Scholar] [CrossRef]
- Si, M.; Li, Z.-L.; Nerry, F.; Tang, B.-H.; Leng, P.; Wu, H.; Zhang, X.; Shang, G. Spatiotemporal pattern and long-term trend of global surface urban heat islands characterized by dynamic urban-extent method and MODIS data. ISPRS J. Photogramm. Remote Sens. 2022, 183, 321–335. [Google Scholar] [CrossRef]
- Mandal, J.; Patel, P.P.; Samanta, S. Examining the expansion of Urban Heat Island effect in the Kolkata Metropolitan Area and its vicinity using multi-temporal MODIS satellite data. Adv. Space Res. 2022, 69, 1960–1977. [Google Scholar] [CrossRef]
- Kyaw, A.K.; Hamed, M.M.; Kamruzzaman, M.; Shahid, S. Spatiotemporal changes in population exposure to heat stress in South Asia. Sustain. Cities Soc. 2023, 93, 104544. [Google Scholar] [CrossRef]
- Zhang, X.; Chang, L.; Wang, M.; Stein, A. Measuring polycentric urban development with multi-temporal Sentinel-1 SAR imagery: A case study in Shanghai, China. Int. J. Appl. Earth Obs. Geoinf. 2023, 121, 103340. [Google Scholar] [CrossRef]
- Jaber, S.M. Is there a relationship between human population distribution and land surface temperature? Global perspective in areas with different climatic classifications. Remote Sens. Appl. Soc. Environ. 2020, 20, 100435. [Google Scholar] [CrossRef]
- Liu, L.; Cao, X.; Li, S.; Jie, N. A 31-year (1990–2020) global gridded population dataset generated by cluster analysis and statistical learning. Sci. Data 2024, 11, 124. [Google Scholar] [CrossRef]
- Zhao, H.; Fang, Y.; Xu, X. Quantifying morphology evolutions of urban heat islands and assessing their heat exposure in a metropolis. Sustain. Cities Soc. 2024, 102, 105244. [Google Scholar] [CrossRef]
- Xi’an Statistical Yearbook 2024. Available online: https://tjj.xa.gov.cn/tjnj/2024/zk/indexch.htm (accessed on 25 August 2025).
- Fernandes, R.; Nascimento, V.; Freitas, M.; Ometto, J. Local Climate Zones to Identify Surface Urban Heat Islands: A Systematic Review. Remote Sens. 2023, 15, 884. [Google Scholar] [CrossRef]
- Dutta, K.; Basu, D.; Agrawal, S. Evaluation of seasonal variability in magnitude of urban heat islands using local climate zone classification and surface albedo. Int. J. Environ. Sci. Technol. 2021, 19, 8677–8698. [Google Scholar] [CrossRef]
- Yuan, S.; Ren, Z.; Shan, X.; Deng, Q.; Zhou, Z. Seasonal different effects of land cover on urban heat island in Wuhan’s metropolitan area. Urban Clim. 2023, 49, 101547. [Google Scholar] [CrossRef]
- Kachar, H.; Vafsian, A.R.; Modiri, M.; Enayati, H.; Safdari Nezhad, A.R. Evaluation of Spatial and Temporal Distribution Changes of Lst Using Landsat Images (Case Study: Tehran). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-1/W5, 351–356. [Google Scholar] [CrossRef]
- Polydoros, A.; Cartalis, C. Use of Earth Observation based indices for the monitoring of built-up area features and dynamics in support of urban energy studies. Energy Build. 2015, 98, 92–99. [Google Scholar] [CrossRef]
- Wu, S.; Yu, W.; Chen, B. Observed inequality in thermal comfort exposure and its multifaceted associations with greenspace in United States cities. Landsc. Urban Plan. 2023, 233, 104701. [Google Scholar] [CrossRef]
- Aram, F.; Solgi, E.; Garcia, E.H.; Mosavi, A. Urban heat resilience at the time of global warming: Evaluating the impact of the urban parks on outdoor thermal comfort. Environ. Sci. Eur. 2020, 32, 117. [Google Scholar] [CrossRef]
- Bin, Z.O.U.; Fen, P.; Limin, J.; Min, W. GIS Aided Spatial Zoning of High\|Resolution Population Exposure to Air Pollution. Geomat. Inf. Sci. Wuhan Univ. 2013, 38, 334–338. [Google Scholar]
