The Causal Effect of Land-Use Transformation on Urban Vitality in the Context of Urban Regeneration: A Case Study of Chengdu
Abstract
1. Introduction
- (1)
- This study shifts the analytical perspective from traditional correlational approaches to causal inference by introducing a causal forest framework to estimate the heterogeneous causal effects of land-use transformations on urban vitality.
- (2)
- It further identifies the differential impacts of various types of land-use transformations on urban vitality, elucidates their underlying mechanisms, and proposes context-specific and sustainable regeneration strategies.
2. Materials and Methods
2.1. Study Area
2.2. Research Data
2.2.1. Data Sources
2.2.2. Measurement of Urban Vitality
2.3. Research Method
2.3.1. Research Framework and Scenario Setting
2.3.2. Inverse Probability Weighting
2.3.3. DML
2.3.4. Causal Forests
2.3.5. Causal Forests-DML
2.3.6. Shapley Additive Explanation
3. Results
3.1. Correlation Test and Balance Test
3.2. Spatial Clustering and Buffer Cross-Validation of Urban Vitality in Chengdu
3.3. Evaluation of Model Performance and Individual Treatment Effect
3.4. SHAP-Based Feature Contribution Analysis
3.5. Analysis of CATE
3.5.1. Causal Tree Analysis of Scenario 1
3.5.2. Causal Tree Analysis of Scenario 2
4. Discussion
4.1. Scenario 1
4.2. Scenario 2
4.3. Scenario Differences and Policy Recommendations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Shen, L.; Ren, Y.; Zhou, T. Regeneration towards Suitability: A Decision-Making Framework for Determining Urban Regeneration Mode and Strategies. Habitat Int. 2023, 138, 102870. [Google Scholar] [CrossRef]
- Cai, X.; He, Z.; Wen, C. Does Urban Renewal Program Increase Urban Vitality? Causal Evidence from Beijing City, China. Appl. Geogr. 2025, 183, 103732. [Google Scholar] [CrossRef]
- Jacobs, J. The Death and Life of Great American Cities; Random House: New York, NY, USA, 1961. [Google Scholar]
- Lynch, K. Good City Form; MIT Press: Cambridge, MA, USA, 1984. [Google Scholar]
- Maas, P.R. Towards a Theory of Urban Vitality. Ph.D. Dissertation, University of British Columbia, Kelowna, BC, Canada, 1984. [Google Scholar]
- Montgomery, J. Making a City: Urbanity, Vitality and Urban Design. J. Land Use Sci. 1998, 3, 93–116. [Google Scholar] [CrossRef]
- Landry, C. The Creative City: A Toolkit for Urban Innovators; Earthscan Publishing: Oxfordshire, UK, 2000. [Google Scholar]
- Zhang, Y.; Tu, T.; Long, Y. Inferring Ghost Cities on the Globe in Newly Developed Urban Areas Based on Urban Vitality with Multi-Source Data. Habitat Int. 2025, 158, 103350. [Google Scholar] [CrossRef]
- Deng, C.; Zhou, D.; Wang, Y.; Wu, J.; Yin, Z. Association between Land Use and Urban Vitality in the Guangdong–Hong Kong–Macao Greater Bay Area: A Multiscale Study. Land 2024, 13, 1574. [Google Scholar] [CrossRef]
- He, Q.; He, W.; Song, Y.; Wu, J.; Yin, C.; Mou, Y. The Impact of Urban Growth Patterns on Urban Vitality in Newly Built-up Areas Based on an Association Rules Analysis Using Geographical ‘Big Data’. Land Use Policy 2018, 78, 726–738. [Google Scholar] [CrossRef]
- Liu, H.; Gou, P.; Xiong, J. Vital Triangle: A New Concept to Evaluate Urban Vitality. Comput. Environ. Urban Syst. 2022, 98, 101886. [Google Scholar] [CrossRef]
- Xu, G.; Su, J.; Xia, C.; Li, X.; Xiao, R. Spatial Mismatches between Nighttime Light Intensity and Building Morphology in Shanghai, China. Sustain. Cities Soc. 2022, 81, 103851. [Google Scholar] [CrossRef]
