Spatiotemporal Continuity and Spatially Heterogeneous Drivers in the Historical Evolution of County-Scale Carbon Emissions from Territorial Function Utilisation in China: Evidence from Qionglai City
Abstract
1. Introduction
2. Literature Review
2.1. Carbon Emission Accounting Methodologies
2.2. Characteristics of the Spatiotemporal Evolution of Carbon Emissions
2.3. Analysis of Factors Affecting Carbon Emissions
3. Materials and Methods
3.1. Study Area and Data
3.1.1. Overview of the Study Area

3.1.2. Data Sources and Processing
3.2. Methodology
3.2.1. A Method-Based Framework for Modeling the Spatial Distribution of Carbon Emissions Resulting from the Utilisation of TSFs
- (1)
- Accounting List of Carbon Emissions from the Utilisation of TSFs
- (2)
- Total Carbon Emissions Accounting and Coefficient Calculation for the Utilisation of TSFs
- Step 1: Total carbon emission accounting
| Land Type | Formula | Variable Meaning | Parameter Explanation |
|---|---|---|---|
| Arable land | indicates the net carbon benefit of arable land; indicates the carbon emissions from arable land; indicates the carbon sequestration from arable land; indicates the area of arable land; indicates the carbon source and carbon sink coefficients of arable land. | Referring to the calculation method of Shi et al. [75], the net carbon emission coefficient for arable land is determined by the difference between the carbon emission coefficient of crops, which is 0.0504 kg/(m2·a) [76], and the carbon absorption coefficient of crops, which is 0.0007 kg/(m2·a) [77]. Thus, the net carbon emission coefficient for arable land is 0.497 t/(hm2·a). | |
| Forest land, Garden land, Grass land, Water bodies, Transportation land | denotes the net carbon emissions of land category ;denotes the area of the land category; denotes the net carbon emission coefficient for each land category. | The national average net carbon emission level of 0.644 t/(hm2·a) obtained by Fang et al. [78] using the continuous function method of conversion factors was used as the net carbon emission coefficient of forest land. Referring to the research results of Zhao et al. [79], the net carbon emission coefficient of garden land was determined as 0.73 t/(hm2·a). Referring to the national average carbon sink level of pastureland obtained from Fang et al. [78], the net carbon emission coefficient of grassland was determined as −0.021 t/(hm2·a). For water bodies, the carbon sequestration coefficient is derived by averaging values reported by Duan et al. [80] (0.0248 kg/m2·a) and Lai et al. [81] (0.0257 kg/m2·a)., the net carbon emission coefficient of the waters was determined to be the average value of the two, i.e., −0.0253 t/(hm2·a). Referring to the research results of Zhao et al. [79], the net carbon emission coefficient of transport land was determined as 96.9 t/(hm2·a). |
| Items | Formula | Variable Meaning | Parameter Explanation |
| Energy consumption | indicates the consumption of class energy; indicates the unit net calorific value of class energy; and respectively indicate the carbon emission factors of class energy. | Net heat value was obtained by querying the China Energy Statistics Yearbook; carbon emission factor and carbon emission factor, obtained by querying the IPCC [30,67]. | |
| Industrial waste water | is the weight of Chemical Oxygen Demand (COD) in the wastewater; is the maximum production capacity. | Chemical Oxygen Demand (COD) in wastewater from China Energy Statistical Yearbook, maximum production capacity of 0.25 [82]. | |
| Domestic wastewater | indicates the population of a spatial area (in people); refers to the organic content of biochemical oxygen demand (BOD) per capita; is the proportion of BOD that is readily deposited; indicates the emission factor of BOD; refers to the proportion of anaerobic degradation of BOD in wastewater. | The organic matter content of BOD per capita is 60 g BOD/person/day; the proportion of BOD that is readily deposited is 0.5; the emission factor for BOD is 0.6 g CH4/g; and the proportion of anaerobically degraded BOD in the wastewater is 0.8 [83]. | |
| Population, animal respiration | indicates the number of animals; indicates the carbon emission coefficients of animals | The respiratory carbon emission coefficients for humans, pigs, cattle and sheep were 0.079, 0.082, 0.796, 0.041 t/a [84,85]. | |
| Animal enteric fermentation and faeces | indicates the number of animals; and represent the carbon emission coefficients of CO2 and CH4 production from enteric fermentation and faecal species of the ith animal, respectively. | By querying the IPCC [30,67], the carbon emission coefficients of CO2 production from enteric fermentation and faeces in pigs, cattle and sheep were obtained as 3.89, 59.33 and 45 kg/a, and the carbon emission coefficients of CH4 production were 5.18, 79.11 and 9.93 kg/a. |
- Step 2: Carbon emission coefficient calculation
- (3)
- Calculation of Carbon Emissions in Territorial Spatial Units
3.2.2. Analysis of the Evolution Characteristics of Carbon Emissions from the Utilisation of TSFs and Simulation Methods for Their Change Trends