- Zhao, X.; Zhao, K.; Huang, X. Population exposure risk to urban extreme heat environment based on ECOSTRESS land surface temperature and mobile phone signaling data: A case study of Xi’an City. Prog. Geogr. 2022, 41, 2061–2072. [Google Scholar] [CrossRef]
- Liu, S.; Zang, Z.; Wang, W.; Wu, Y. Spatial-temporal evolution of urban heat Island in Xi’an from 2006 to 2016. Phys. Chem. Earth Parts A/B/C 2019, 110, 185–194. [Google Scholar] [CrossRef]
- Han, B.; Luo, Z.; Liu, Y.; Zhang, T.; Yang, L. Using Local Climate Zones to investigate Spatio-temporal evolution of thermal environment at the urban regional level: A case study in Xi’an, China. Sustain. Cities Soc. 2022, 76, 103495. [Google Scholar] [CrossRef]
- Luo, H.; Gao, X.; Liu, Z.; Liu, W.; Li, Y.; Meng, X.; Yang, X.; Yan, J.; Sun, L. Real-time Characterization Model of Carbon Emissions Based on Land-use Status: A Case Study of Xi’an City, China. J. Clean. Prod. 2023, 434, 140069. [Google Scholar] [CrossRef]
- Liu, Z.; Han, L.; Liu, M. High-resolution carbon emission mapping and spatial-temporal analysis based on multi-source geographic data: A case study in Xi’an City, China. Environ. Pollut. 2024, 361, 124879. [Google Scholar] [CrossRef]
- Xu, D.; Zhou, D.; Wang, Y.; Meng, X.; Chen, W.; Yang, Y. Temporal and spatial variations of urban climate and derivation of an urban climate map for Xi’an, China. Sustain. Cities Soc. 2020, 52, 101850. [Google Scholar] [CrossRef]
- Huo, K.; Qin, R.; Zhao, J.; Ma, X. Long-term tracking of urban structure and analysis of its impact on urban heat stress: A case study of Xi’an, China. Ecol. Indic. 2025, 174, 113418. [Google Scholar] [CrossRef]
- Song, J.; Lei, J.; Wang, P. Evolution of the “Production-Living-Ecological” space of urban trituration and its prediction of carbon mitigation potential–The case of Xi’an. Ecol. Indic. 2025, 171, 113137. [Google Scholar] [CrossRef]
- Liu, M.; Ma, M.; Liu, J.; Lu, X.; Dong, Z.; Li, J. Quantifying impacts of natural and anthropogenic factors on urban ecological quality changes: A multiscale survey in Xi’an, China. Ecol. Indic. 2023, 153, 110463. [Google Scholar] [CrossRef]
- Ali, G.; Abbas, S.; Qamer, F.M.; Wong, M.S.; Rasul, G.; Irteza, S.M.; Shahzad, N. Environmental impacts of shifts in energy, emissions, and urban heat island during the COVID-19 lockdown across Pakistan. J. Clean. Prod. 2021, 291, 125806. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Qian, J.; Schlink, U.; Zhang, L.; Hu, X.; Gao, J.; Wang, Q. Anthropogenic heat variation during the COVID-19 pandemic control measures in four Chinese megacities. Remote Sens. Environ. 2023, 293, 113602. [Google Scholar] [CrossRef]
- Gao, J.; Meng, Q.; Zhang, L.; Hu, X.; Hu, D.; Qian, J. Modeling the impact of pandemic on the urban thermal environment over megacities in China: Spatiotemporal analysis from the perspective of heat anomaly variations. Int. J. Appl. Earth Obs. Geoinf. 2025, 136, 104396. [Google Scholar] [CrossRef]
- Xu, Y.; Jia, R.; Liu, J.; Han, D.; He, T.; Xu, X.; Liu, L.; Sun, Z.; Qiao, Z. The population exposure risk of urban heat island effect: From the perspective of urban spatial expansion in China. Build. Environ. 2024, 258, 111565. [Google Scholar] [CrossRef]
- Fang, Y.; Zhao, L.; Dou, B.; Li, Y.; Wang, S. Circuit VRC: A circuit theory-based ventilation corridor model for mitigating the urban heat islands. Build. Environ. 2023, 244, 110786. [Google Scholar] [CrossRef]