- Chen, J.; Ren, K.; Li, P.; Wang, H.; Zhou, P. Toward Effective Urban Regeneration Post-COVID-19: Urban Vitality Assessment to Evaluate People Preferences and Place Settings Integrating LBSNs and POI. In Environment, Development and Sustainability; Springer: Berlin/Heidelberg, Germany, 2024. [Google Scholar] [CrossRef]
- Hui, E.C.; Chen, T.; Lang, W.; Ou, Y. Urban Community Regeneration and Community Vitality Revitalization through Participatory Planning in China. Cities 2021, 110, 103072. [Google Scholar] [CrossRef]
- Paköz, M.Z.; Yaratgan, D.; Şahin, A. Re-Mapping Urban Vitality through Jane Jacobs’ Criteria: The Case of Kayseri, Turkey. Land Use Policy 2022, 114, 105985. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, X.; Liu, Y.; Zhu, L. Identification of 71 Factors Influencing Urban Vitality and Examination of Their Spatial Dependence: A Comprehensive Validation Applying Multiple Machine-Learning Models. Sustain. Cities Soc. 2024, 108, 105491. [Google Scholar] [CrossRef]
- Jiang, Y.; Han, Y.; Liu, M.; Ye, Y. Street Vitality and Built Environment Features: A Data-Informed Approach from Fourteen Chinese Cities. Sustain. Cities Soc. 2022, 79, 103724. [Google Scholar] [CrossRef]
- Gan, X.; Huang, L.; Wang, H.; Mou, Y.; Wang, D.; Hu, A. Optimal Block Size for Improving Urban Vitality: An Exploratory Analysis with Multiple Vitality Indicators. J. Urban Plann. Dev. 2021, 147, 4021027. [Google Scholar] [CrossRef]
- Sheng, J.; He, Y.; Lu, T.; Wang, F.; Huang, Y.; Leng, B.; Zhang, X.; Chen, Y. Unveiling Urban Vitality and Its Interactions in Mountainous Cities: A Human Behaviour Perspective on Community-Level Dynamics. Cities 2025, 159, 105780. [Google Scholar] [CrossRef]
- Mouratidis, K.; Poortinga, W. Built Environment, Urban Vitality and Social Cohesion: Do Vibrant Neighborhoods Foster Strong Communities? Landsc. Urban Plann. 2020, 204, 103951. [Google Scholar] [CrossRef]
- Doan, Q.C.; Ma, J.; Chen, S.; Zhang, X. Nonlinear and Threshold Effects of the Built Environment, Road Vehicles and Air Pollution on Urban Vitality. Landsc. Urban Plann. 2025, 253, 105204. [Google Scholar] [CrossRef]
- Xiao, L.; Lo, S.; Liu, J.; Zhou, J.; Li, Q. Nonlinear and Synergistic Effects of TOD on Urban Vibrancy: Applying Local Explanations for Gradient Boosting Decision Tree. Sustain. Cities Soc. 2021, 72, 103063. [Google Scholar] [CrossRef]
- Paköz, M.Z.; Işık, M. Rethinking Urban Density, Vitality and Healthy Environment in the Post-Pandemic City: The Case of Istanbul. Cities 2022, 124, 103598. [Google Scholar] [CrossRef]
- Wu, J.; Ta, N.; Song, Y.; Lin, J.; Chai, Y. Urban Form Breeds Neighborhood Vibrancy: A Case Study Using a GPS-Based Activity Survey in Suburban Beijing. Cities 2018, 74, 100–108. [Google Scholar] [CrossRef]
- Xia, C.; Yeh, A.G.-O.; Zhang, A. Analyzing Spatial Relationships between Urban Land Use Intensity and Urban Vitality at Street Block Level: A Case Study of Five Chinese Megacities. Landsc. Urban Plann. 2020, 193, 103669. [Google Scholar] [CrossRef]
- Lu, S.; Shi, C.; Yang, X. Impacts of Built Environment on Urban Vitality: Regression Analyses of Beijing and Chengdu, China. Int. J. Environ. Res. Public Health 2019, 16, 4592. [Google Scholar] [CrossRef]
- Liu, D.; Shi, Y. The Influence Mechanism of Urban Spatial Structure on Urban Vitality Based on Geographic Big Data: A Case Study in Downtown Shanghai. Buildings 2022, 12, 569. [Google Scholar] [CrossRef]
- Gao, F.; Liu, Y.; Liao, S.; Zhang, J.; Jiao, Z.; Hu, X.; Wu, J.; Chen, W.; Li, G. Lively Guangzhou: Deciphering the divergent intra-urban vibrancy across historic districts and CBD using interpretable machine learning. Cities 2025, 167, 106345. [Google Scholar] [CrossRef]