- (1)
- Analysis Method for the Evolution Characteristics of Carbon Emissions from the Utilisation of TSFs
- (2)
- Simulation Methods for the Evolution Trends of Carbon Emissions from the Utilisation of TSFs
3.2.3. Analysis Method for the Spatiotemporal Evolution Factors of Carbon Emissions from the Utilisation of TSFs
- (1)
- Analysis of the Influencing Factors of Carbon Emission Spatiotemporal Evolution Based on the GTWR Model
- (2)
- Model Sensitivity Analysis Based on Parameter Variation Analysis Method
4. Results and Analysis
4.1. Temporal Characteristics of Carbon Emissions from the Utilisation of TSFs
4.1.1. Overall Characteristics of Carbon Emission Changes
4.1.2. Characteristics of Phased Changes in Carbon Emissions
4.1.3. Characteristics of Structural Changes in Carbon Emissions
4.2. Spatiotemporal Characteristics of Carbon Emissions from the Utilisation of TSFs
4.2.1. Spatial Distribution and Evolution Characteristics of Carbon Emissions
- (1)
- Fundamental Evolutionary Characteristics of the Spatial Distribution of Carbon Emissions
- (2)
- Evolutionary Characteristics of the Spatial Correlation of Carbon Emissions
- (3)
- Evolutionary Characteristics of the Spatial Heterogeneity of Carbon Emissions
4.2.2. Spatial Evolutionary Trends and Characteristics of Carbon Emissions
- (1)
- Spatial and Historical Evolution Characteristics of Carbon Emissions
- (2)
- Future Evolution Characteristics of Carbon Emissions
4.3. Analysis of the Spatiotemporal Evolution and Influencing Factors of Carbon Emissions from the Utilisation of TSFs
4.3.1. Analysis of Influencing Factors in the Spatiotemporal Evolution of Carbon Emissions
4.3.2. Model Sensitivity Analysis Based on Parameter Variation Method
5. Discussion
5.1. Spatiotemporal Heterogeneity and Evolution Trends of Carbon Emissions from the Utilisation of TSFs
5.2. Spatiotemporal Heterogeneity of Driving Factors and Their Explanatory Power for Carbon Emissions from the Utilisation of TSFs
5.3. Policy Implications
5.4. Innovation, Limitations, and Future Prospects
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rahman, A.; Murad, S.W.; Mohsin, A.K.M.; Wang, X. Does renewable energy proactively contribute to mitigating carbon emissions in major fossil fuels consuming countries? J. Clean. Prod. 2024, 452, 142113. [Google Scholar] [CrossRef]
- Zhao, X.; Long, L.; Yin, S.; Zhou, Y. How technological innovation influences carbon emission efficiency for sustainable development? Evidence from China. Resour. Environ. Sustain. 2023, 14, 100135. [Google Scholar] [CrossRef]
- Škvareninová, J.; Lukasová, V.; Borsányi, P.; Kvas, A.; Vido, J.; Štefková, J.; Škvarenina, J. The effect of climate change on spring frosts and flowering of Crataegus laevigata—The indicator of the validity of the weather lore about “The Ice Saints”. Ecol. Indic. 2022, 145, 109688. [Google Scholar] [CrossRef]
- Sabater, S.; Freixa, A.; Jiménez, L.; López-Doval, J.; Pace, G.; Pascoal, C.; Perujo, N.; Craven, D.; González-Trujillo, J.D. Extreme weather events threaten biodiversity and functions of river ecosystems: Evidence from a meta-analysis. Biol. Rev. 2023, 98, 450–461. [Google Scholar] [CrossRef]
- Zheng, Y.; Fan, M.; Cai, Y.; Fu, M.; Yang, K.; Wei, C. Spatio-temporal pattern evolution of carbon emissions at the city-county-town scale in Fujian Province based on DMSP/OLS and NPP/VIIRS nighttime light data. J. Clean. Prod. 2024, 442, 140958. [Google Scholar] [CrossRef]
- Zhou, X.; Liang, Y.; Li, L.; Chai, D.; Gu, X.; Yang, L.; Duan, J. Analysis of spatial and temporal characteristics and influence mechanisms of carbon emissions in China’s, 1997–2017. J. Clean. Prod. 2024, 485, 144411. [Google Scholar] [CrossRef]
- Fu, B.; Liu, Y.; Li, Y.; Wang, C.; Li, C.; Jiang, W.; Hua, T.; Zhao, W. The research priorities of resources and environmental sciences. Geogr. Sustain. 2021, 2, 87–94. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y. Territory spatial planning and national governance system in China. Land Use Policy 2021, 102, 105288. [Google Scholar] [CrossRef]
- Kienast, F.; Bolliger, J.; Potschin, M.; de Groot, R.S.; Verburg, P.H.; Heller, I.; Wascher, D.; Haines-Young, R. Assessing landscape functions with broad- scale environmental data: Insights gained from a prototype development for Europe. Environ. Manag. 2009, 44, 1099–1120. [Google Scholar] [CrossRef]
- Verburg, P.H.; Van de steeg, J.; Veldkamp, A.; van de Steeg, J.; Willemen, L. From land cover change to land function dynamics: A major challenge to improve land characterization. J. Environ. Manag. 2009, 90, 1327–1335. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, C.; Chang, F. A New Approach for Multifunctional Zoning of Territorial Space: The Panxi Area of the Upper Yangtze River in China Case Study. Sustainability 2019, 11, 2325. [Google Scholar] [CrossRef]
- Li, S.; Zhao, X.; Pu, J.; Miao Pei Wang, Q.; Tan, K. Optimize and control territorial spatial functional areas to improve the ecological stability and total environment in karst areas of Southwest China. Land Use Policy 2021, 100, 104940. [Google Scholar] [CrossRef]