- Guan, S.; Zhang, X.; Zhang, T.; Hu, H. Considering the supply and demand of urban heat island mitigation: A study on the construction of “Source-flow-sink” cooling corridor network of blue and green landscape. Ecol. Indic. 2025, 174, 113448. [Google Scholar] [CrossRef]
- Yuan, J.; Yan, D.; Xiao, X.; Shimazaki, Y.; Wang, Y.; Jiao, Z.; Lin, Z.; Bizjak, M.; Farnham, C.; Emura, K. Mitigating urban heat islands: Enhancing outdoor comfort with retro-reflective building materials through computational-fluid-dynamics analysis. Next Res. 2025, 2, 100199. [Google Scholar] [CrossRef]
- Fang, Z.; Zhang, F.; Guo, Z.; Zheng, Z.; Feng, X. Investigation into the outdoor thermal comfort on different urban underlying surfaces. Urban Clim. 2024, 55, 101911. [Google Scholar] [CrossRef]
- Xu, J.; Jin, Y.; Ling, Y.; Sun, Y.; Wang, Y. Exploring the seasonal impacts of morphological spatial pattern of green spaces on the urban heat island. Sustain. Cities Soc. 2025, 125, 106352. [Google Scholar] [CrossRef]
- Yang, C.; Qin, Y.; Wu, H.; Zhao, Y.; Che, S. Urban park green spaces and their potential in regulating urban heat Island (UHI) effects in urban-rural gradient in Shanghai, China. Sustain. Cities Soc. 2025, 129, 106467. [Google Scholar] [CrossRef]
- Jato-Espino, D.; Lierow, S.; Rodríguez-Sánchez, M. Using classification algorithms to model nighttime Surface Urban Heat Island (SUHI), with an emphasis on the role of urban trees. Build. Environ. 2025, 270, 112572. [Google Scholar] [CrossRef]
- Danes, V.R.; Pinontoan, O.R.; Porajow, Z.C.; Simanjuntak, C.K.; Pasassung, F.; Sunarno, F.A.; Lempas, R.P.; Sumakud, V.J.; Simangunsong, V.; Pangaribuan, M. Impact of particulate matter and heat stress on cardiovascular health during traffic exposure. Atmos. Pollut. Res. 2025, 16, 102410. [Google Scholar] [CrossRef]
- Castro, J.R.R.; Delina, L.L. The social, technological, economic, and political roles of information and communication technologies in extreme heat adaptation in urban Southeast Asia. Urban Clim. 2025, 62, 102556. [Google Scholar] [CrossRef]
UHI Intensity Levels | LST Ranges |
---|---|
Weak UHI | LSTi < LSTUHI + 1std |
Moderate UHI | LSTUHI + 1std ≤ LSTi < LSTUHI + 2std |
Strong UHI | LSTUHI + 2std ≤ LSTi < LSTUHI + 3std |
Extreme UHI | LSTi ≥ LSTUHI + 3std |
Relative Risk Levels | EUHIraster Ranges |
---|---|
No risk | EUHIraster ≤ 0.5 |
Low risk | 0.5 < EUHIraster ≤ 1.5 |
Medium risk | 1.5 < EUHIraster ≤ 2.5 |
High risk | 2.5 < EUHIraster ≤ 3.5 |
Very high risk | 3.5 < EUHIraster |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Wang, X.; Zhao, H.; Xu, X. Spatiotemporal Patterns of the Evolution of the Urban Heat Island Effect and Population Heat Exposure Risks in Xi’an, One of China’s Megacities, from 2003 to 2023. Land 2025, 14, 2021. https://doi.org/10.3390/land14102021
Li Z, Wang X, Zhao H, Xu X. Spatiotemporal Patterns of the Evolution of the Urban Heat Island Effect and Population Heat Exposure Risks in Xi’an, One of China’s Megacities, from 2003 to 2023. Land. 2025; 14(10):2021. https://doi.org/10.3390/land14102021
Chicago/Turabian StyleLi, Zijie, Xinqi Wang, Haiyue Zhao, and Xiaoming Xu. 2025. "Spatiotemporal Patterns of the Evolution of the Urban Heat Island Effect and Population Heat Exposure Risks in Xi’an, One of China’s Megacities, from 2003 to 2023" Land 14, no. 10: 2021. https://doi.org/10.3390/land14102021
APA StyleLi, Z., Wang, X., Zhao, H., & Xu, X. (2025). Spatiotemporal Patterns of the Evolution of the Urban Heat Island Effect and Population Heat Exposure Risks in Xi’an, One of China’s Megacities, from 2003 to 2023. Land, 14(10), 2021. https://doi.org/10.3390/land14102021