- Ming, Y.; Liu, Y.; Li, Y.; Yue, W. Core-Periphery Disparity in Community Vitality in Chongqing, China: Nonlinear Explanation Based on Mobile Phone Data and Multi-Scale Factors. Appl. Geogr. 2024, 164, 103222. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Jia, T.; Zhou, L.; Hijazi, I.H. The Six Dimensions of Built Environment on Urban Vitality: Fusion Evidence from Multi-Source Data. Cities 2022, 121, 103482. [Google Scholar] [CrossRef]
- Lan, F.; Gong, X.; Da, H.; Wen, H. How Do Population Inflow and Social Infrastructure Affect Urban Vitality? Evidence from 35 Large- and Medium-Sized Cities in China. Cities 2020, 100, 102454. [Google Scholar] [CrossRef]
- Dogan, O.; Lee, S. Jane Jacobs’s Urban Vitality Focusing on Three-Facet Criteria and Its Confluence with Urban Physical Complexity. Cities 2024, 155, 105446. [Google Scholar] [CrossRef]
- Zhao, X.; Yu, F.; Zhang, X.; Chen, J.; Li, P. Assessing Urban Renewal Efficiency via Multi-Source Data and DID-Based Comparison between Historical Districts. npj Herit Sci. 2025, 13, 389. [Google Scholar] [CrossRef]
- Guo, Y.; Li, M.; Li, K.; Li, H.; Li, Y. Unraveling the Determinants of Traffic Incident Duration: A Causal Investigation Using the Framework of Causal Forests with Debiased Machine Learning. Accid. Anal. Prev. 2024, 208, 107806. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Song, Y.; Shao, Z.; Zheng, C.; Liu, X.; Li, Y. Exploring the Causal Relationships and Pathways between Ecological Environmental Quality and Influencing Factors: A Comprehensive Analysis. Ecol. Indic. 2024, 165, 112192. [Google Scholar] [CrossRef]
- Zhong, Y.; Li, S.; Liang, X.; Guan, Q. Causal Inference of Urban Heat Island Effect and Its Spatial Heterogeneity: A Case Study of Wuhan, China. Sustain. Cities Soc. 2024, 115, 105850. [Google Scholar] [CrossRef]
- Wu, W.; Wu, G.; Wei, J.; Lawrence, W.R.; Deng, X.; Zhang, Y.; Chen, S.; Wang, Y.; Lin, X.; Chen, D.; et al. Potential Causal Links and Mediation Pathway between Urban Greenness and Lung Cancer Mortality: Result from a Large Cohort (2009 to 2020). Sustain. Cities Soc. 2024, 101, 105079. [Google Scholar] [CrossRef]
- Ren, C.; Shi, Z.; Tian, H.; Zhao, R.; Huang, C.; Qiao, Q.; Yao, J. Estimating of the Causal Effect of Land Use Mixed on Adult Asthma Prevalence in New York State. Sustain. Cities Soc. 2025, 119, 106125. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, J.; Zhao, S.; Xu, X.; Liu, X.; Zhang, X.; Zhang, H. Inferring the Heterogeneous Effect of Urban Land Use on Building Height with Causal Machine Learning. GIScience Remote Sens. 2024, 61, 2321695. [Google Scholar] [CrossRef]
- Zhu, Y.; Rao, H. Does Low Carbon City Pilot Promote Urban Carbon Unlocking?—A Heterogeneity Analysis Based on Machine Learning. Cities 2024, 147, 104815. [Google Scholar] [CrossRef]
- Pan, W.; Du, J. Towards Sustainable Urban Transition: A Critical Review of Strategies and Policies of Urban Village Renewal in Shenzhen, China. Land Use Policy 2021, 111, 105744. [Google Scholar] [CrossRef]
- Xiao, Y.; Li, H.; Huang, X.; Chang, J. Can State-Led Urban Regeneration Occur without Gentrification? Appl. Geogr. 2025, 177, 103560. [Google Scholar] [CrossRef]
- Zhang, H.; Cong, C.; Chakraborty, A. Exploring the Institutional Dilemma and Governance Transformation in China’s Urban Regeneration: Based on the Case of Shanghai Old Town. Cities 2022, 131, 103915. [Google Scholar] [CrossRef]