- Pérez-Soba, M.; Petit, S.; Jones, L.; Bertrand, N.; Briquel, V.; Omodei-Zorini, L.; Contini, C.; Helming, K.; Farrington, J.H.; Mossello, M.T.; et al. Land use functions—A multifunctionality approach to assess the impact of land use changes on land use sustainability. In Sustainability Impact Assessment of Land Use Changes; Helming, K., Pérez-Soba, M., Tabbush, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar] [CrossRef]
- Paracchini, M.L.; Pacini, C.; Jones, M.L.M.; Pérez-Soba, M. An aggregation framework to link indicators associated with multifunctional land use to the stakeholder evaluation of policy options. Ecol. Indic. 2017, 11, 71–80. [Google Scholar] [CrossRef]
- Zhou, D.; Xu, J.; Lin, Z. Conflict or coordination? Assessing land use multi-functionalization using production-living-ecology analysis. Sci. Total Environ. 2017, 577, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; Huang, M.; Liu, Z.; Wang, X.; Ciais, P.; Canadell, J.G.; Wang, K.; Bastos, A.; Friedlingstein, P.; Houghton, R.A.; et al. Lower land-use emissions responsible for increased net land carbon sink during the slow warming period. Nat. Geosci. 2018, 11, 739–743. [Google Scholar] [CrossRef]
- Yu, Z.; Chen, L.; Tong, H.; Chen, L.; Zhang, T.; Li, L.; Yuan, L.; Xiao, J.; Wu, R.; Bai, L.; et al. Spatial correlations of land-use carbon emissions in the Yangtze River Delta region: A perspective from social network analysis. Ecol. Indic. 2022, 142, 109147. [Google Scholar] [CrossRef]
- Chen, S.; Long, H.; Fath, B.D.; Chen, B. Global urban carbon networks: Linking inventory to modeling. Environ. Sci. Technol. 2020, 54, 5790–5801. [Google Scholar] [CrossRef]
- Zhou, R.; Guo, Y.; Wu, Y. Exploration on the Innovation Model of County Urbanization Development with the Resource Constraints in China. Sustainability 2023, 15, 16129. [Google Scholar] [CrossRef]
- Liu, C.; Hu, S.; Wu, S.; Song, J.; Li, H. County-level land use carbon emissions in China: Spatiotemporal patterns and impact factors. Sustain. Cities Soc. 2024, 105, 105304. [Google Scholar] [CrossRef]
- Liu, X.; Jin, X.; Luo, X.; Zhou, Y. Quantifying the spatiotemporal dynamics and impact factors of China’s county-level carbon emissions using ESTDA and spatial econometric models. J. Clean. Prod. 2023, 410, 137203. [Google Scholar] [CrossRef]
- Dai, L.; Feng, C. Carbon budget accounting of territorial space and planning response at county/district level: A case study of Wuqing District, Tianjin City. Landsc. Archit. 2024, 31, 84–92. [Google Scholar] [CrossRef]
- Harris, S.; Weinzettel, J.; Bigano, A.; Källmén, A. Low carbon cities in 2050? GHG emissions of European cities using production-based and consumption-based emission accounting methods. J. Clean. Prod. 2020, 248, 119206. [Google Scholar] [CrossRef]
- Zhang, Y.; Quan, J.; Kong, Y.; Wang, Q.; Zhang, Y.; Zhang, Y. Research on the fine-scale spatial-temporal evolution characteristics of carbon emissions based on nighttime light data: A case study of Xi’an city. Ecol. Inform. 2024, 79, 102454. [Google Scholar] [CrossRef]
- Anser, M.K.; Syed, Q.R.; Apergis, N. Does geopolitical risk escalate CO2 emissions? Evidence from the BRICS countries. Environ. Sci. Pollut. Res. 2021, 28, 48011–48021. [Google Scholar] [CrossRef]
- Tian, S.; Wang, S.; Bai, X.; Luo, G.; Li, Q.; Yang, Y.; Hu, Z.; Li, C.; Deng, Y. Global patterns and changes of carbon emissions from land use during 1992–2015. Environ. Sci. Ecotechnol. 2021, 7, 100108. [Google Scholar] [CrossRef]
- Xu, P.; Zhou, G.; Zhao, Q.; Lu, Y.; Chen, J. Spatial-temporal dynamics and influencing factors of city level carbon emission of mainland China. Ecol. Indic. 2024, 167, 112672. [Google Scholar] [CrossRef]
- Cui, Y.; Khan, S.U.; Deng, Y.; Zhao, M. Spatiotemporal heterogeneity, convergence and its impact factors: Perspective of carbon emission intensity and carbon emission per capita considering carbon sink effect. Environ. Impact Assess. Rev. 2022, 92, 106699. [Google Scholar] [CrossRef]
- Cui, Y.; Li, L.; Chen, L.; Zhang, Y.; Cheng, L.; Zhou, X.; Yang, X. Land-use carbon emissions estimation for the Yangtze River Delta urban agglomeration using 1994–2016 Landsat image data. Remote Sens. 2018, 10, 1334. [Google Scholar] [CrossRef]
- IPCC (Intergovernmental Panel on Climate Change). 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IPCC: Geneva, Switzerland, 2006. Available online: https://www.osti.gov/etdeweb/biblio/20880391 (accessed on 28 September 2024).
- Wu, F.; Huang, N.; Zhang, F.; Niu, L.; Zhang, Y. Analysis of the carbon emission reduction potential of China’s key industries under the IPCC 2 °C and 1.5 °C limits. Technol. Forecast. Soc. Chang. 2020, 159, 120198. [Google Scholar] [CrossRef]
- Xu, L.; Du, H.; Zhang, X. Driving forces of carbon dioxide emissions in China’s cities: An empirical analysis based on the geodetector method. J. Clean. Prod. 2021, 287, 125169. [Google Scholar] [CrossRef]
- Yang, Y.; Li, H. Monitoring spatiotemporal characteristics of land-use carbon emissions and their driving mechanisms in the Yellow River Delta: A grid-scale analysis. Environ. Res. 2022, 214, 114151. [Google Scholar] [CrossRef] [PubMed]
- Yuan, D.; Zhang, L.; Fan, Y.; Yang, R. Investigating spatio-temporal variations and contributing factors of land userelated carbon emissions in the BeijingTianjinHebei Region, China. Sci. Rep. 2024, 14, 18976. [Google Scholar] [CrossRef]
- Yang, Y.; Yan, F.; Yang, Y.; Chen, Y. Evaluating provincial carbon emission characteristics under China’s carbon peaking and carbon neutrality goals. Ecol. Indic. 2023, 156, 111146. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, M.; Cheng, F.; Tian, J.; Du, Z.; Song, P. Analysis of regional differences and decomposition of carbon emissions in China based on generalized divisia index method. Energy 2022, 256, 124666. [Google Scholar] [CrossRef]
- Wei, Q.; Xue, L.; Zhang, H.; Chen, P.; Yang, J.; Niu, B. Spatiotemporal analysis of carbon emission efficiency across economic development stages and synergistic emission reduction in the Beijing-Tianjin-Hebei region. J. Environ. Manag. 2025, 377, 124609. [Google Scholar] [CrossRef] [PubMed]
- Mohsin, M.; Rasheed, A.K.; Sun, H.; Zhang, J.; Iram, R.; Iqbal, N.; Abbas, Q. Developing low carbon economies: An aggregated composite index based on carbon emissions. Sustain. Energy Technol. Assess. 2019, 35, 365–374. [Google Scholar] [CrossRef]
- Liu, H.; Nie, J.; Cai, B.; Cao, L.; Wu, P.; Pang, L.; Wang, X. CO2 emissions patterns of 26 cities in the Yangtze River Delta in 2015: Evidence and implications. Environ. Pollut. 2019, 252, 1678–1686. [Google Scholar] [CrossRef]
- Ghosh, S.; Dinda, S.; Chatterjee, N.D.; Dutta, S.; Bera, D. Spatial-explicit carbon emission-sequestration balance estimation and evaluation of emission susceptible zones in an Eastern Himalayan city using Pressure-Sensitivity-Resilience framework: An approach towards achieving low carbon cities. J. Clean. Prod. 2022, 336, 130417. [Google Scholar] [CrossRef]
- Ardakani, M.K.; Seyedaliakbar, S.M. Impact of energy consumption and economic growth on CO2 emission using multivariate regression. Energy Strategy Rev. 2019, 26, 100428. [Google Scholar] [CrossRef]
- Palacios Gutiérrez, A.; Valencia Delfa, J.L.; Villeta López, M. Time series clustering using trend, seasonal and autoregressive components to identify maximum temperature patterns in the Iberian Peninsula. Environ. Ecol. Stat. 2023, 30, 421–442. [Google Scholar] [CrossRef]
- Wang, M.; Wang, P.; Wu, L.; Yang, R.P.; Feng, X.Z.; Zhao, M.X.; Du, X.-L.; Wang, Y.J. Criteria for assessing carbon emissions peaks at provincial level in China. Adv. Clim. Chang. Res. 2022, 13, 131–137. [Google Scholar] [CrossRef]
- Rivas-Tabares, D.A.; Saa-Requejo, A.; Martín-Sotoca, J.J.; Tarquis, A.M. Multiscaling NDVI series analysis of rainfed cereal in Central Spain. Remote Sens. 2021, 13, 568. [Google Scholar] [CrossRef]
- Tang, L.; Liang, G.; Gu, G.; Xu, J.; Duan, L.; Zhang, X.; Yang, X.; Lu, R. Study on the spatial-temporal evolution characteristics, patterns, and driving mechanisms of ecological environment of the Ecological Security Barriers on China’s Land Borders. Environ. Impact Assess. Rev. 2023, 103, 107267. [Google Scholar] [CrossRef]
- Li, J.; Liu, A. Impact of urbanization on total factor carbon productivity in Central Asia. Sustainability 2022, 14, 15379. [Google Scholar] [CrossRef]
- Ma, W.; Liu, K.; Li, Y.; Zhang, H. The impact of FDI quality characteristics on carbon emission intensity: Evidence from China. Front. Environ. Sci. 2022, 10, 998915. [Google Scholar] [CrossRef]
- Jiang, T.; Huang, S.; Yang, J. Structural carbon emissions from industry and energy systems in China: An input-output analysis. J. Clean. Prod. 2019, 240, 118116. [Google Scholar] [CrossRef]
- Mi, Z.F.; Pan, S.Y.; Yu, H.; Wei, Y.M. Potential impacts of industrial structure on energy consumption and CO2 emission: A case study of Beijing. J. Clean. Prod. 2015, 103, 455–462. [Google Scholar] [CrossRef]
- Xia, C.; Dong, Z.; Wu, P.; Dong, F.; Fang, K.; Li, Q.; Li, X.; Shao, Z.; Yu, Z. How urban land-use intensity affected CO2 emissions at the county level: Influence and prediction. Ecol. Indic. 2022, 145, 109601. [Google Scholar] [CrossRef]
- Wu, S.; Hu, S.; Frazier, A.E. Spatiotemporal variation and driving factors of carbon emissions in three industrial land spaces in China from 1997 to 2016. Technol. Forecast. Soc. Chang. 2021, 169, 120837. [Google Scholar] [CrossRef]
- Dong, K.; Hochman, G.; Zhang, Y.; Sun, R.; Li, H.; Liao, H. CO2 emissions, economic and population growth, and renewable energy: Empirical evidence across regions. Energy Econ. 2018, 75, 180–192. [Google Scholar] [CrossRef]
- Cui, E.; Ren, L.; Sun, H. Analysis of energy-related CO2 emissions and driving factors in five major energy consumption sectors in China. Environ. Sci. Pollut. Res. 2016, 23, 19667–19674. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Y.; Wu, Y.; Yue, X.; Wang, M.; Hu, P. Identifying the spatial heterogeneity in the effects of the construction land scale on carbon emissions: Case study of the Yangtze River Economic Belt, China. Environ. Res. 2022, 212, 113397. [Google Scholar] [CrossRef]
- Liang, S.; Kong, Y.; Zou, M.; Peng, Y. Spatial heterogeneity-based drivers of carbon emissions in the Pearl River Delta. Acta Sci. Circumstantiae 2023, 43, 237–244. [Google Scholar] [CrossRef]