- Zhao, P.; Md Ali, Z.; Nik Hashim, N.H.; Ahmad, Y.; Wang, H. Evaluating Social Sustainability of Urban Regeneration in Historic Urban Areas in China: The Case of Xi’an. J. Environ. Manag. 2024, 370, 122520. [Google Scholar] [CrossRef]
- Lai, Y.; Tang, B.; Chen, X.; Zheng, X. Spatial Determinants of Land Redevelopment in the Urban Renewal Processes in Shenzhen, China. Land Use Policy 2021, 103, 105330. [Google Scholar] [CrossRef]
- Mehari, A.; Genovese, P.V. Spatial rationalization of location value and use conversion cost in multiobjective land use optimization: Coupling hedonics pricing model and genetic algorithm. Land Use Policy 2025, 157, 107694. [Google Scholar] [CrossRef]
- Li, Y.; Chen, X.; Tang, B.; Wong, S.W. From Project to Policy: Adaptive Reuse and Urban Industrial Land Restructuring in Guangzhou City, China. Cities 2018, 82, 68–76. [Google Scholar] [CrossRef]
- Zheng, H.W.; Shen, G.Q.; Wang, H.; Hong, J. Simulating Land Use Change in Urban Renewal Areas: A Case Study in Hong Kong. Habitat Int. 2015, 46, 23–34. [Google Scholar] [CrossRef]
- Musakwa, W.; Van Niekerk, A. Implications of Land Use Change for the Sustainability of Urban Areas: A Case Study of Stellenbosch, South Africa. Cities 2013, 32, 143–156. [Google Scholar] [CrossRef]
- Niu, N.; Li, L.; Li, X.; He, J. The Structural Dimensions and Community Vibrancy: An Exploratory Analysis in Guangzhou, China. Cities 2022, 127, 103771. [Google Scholar] [CrossRef]
- Lee, S.; Kang, J.E. Impact of Particulate Matter and Urban Spatial Characteristics on Urban Vitality Using Spatiotemporal Big Data. Cities 2022, 131, 104030. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Yu, D.; Qi, J.; Li, S. Investigating the Spatiotemporal Pattern of Urban Vibrancy and Its Determinants: Spatial Big Data Analyses in Beijing, China. Land Use Policy 2022, 119, 106162. [Google Scholar] [CrossRef]
- Hao, H.; Yao, E.; Yang, Y.; Liu, S.; Pan, L.; Wang, Y. How to Build Vibrant Communities by Utilizing Functional Zones? A Community-Detection-Based Approach for Revealing the Association between Land Use and Community Vibrancy. Cities 2024, 155, 105431. [Google Scholar] [CrossRef]
- Gu, Y.; Yao, Y.; Yan, W.; Zhao, J.; Fei, T.; Ouyang, S. Examining the Transformation of Postindustrial Land in Reversing the Lack of Urban Vitality: A Paradigm Spanning Top-down and Bottom-up Approaches in Urban Planning Studies. Heliyon 2024, 10, e27667. [Google Scholar] [CrossRef]
- Fan, Y.; Fu, Y.; Qian, Z. Time-Varying and Land Use-Induced Spillover Effects of Urban Redevelopment: Evidence from Hong Kong. Cities 2024, 146, 104760. [Google Scholar] [CrossRef]
- Huang, X.; Wang, F. Calculative Governmentality for Agreement: Politics of Urban Redevelopment in Chengdu, China. Geoforum 2024, 150, 103991. [Google Scholar] [CrossRef]
- Deng, H. Inventory Land Era and Transformation of China’s Urban Regeneration: An Empirical Study of Chengdu Hi-Tech West District, China. Habitat Int. 2024, 150, 103133. [Google Scholar] [CrossRef]
- Xiao, R.; Yu, X.; Xiang, T.; Zhang, Z.; Wang, X.; Wu, J. Exploring the Coordination between Physical Space Expansion and Social Space Growth of China’s Urban Agglomerations Based on Hierarchical Analysis. Land Use Policy 2021, 109, 105700. [Google Scholar] [CrossRef]
- Han, B.; Jin, X.; Wang, J.; Yin, Y.; Liu, C.; Sun, R.; Zhou, Y. Identifying Inefficient Urban Land Redevelopment Potential for Evidence-Based Decision Making in China. Habitat Int. 2022, 128, 102661. [Google Scholar] [CrossRef]