- Quan, C.; Cheng, X.; Yu, S.; Ye, X. Analysis on the influencing factors of carbon emission in China’s logistics industry based on LMDI method. Sci. Total Environ. 2020, 734, 138473. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, J.; Xu, Y.; Wang, C.; Streets, D.G. Analyzing the spatio-temporal variation of the CO2 emissions from district heating systems with “Coal-to-Gas” transition: Evidence from GTWR model and satellite data in China. Sci. Total Environ. 2022, 803, 150083. [Google Scholar] [CrossRef]
- Wang, Y.; Niu, Y.; Li, M.; Yu, Q.; Chen, W. Spatial structure and carbon emission of urban agglomerations: Spatiotemporal characteristics and driving forces. Sustain. Cities Soc. 2022, 78, 103600. [Google Scholar] [CrossRef]
- Shi, F.; Liao, X.; Shen, L.; Meng, C.; Lai, Y. Exploring the spatiotemporal impacts of urban form on CO2 emissions: Evidence and implications from 256 Chinese cities. Environ. Impact Assess. Rev. 2022, 96, 106850. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Liu, S.; Zhou, J. Spatiotemporal effects and optimization strategies of land-use carbon emissions at the county scale: A case study of Shaanxi province, China. Sustainability 2024, 16, 4104. [Google Scholar] [CrossRef]
- Cui, X.; Li, S.; Gao, F. Examining spatial carbon metabolism: Features, future simulation, and land-based mitigation. Ecol. Model. 2020, 438, 109325. [Google Scholar] [CrossRef]
- Liang, T.; He, Q.; Yang, F.; Ren, X.; Zhang, R.; Wen, C. Identification and multi-scenario simulation of carbon sink conflicts in county-level territorial space of the Chengdu-Chongqing dual-city economic zone. Acta Ecol. Sin. 2025, 45, 334–350. [Google Scholar] [CrossRef]
- Qin, J.; Ou, D.; Yang, Z.; Gao, X.; Zhong, Y.; Yang, W.; Wu, J.; Yang, Y.; Xia, J.; Liu, Y.; et al. Synergizing economic growth and carbon emission reduction in China: A path to coupling the MFLP and PLUS models for optimizing the territorial spatial functional pattern. Sci. Total Environ. 2024, 929, 171926. [Google Scholar] [CrossRef]
- Ou, D.; Zhang, Q.; Qin, J.; Gong, S.; Wu, Y.; Zheng, Z.; Xia, J.; Bian, J.; Gao, X. Classification system for county-level territorial space using spatiotemporal heterogeneity and dynamic coupling of land use and functionality. Trans. Chin. Soc. Agric. Eng. 2021, 37, 284–296. [Google Scholar] [CrossRef]
- Kar, A.; Ahmed, M.; May, A.A.; Le, H.T.K. High spatio-temporal resolution predictions of PM2.5 using low-cost sensor data. Atmos. Environ. 2024, 326, 120486. [Google Scholar] [CrossRef]
- Ramcharan, A.; Hengl, T.; Nauman, T.; Brungard, C.; Waltman, S.; Wills, S.; Thompson, J. Soil property and class maps of the conterminous United States at 100meter spatial resolution. Soil Sci. Soc. Am. J. 2018, 82, 186201. [Google Scholar] [CrossRef]
- IPCC (Intergovernmental Panel on Climate Change). 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Calvo Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize, S., Osako, A., Pyrozhenko, Y., Shermanau, P., Federici, S., Eds.; IPCC: Geneva, Switzerland, 2019; Available online: https://www.ipcc-nggip.iges.or.jp/public/2019rf/index.html (accessed on 28 September 2024).
- Liu, T.L.; Song, Q.J.; Jiaqi, L.U.; Qi, Y. An integrated approach to evaluating the coupling coordination degree between low-carbon development and air quality in Chinese cities. Adv. Clim. Chang. Res. 2021, 12, 710–722. [Google Scholar] [CrossRef]
- Yang, Y.; Meng, G. Analysis of the decoupling effect and eco-economic coordination of the resident energy carbon footprint: A case study of Caijiapo Town, a national key town in western China. Environ. Sci. Pollut. Res. 2020, 27, 6936–6949. [Google Scholar] [CrossRef]
- Chen, X.; Di, Q.; Jia, W.; Hou, Z. Spatial correlation network of pollution and carbon emission reductions coupled with high-quality economic development in three Chinese urban agglomerations. Sustain. Cities Soc. 2023, 94, 104552. [Google Scholar] [CrossRef]
- Shan, Y.; Guan, D.; Liu, J.; Mi, Z.; Liu, Z.; Liu, J.; Schroeder, H.; Cai, B.; Chen, Y.; Shao, S.; et al. Methodology and applications of city level CO2 emission accounts in China. J. Clean. Prod. 2017, 161, 1215–1225. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, L.; Zhou, P.; Zhu, X.; Cudjoe, D. Coordination between economic growth and carbon emissions: Evidence from 178 cities in China. Econ. Anal. Policy 2024, 81, 164–180. [Google Scholar] [CrossRef]
- Yokomichi, H.; Masuda, A. Effects of nitrogen incorporation on structural properties of fluorinated amorphous carbon films. J. Non-Cryst. Solids 2000, 271, 147–151. [Google Scholar] [CrossRef]
- Almantariotis, D.; Stevanovic, S.; Fandino, O.; Pensado, A.S.; Padua, A.A.; Coxam, J.Y.; Costa Gomes, M.F. Absorption of carbon dioxide, nitrous oxide, ethane and nitrogen by 1-alkyl-3-methylimidazolium (C n mim, n = 2, 4, 6) tris (pentafluoroethyl) trifluorophosphate ionic liquids (eFAP). J. Phys. Chem. B 2012, 116, 7728–7738. [Google Scholar] [CrossRef]
- Shi, H.; Mu, X.; Zhang, Y.; Lv, M. Effects of different land use patterns on carbon emissions in Guangyuan City of Sichuan Province. Water Soil Conserv. Bull. 2012, 32, 101–106. [Google Scholar] [CrossRef]
- Cai, Z.; Kang, G.; Tsuruta, H.; Mosier, A. Estimate of CH4 emissions from year-round flooded rice fields during rice growing season in China. Pedosphere 2005, 15, 66–71. [Google Scholar] [CrossRef]
- He, Y.; Dan, L.; Dong, W.; Ji, J.; Qin, D. The terrestrial NPP simulations in China since Last Glacial Maximum. Chin. Sci. Bull. 2005, 50, 2074–2079. [Google Scholar] [CrossRef]
- Fang, J.; Guo, Z.; Pu, S.; Chen, A. Estimation of terrestrial carbon sinks in China from 1981 to 2000. Sci. China Ser. D Earth Sci. 2007, 37, 804–812. [Google Scholar] [CrossRef]
- Zhao, R.Q.; Huang, X.J.; Zhong, T.Y.; Cui, X.W. Carbon effect evaluation and low-carbon optimization of regional land use structure. J. Agric. Eng. 2013, 29, 220–229. [Google Scholar] [CrossRef]
- Duan, X.N.; Wang, X.K.; Lu, F.; Ouyang, Z.Y. Carbon sequestration and its potential by wetland ecosystems in China. Acta Ecol. Sin. 2008, 28, 463–469. [Google Scholar] [CrossRef]
- Lai, L.; Huang, X.J.; Wang, H.; Dong, Y.H.; Xiao, S.S. Estimation of Environmental Costs of Chemical Fertilizer Application in China. Acta Pedol. Sin. 2009, 46, 63–69. [Google Scholar] [CrossRef]
- Zhu, E.; Deng, J.; Zhou, M.; Gan, M.; Jiang, R.; Wang, K.; Shahtahmassebi, A. Carbon emissions induced by land-use and land-cover change from 1970 to 2010 in Zhejiang, China. Sci. Total Environ. 2019, 646, 930–939. [Google Scholar] [CrossRef]
- Zhao, R.; Huang, X.; Liu, Y.; Zhong, T.; Ding, M.; Chuai, X. Carbon emission of regional land use and its decomposition analysis: Case study of Nanjing City, China. Chin. Geogr. Sci. 2015, 25, 198–212. [Google Scholar] [CrossRef]
- Zhao, R.; Huang, X.; Peng, B. Research on carbon cycle and carbon balance of Nanjing urban system. Acta Geogr. Sin. 2012, 67, 758–770. [Google Scholar] [CrossRef]
- Piao, S.L.; Fang, J.Y.; Philippe, C.; Philippe, P.; Huang, Y.; Stephen, S.; Wang, T. The carbon balance of terrestrial ecosystems in China. Nature 2009, 458, 1009–1013. [Google Scholar] [CrossRef]
- Hogue, S.; Roten, D.; Marland, E.; Marland, G.; Boden, T.A. Gridded estimates of CO2 emissions: Uncertainty as a function of grid size. Mitig. Adapt. Strateg. Glob. Chang. 2019, 24, 969–983. [Google Scholar] [CrossRef]
- Tao, J.; Kong, X. Spatial allocation of anthropogenic carbon dioxide emission statistics data fusing multi-source data based on Bayesian network. Sci. Rep. 2021, 11, 18128. [Google Scholar] [CrossRef] [PubMed]
- Herold, M.; Couclelis, H.; Clarke, K.C. The role of spatial metrics in the analysis and modeling of urban land use change. Comput. Environ. Urban Syst. 2005, 29, 369–399. [Google Scholar] [CrossRef]
- Wang, Y. The spatial distribution characteristics of carbon emissions at county level in the Harbin–Changchun urban agglomeration. Atmosphere 2021, 12, 1268. [Google Scholar] [CrossRef]
- Sun, Z.Q.; Sun, T. The Impact of Multi-Dimensional Urbanization on China’s Carbon Emissions Based on the Spatial Spillover Effect. Pol. J. Environ. Stud. 2020, 29, 3317–3327. [Google Scholar] [CrossRef] [PubMed]
- Lanorte, A.; Nolè, G.; Cillis, G. Application of Getis-Ord Correlation Index () for Burned Area Detection Improvement in Mediterranean Ecosystems (Southern Italy and Sardinia) Using Sentinel-2 Data. Remote Sens. 2024, 16, 2943. [Google Scholar] [CrossRef]
- Wang, F.; Shao, W.; Yu, H.; Kan, G.; He, X.; Zhang, D.; Ren, M.; Wang, G. Re-evaluation of the power of the Mann-Kendall test for detecting monotonic trends in hydrometeorological time series. Front. Earth Sci. 2020, 8, 14. [Google Scholar] [CrossRef]
- San Choi, C.; Abdullah, L. Prediction of carbon dioxide emissions using two linear regression-based models: A comparative analysis. J. Appl. Eng. (JOAE) 2016, 4, 305–312. Available online: https://www.joae.org/index.php/JOAE/article/view/46 (accessed on 27 September 2024).
- Sureiman, O.; Mangera, C.M. F-test of overall significance in regression analysis simplified. J. Pract. Cardiovasc. Sci. 2020, 6, 116–122. [Google Scholar] [CrossRef]
- Knight, M.I.; Nason, G.P.; Nunes, M.A. A wavelet lifting approach to long-memory estimation. Stat. Comput. 2017, 27, 1453–1471. Available online: https://link.springer.com/article/10.1007/s11222-016-9698-2 (accessed on 27 September 2025). [CrossRef]
- Munshi, J. The Hurst Exponent of Surface Temperature: A Note. SSRN Electron 2015. [Google Scholar] [CrossRef]
- Hamza, A.H.; Hmood, M.Y. Comparison of Hurst exponent estimation methods. J. Econ. Adm. Sci. 2021, 27, 167–183. [Google Scholar] [CrossRef]
- Ceballos, R.F.; Largo, F.F. On the estimation of the Hurst exponent using adjusted rescaled range analysis, detrended fluctuation analysis and variance time plot: A case of exponential distribution. Imp. J. Interdiscip. Res. 2017, 3, 424–434. [Google Scholar] [CrossRef]
- Mielniczuk, J.; Wojdyłło, P. Estimation of Hurst exponent revisited. Comput. Stat. Data Anal. 2007, 51, 4510–4525. [Google Scholar] [CrossRef]
- Li, S.; Xu, Z.; Wang, H. Spatiotemporal characteristics and factors driving exploration of industrial carbon-emission intensity: A case study of Guangdong province, China. Sustainability 2022, 14, 15064. [Google Scholar] [CrossRef]