- Yang, J.; Cao, J.; Zhou, Y. Elaborating Non-Linear Associations and Synergies of Subway Access and Land Uses with Urban Vitality in Shenzhen. Transp. Res. Part A Policy Pract. 2021, 144, 74–88. [Google Scholar] [CrossRef]
- Li, M.; Liu, J.; Lin, Y.; Xiao, L.; Zhou, J. Revitalizing Historic Districts: Identifying Built Environment Predictors for Street Vibrancy Based on Urban Sensor Data. Cities 2021, 117, 103305. [Google Scholar] [CrossRef]
- Sulis, P.; Manley, E.; Zhong, C.; Batty, M. Using Mobility Data as Proxy for Measuring Urban Vitality. J. Spat. Inf. Sci. 2018, 16, 137–162. [Google Scholar] [CrossRef]
- Zeng, P.; Wei, M.; Liu, X. Investigating the Spatiotemporal Dynamics of Urban Vitality Using Bicycle-Sharing Data. Sustainability 2020, 12, 1714. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, B.; Shu, B.; Yang, L.; Wang, R. Exploring the Spatiotemporal Patterns and Correlates of Urban Vitality: Temporal and Spatial Heterogeneity. Sustain. Cities Soc. 2023, 91, 104440. [Google Scholar] [CrossRef]
- Kim, Y.-L. Seoul’s Wi-Fi Hotspots: Wi-Fi Access Points as an Indicator of Urban Vitality. Comput. Environ. Urban Syst. 2018, 72, 13–24. [Google Scholar] [CrossRef]
- Wu, C.; Ye, Y.; Gao, F.; Ye, X. Using Street View Images to Examine the Association between Human Perceptions of Locale and Urban Vitality in Shenzhen, China. Sustain. Cities Soc. 2023, 88, 104291. [Google Scholar] [CrossRef]
- Wei, D.; Wang, Y.; Jiang, Y.; Guan, X.; Lu, Y. Deciphering the Effect of User-Generated Content on Park Visitation: A Comparative Study of Nine Chinese Cities in the Pearl River Delta. Land Use Policy 2024, 144, 107259. [Google Scholar] [CrossRef]
- Jiang, L.; Lai, Y.; Guo, R.; Li, X.; Hong, W.; Tang, X. Measuring the Impact of Government Intervention on the Spatial Variation of Market-Oriented Urban Redevelopment Activities in Shenzhen, China. Cities 2024, 147, 104834. [Google Scholar] [CrossRef]
- Li, J.; Burgess, G.; Sielker, F. Political Mobilisation and Institutional Layering in Urban Regeneration: Transformation of Land Redevelopment Governance in China. Cities 2023, 141, 104508. [Google Scholar] [CrossRef]
- Liu, X.; Huang, J.; Zhu, J. Property-Rights Regime in Transition: Understanding the Urban Regeneration Process in China—A Case Study of Jinhuajie, Guangzhou. Cities 2019, 90, 181–190. [Google Scholar] [CrossRef]
- Athey, S.; Wager, S. Estimating Treatment Effects with Causal Forests: An Application. Obs. Stud. 2019, 5, 37–51. [Google Scholar] [CrossRef]
- Barile, B.; Forti, M.; Marrocco, A.; Castaldo, A. Causal Impact Evaluation of Occupational Safety Policies on Firms’ Default Using Machine Learning Uplift Modelling. Sci. Rep. 2024, 14, 10380. [Google Scholar] [CrossRef]
- Gao, F.; Deng, X.; Liao, S.; Liu, Y.; Li, H.; Li, G. Portraying Business District Vibrancy with Mobile Phone Data and Optimal Parameters-Based Geographical Detector Model. Sustain. Cities Soc. 2023, 96, 104635. [Google Scholar] [CrossRef]
- Wu, R.; Wang, J.; Zhang, D.; Wang, S. Identifying Different Types of Urban Land Use Dynamics Using Point-of-Interest (POI) and Random Forest Algorithm: The Case of Huizhou, China. Cities 2021, 114, 103202. [Google Scholar] [CrossRef]
- Hagen, O.H. The Relationship of the City Centre to Its Surroundings: Correlations between Urban Spatial Structures and Inhabitants’ Frequency of City-Centre Visits in Four Norwegian Cities. Cities 2025, 156, 105499. [Google Scholar] [CrossRef]
- Jiang, Y.; Sun, Z.; Wei, D.; Zhao, P.; Yang, L.; Lu, Y. Revealing the Spatiotemporal Pattern of Urban Vibrancy at the Urban Agglomeration Scale: Evidence from the Pearl River Delta, China. Appl. Geogr. 2025, 181, 103694. [Google Scholar] [CrossRef]
- Ravaz, B.; Bombenger, P.-H.; Capezzali, M.; Meyer, T. Reviewing 20 Years of Redevelopment Trajectories of Industrial Sites Literature and Highlighting New Research Perspectives. Land Use Policy 2024, 146, 107326. [Google Scholar] [CrossRef]
- Chen, K.; Lai, Y.; Tao, L.; Lin, Y. Spatial Variation of Industrial Land Conversion and Its Influential Factors in Urban Redevelopment in China: Case Study of Shenzhen, China. J. Urban Plan. Dev. 2024, 150, 5024005. [Google Scholar] [CrossRef]
Date Name | Data Description | Unit | Min | Max | Reference |
---|---|---|---|---|---|
Land Use Types | Functional categories of land parcels (residential, commercial, industrial, etc.), derived from Data-StarCloud (2018) at 30 m resolution. | unitless | [9] | ||
Population density | Number of people per unit area, obtained from WorldPop (2019) at 100 m resolution. | pop./Km2 | 82 | 52,680 | [27] |
Distance to the center | Distance from a unit to the nearest district-level central business district (CBD). | m | 52 | 26,336 | [60] |
Distance to the Metro station | Distance to the nearest metro station. | m | 42 | 13,804 | [19] |
Building density | Proportion of built-up area within a unit. | unitless | 0.1 | 0.93 | [17] |
Land area | Size of the land unit. | km2 | 0.003 | 20.09 | [18] |
Average building height | Mean height of buildings in the area. | m | 0 | 211 | [12] |
POI diversity | Variety of point-of-interest categories. | unitless | 0 | 2.4 | [61] |
Check-in of Weibo | Number of social media check-ins from August to October 2019, indicating human activity. | counts | 0 | 26,911 | [52] |
POI density | Number of POIs per unit area. | points/km2 | 2.95 | 16,707 | [16] |
Night light concentration | Intensity of nighttime light, derived from VIIRS (2019) at 500 m resolution. | nW·cm−2·sr−1 | 2 | 133 | [31] |
Tree | ATE | Std | Z-Stat | p-Value | CI-Lower | CI-Upper | ||
---|---|---|---|---|---|---|---|---|
Scenario 1 | R to C | 1000 | 968.39 (0.83) | 436.3 (0.37) | 2.2 | 0.028 | 113.2 (0.097) | 1823.5 (1.56) |
Scenario 2 | I to C | 1000 | 491.17 (0.42) | 194.2 (0.17) | 2.1 | 0.035 | 110.6 (0.094) | 871.8 (0.74) |
Placebo covariate Test 1 | R to C | 1000 | 902.53 (0.77) | 462.9 (0.40) | 1.9 | 0.057 | −4.8 (−0.004) | 1809.8 (1.55) |
Placebo covariate Test 2 | I to C | 1000 | 408.36 (0.35) | 223.6 (0.19) | 1.8 | 0.072 | −29.9 (−0.026) | 846.7 (0.72) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, X.; Lu, R.; Song, T.; Wang, Y.; Wu, J.; Gong, L. The Causal Effect of Land-Use Transformation on Urban Vitality in the Context of Urban Regeneration: A Case Study of Chengdu. Land 2025, 14, 2020. https://doi.org/10.3390/land14102020
Wen X, Lu R, Song T, Wang Y, Wu J, Gong L. The Causal Effect of Land-Use Transformation on Urban Vitality in the Context of Urban Regeneration: A Case Study of Chengdu. Land. 2025; 14(10):2020. https://doi.org/10.3390/land14102020
Chicago/Turabian StyleWen, Xin, Rui Lu, Tingting Song, Yudi Wang, Jian Wu, and Lei Gong. 2025. "The Causal Effect of Land-Use Transformation on Urban Vitality in the Context of Urban Regeneration: A Case Study of Chengdu" Land 14, no. 10: 2020. https://doi.org/10.3390/land14102020
APA StyleWen, X., Lu, R., Song, T., Wang, Y., Wu, J., & Gong, L. (2025). The Causal Effect of Land-Use Transformation on Urban Vitality in the Context of Urban Regeneration: A Case Study of Chengdu. Land, 14(10), 2020. https://doi.org/10.3390/land14102020