- Gao, S.; Zhang, X.; Chen, M. Spatiotemporal dynamics and driving forces of city-level CO2 emissions in China from 2000 to 2019. J. Clean. Prod. 2022, 377, 134358. [Google Scholar] [CrossRef]
- Vagnini, C.; Canal Vieira, L.; Longo, M.; Mura, M. Regional drivers of industrial decarbonisation: A spatial econometric analysis of 238 EU regions between 2008 and 2020. Reg. Stud. 2024, 59, 2380369. [Google Scholar] [CrossRef]
- Liu, X.; Bae, J. Urbanization and industrialization impact of CO2 emissions in China. J. Clean. Prod. 2018, 172, 178–186. [Google Scholar] [CrossRef]
- Ivanova, D.; Vita, G.; Steen-Olsen, K.; Stadler, K.; Melo, P.; Wood, R.; Hertwich, E. Mapping the carbon footprint of EU regions. Environ. Res. Lett. 2017, 12, 054013. Available online: https://iopscience.iop.org/article/10.1088/1748-9326/aa6da9 (accessed on 27 September 2025). [CrossRef]
- Wang, Y.; Luo, X.; Chen, W.; Zhao, M.; Wang, B. Exploring the spatial effect of urbanization on multi-sectoral CO2 emissions in China. Atmos. Pollut. Res. 2019, 10, 1610–1620. [Google Scholar] [CrossRef]
- Feng, T.; Du, H.; Zhang, Z.; Mi, Z.; Guan, D.; Zuo, J. Carbon transfer within China: Insights from production fragmentation. Energy Econ. 2020, 86, 104647. [Google Scholar] [CrossRef]
- Zheng, X.; Lu, Y.; Yuan, J.; Baninla, Y.; Zhang, S.; Stenseth, N.C.; Hessen, D.O.; Tian, H.; Obersteiner, M.; Chen, D. Drivers of change in China’s energy-related CO2 emissions. Proc. Natl. Acad. Sci. USA 2020, 117, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Pata, U.K.; Caglar, A.E. Investigating the EKC hypothesis with renewable energy consumption, human capital, globalization and trade openness for China: Evidence from augmented ARDL approach with a structural break. Energy 2021, 216, 119220. [Google Scholar] [CrossRef]
- Xiao, B.; Niu, D.; Wu, H. Exploring the impact of determining factors behind CO2 emissions in China: A CGE appraisal. Sci. Total Environ. 2017, 581, 559–572. [Google Scholar] [CrossRef]
- Zhu, Z.; Yu, J.; Luo, J.; Zhang, H.; Wu, Q.; Chen, Y. A GDM-GTWR-coupled model for spatiotemporal heterogeneity quantification of CO2 emissions: A case of the Yangtze River Delta Urban Agglomeration from 2000 to 2017. Atmosphere 2022, 13, 1195. [Google Scholar] [CrossRef]
- Wang, X.; Yu, H.; Wu, Y.; Zhou, C.; Li, Y.; Lai, X.; He, J. Spatio-temporal dynamics of carbon emissions and their influencing factors at the county scale: A case study of Zhejiang Province, China. Land 2024, 13, 381. [Google Scholar] [CrossRef]
- Liu, J.-M.; Wang, J. Research on the driving factors of PM2.5 in the Yangtze River Delta based on GTWR model combined with geographical detector. Resour. Environ. Yangtze Basin 2024, 33, 139–149. Available online: https://www.geores.com.cn/cjzylyyhj/EN/10.11870/cjlyzyyhj202401012 (accessed on 27 September 2025).
- Yang, Z.; Cai, J.; Lu, Y.; Zhang, B. The impact of economic growth, industrial transition, and energy intensity on carbon dioxide emissions in China. Sustainability 2022, 14, 4884. [Google Scholar] [CrossRef]
- Liu, J.; Peng, K.; Zuo, C.; Li, Q. Spatiotemporal variation of land-use carbon emissions and its implications for low carbon and ecological civilization strategies: Evidence from Xiamen-Zhangzhou-Quanzhou metropolitan circle, China. Sustain. Cities Soc. 2022, 86, 104083. [Google Scholar] [CrossRef]
- Wu, H.; Yang, Y.; Li, W. Spatial optimization of land use and carbon storage prediction in urban agglomerations under climate change: Different scenarios and multiscale perspectives of CMIP6. Sustain. Cities Soc. 2024, 116, 105920. [Google Scholar] [CrossRef]
- Ou, D.-H.; Wu, N.-J.; Li, Y.-X.; Ma, Q.; Zheng, S.-Y.; Li, S.-Q.; Yu, D.-R.; Tang, H.-L.; Gao, X.-S. Delimiting ecological space and simulating spatial-temporal changes in its ecosystem service functions based on a dynamic perspective: A case study on Qionglai City of Sichuan Province, China. J. Resour. Ecol. 2022, 13, 1128–1142. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, G.; Chen, C.; Yang, Q.; Wang, X.; Giannetti, B.F.; Zhang, Y.; Casazza, M. Emergy-based comparative analysis of urban metabolic efficiency and sustainability in the case of big and data scarce medium-sized cities: A case study for Jing-Jin-Ji region (China). J. Clean. Prod. 2018, 192, 621–638. [Google Scholar] [CrossRef]








| Data Type | Data Name | Time-Series (Year) | Resolution | Data Source |
|---|---|---|---|---|
| Raster Data | DEM | 2020 | 12.5 m | 91 Visitor Assistant (https://www.91weitu.com/) (accessed on 19 January 2025) |
| Remote sensing image | 2020 | 10 m | Earth engine data catalog (https://developers.google.com/earth-engine/datasets) (accessed on 19 January 2025) | |
| Functional map of territorial space | 2009–2023 | 50 m | Previous research datasets [64] | |
| Vector Data | Administrative boundary | 2020 | 1:5000 | Land survey results (Key laboratory of investigation, monitoring, protection and utilization of cropland resources, MNR, PRC) |
| Land use status data | 2009–2023 | 1:5000 | Land survey results (Key laboratory of investigation, monitoring, protection and utilization of cropland resources, MNR, PRC) | |
| Panel Data | Number of pigs, Cows, and sheep, Agricultural management data | 2009–2023 | County level | Qionglai Statistical Yearbook |
| Urban and rural population, Gross domestic product (GDP) | Township level | |||
| Comprehensive energy consumption of industrial enterprises above designated size in terms of GDP per 10,000 yuan of total industrial output value, per capita consumption of electricity, natural and liquefied gas | 2009–2023 | City level | Chengdu Statistical Yearbook | |
| Chemical oxygen demand in wastewater | 2009–2023 | Provincial level | China Energy Statistical Yearbook |
| Type of Territorial Space | Terrestrial Ecosystem | Energy Consumption | Waste | Population and Animals | Other |
|---|---|---|---|---|---|
| Urban production space | Industrial energy consumption, service sector energy consumption | Industrial waste water | Urban population breathing | Transportation land | |
| Urban living space | Energy consumption in urban life | Industrial waste water | Urban population breathing | Transportation land | |
| Rural production space | Cultivated land, garden land | Animal respiration, intestinal fermentation in animals, and feces. | Transportation land | ||
| Rural living space | Rural energy consumption | Industrial waste water | Rural population breathing | ||
| Ecological supply services space | Woodland, water bodies, grassland | ||||
| Ecological regulation services space | Woodland, water bodies, grassland | ||||
| Ecological support services space | Woodland, water bodies, grassland |
| Indicator Name | Hidden Meaning | Unit |
|---|---|---|
| Energy consumption structure | Net carbon emissions per unit of territorial space area | Ton/Hectare |
| Industrial structure | Tertiary sector value added as a percentage of GDP | % |
| Development intensity | Proportion of construction land in territorial spatial units | % |
| The utilisation structure of TSFs | Conversion area between different types of TSFs | Hectares |
| Economic growth | Total GDP of territorial spatial units | Ten thousand yuan |
| Population density | Population per unit of national space area | Persons/km2 |
| Year | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
|---|---|---|---|---|---|---|---|---|
| Global Moran’s I index | 0.6920 *** | 0.6805 *** | 0.6711 *** | 0.6680 *** | 0.6846 *** | 0.6263 *** | 0.6221 *** | 0.6158 *** |
| Z | 364.7341 | 358.6914 | 353.715 | 352.07 | 360.8221 | 330.1621 | 328.0139 | 324.6805 |
| Year | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | |
| Global Moran’s I index | 0.6265 *** | 0.6212 *** | 0.6451 *** | 0.6331 *** | 0.6360 *** | 0.6384 *** | 0.6353 *** | |
| Z | 330.2885 | 327.4854 | 340.0697 | 333.7729 | 335.2974 | 336.5106 | 334.8876 |
| Analysis Parameters | Variables | Upper Quartile | Minimum | Lower Quartile | Maximum | Mean |
|---|---|---|---|---|---|---|
| AICc+Fixed/ CV+Fixed | C1_ZF1 | 0.0335 | −0.0841 | −0.0733 | 0.0906 | −0.0318 |
| C2_ZF2 | 0.5360 | 0.5469 | 0.0175 | 0.7565 | 0.2973 | |
| C3_ZF3 | 1.1821 | −0.0989 | 0.7376 | 10.0671 | 1.2210 | |
| C4_ZF4 | 0.0113 | −0.0602 | −0.0366 | 0.2011 | −0.0026 | |
| C5_ZF5 | 0.0402 | −0.4160 | 0.0095 | 0.1188 | 0.0269 | |
| R2 | 0.7526 20,364 | |||||
| AICc/CV | ||||||
| AICc+Adaptive/ CV+Adaptive | C1_ZF1 | 0.0280 | −1.7576 | −0.1381 | 1.3363 | −0.0529 |
| C2_ZF2 | 0.5254 | −0.1137 | 0.0300 | 1.0495 | 0.3045 | |
| C3_ZF3 | 2.5472 | 0.3379 | 0.7596 | 26.4596 | 2.5198 | |
| C4_ZF4 | 0.0124 | −0.1166 | −0.0421 | 0.5998 | 0.0013 | |
| C5_ZF5 | 0.0363 | −0.1111 | −0.0079 | 0.1787 | 0.0156 | |
| R2 | 0.7593 | |||||
| AICc/CV | 20,016.3 | |||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ou, D.; Wu, J.; Huang, Q.; Shu, C.; Xie, T.; Luo, C.; Zhao, M.; Zhang, J.; Fei, J. Spatiotemporal Continuity and Spatially Heterogeneous Drivers in the Historical Evolution of County-Scale Carbon Emissions from Territorial Function Utilisation in China: Evidence from Qionglai City. Land 2025, 14, 1981. https://doi.org/10.3390/land14101981
Ou D, Wu J, Huang Q, Shu C, Xie T, Luo C, Zhao M, Zhang J, Fei J. Spatiotemporal Continuity and Spatially Heterogeneous Drivers in the Historical Evolution of County-Scale Carbon Emissions from Territorial Function Utilisation in China: Evidence from Qionglai City. Land. 2025; 14(10):1981. https://doi.org/10.3390/land14101981
Chicago/Turabian StyleOu, Dinghua, Jiayi Wu, Qingyan Huang, Chang Shu, Tianyi Xie, Chunxin Luo, Meng Zhao, Jiani Zhang, and Jianbo Fei. 2025. "Spatiotemporal Continuity and Spatially Heterogeneous Drivers in the Historical Evolution of County-Scale Carbon Emissions from Territorial Function Utilisation in China: Evidence from Qionglai City" Land 14, no. 10: 1981. https://doi.org/10.3390/land14101981
APA StyleOu, D., Wu, J., Huang, Q., Shu, C., Xie, T., Luo, C., Zhao, M., Zhang, J., & Fei, J. (2025). Spatiotemporal Continuity and Spatially Heterogeneous Drivers in the Historical Evolution of County-Scale Carbon Emissions from Territorial Function Utilisation in China: Evidence from Qionglai City. Land, 14(10), 1981. https://doi.org/10.3390/land14101981
