Soil–Atmosphere Greenhouse Gas Fluxes Across a Land-Use Gradient in the Andes–Amazon Transition Zone: Insights for Climate Innovation
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Sampling Design
2.3. Flux Measurements
2.4. Environmental Variables Measurements
2.5. Statistical Analysis
3. Results
3.1. Soil CO2, CH4, and N2O Fluxes
3.2. Soil Temperature and Water Content
3.3. Environmental Drivers of Soil GHG Fluxes
3.4. Global Warming Potential (GWP)
4. Discussion
4.1. Contrasting GHG Fluxes Across Land-Use Types
4.2. Seasonal Variability of GHG Fluxes
4.3. Environmental Drivers of GHG Fluxes
4.4. Global Warming Potential (GWP) Across Land-Use Types
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. The Earth’s Energy Budget, Climate Feedbacks and Climate Sensitivity. In Climate Change 2021—The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2023; pp. 923–1054. [Google Scholar]
- Tran, D.H.; Hoang, T.N.; Tokida, T.; Tirol-Padre, A.; Minamikawa, K. Impacts of Alternate Wetting and Drying on Greenhouse Gas Emission from Paddy Field in Central Vietnam. Soil Sci. Plant Nutr. 2018, 64, 14–22. [Google Scholar] [CrossRef]
- Myhre, G.; Shindell, D.; Bréon, F.-M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.-F.; Lee, D.; Mendoza, B.; et al. Anthropogenic and Natural Radiative Forcing. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). IPCC Global Warming Potential Values (Version 2.0, 7 August 2024); Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2024. [Google Scholar]
- IPCC. Climate Change 2022—Impacts, Adaptation and Vulnerability; Cambridge University Press: Cambridge, UK, 2023; ISBN 9781009325844. [Google Scholar]
- FAO. The State of the World’s Forests 2022. Forest Pathways for Green Recovery and Building Inclusive, Resilient and Sustainable Economies; FAO: Rome, Italy, 2022; ISBN 978-92-5-135984-6. [Google Scholar]
- Instituto de Hidrología, Meteorología y Estudios Ambientales. Actualización de Cifras de Monitoreo de La Superficie de Bosque—Año 2024. Resumen de Resultados de Monitoreo 2025; Instituto de Hidrología, Meteorología y Estudios Ambientales: Bogota, Colombia, 2024. [Google Scholar]
- Agudelo-Hz, W.-J.; Castillo-Barrera, N.-C.; Uriel, M.-G. Scenarios of Land Use and Land Cover Change in the Colombian Amazon to Evaluate Alternative Post-Conflict Pathways. Sci. Rep. 2023, 13, 2152. [Google Scholar] [CrossRef]
- Bustamante, M.M.C.; Roitman, I.; Aide, T.M.; Alencar, A.; Anderson, L.O.; Aragão, L.; Asner, G.P.; Barlow, J.; Berenguer, E.; Chambers, J.; et al. Toward an Integrated Monitoring Framework to Assess the Effects of Tropical Forest Degradation and Recovery on Carbon Stocks and Biodiversity. Glob. Change Biol. 2016, 22, 92–109. [Google Scholar] [CrossRef]
- Murillo-Sandoval, P.J.; Kilbride, J.; Tellman, E.; Wrathall, D.; Van Den Hoek, J.; Kennedy, R.E. The Post-Conflict Expansion of Coca Farming and Illicit Cattle Ranching in Colombia. Sci. Rep. 2023, 13, 1965. [Google Scholar] [CrossRef]
- IDEAM; PMDC. Inventario Nacional y Departamental de Gases Efecto Invernadero—Colombia. Tercera Comunicación Nacional de Cambio Climático; Instituto de Hidrología, Meteorología y Estudios Ambientales: Bogotá, Colombia, 2016. [Google Scholar]
- Jiménez, C.J.G.; Mantilla, C.L.M.; Barrera, G.J.A. Enfoque Agroambiental: Una Mirada Distinta a Las Intervenciones Productivas En La Amazonia. Caquetá y Guaviare; Instituto SINCHI: Bogotá, Colombia, 2019; ISBN 2665-3451. [Google Scholar]
- He, T.; Ding, W.; Cheng, X.; Cai, Y.; Zhang, Y.; Xia, H.; Wang, X.; Zhang, J.; Zhang, K.; Zhang, Q. Meta-Analysis Shows the Impacts of Ecological Restoration on Greenhouse Gas Emissions. Nat. Commun. 2024, 15, 2668. [Google Scholar] [CrossRef]
- Liang, J.; Himes, A.; Siegert, C. A Meta-Analysis of Afforestation Impacts on Soil Greenhouse Gas Emissions. J. Environ. Manag. 2025, 386, 125709. [Google Scholar] [CrossRef]
- Yan, W.; Zhong, Y.; Yang, J.; Shangguan, Z.; Torn, M.S. Response of Soil Greenhouse Gas Fluxes to Warming: A Global Meta-analysis of Field Studies. Geoderma 2022, 419, 115865. [Google Scholar] [CrossRef]
- Raturi, A.; Singh, H.; Kumar, P.; Chanda, A.; Raturi, A. Spatiotemporal Patterns of Greenhouse Gas Fluxes in the Subtropical Wetland Ecosystem of Indian Himalayan Foothill. Environ. Monit. Assess. 2024, 196, 882. [Google Scholar] [CrossRef] [PubMed]
- Mapanda, F.; Mupini, J.; Wuta, M.; Nyamangara, J.; Rees, R.M. A Cross—Ecosystem Assessment of the Effects of Land Cover and Land Use on Soil Emission of Selected Greenhouse Gases and Related Soil Properties in Zimbabwe. Eur. J. Soil. Sci. 2010, 61, 721–733. [Google Scholar] [CrossRef]
- Daniel, W.; Stahl, C.; Burban, B.; Goret, J.-Y.; Cazal, J.; Richter, A.; Janssens, I.A.; Bréchet, L.M. Tree Stem and Soil Methane and Nitrous Oxide Fluxes, but Not Carbon Dioxide Fluxes, Switch Sign along a Topographic Gradient in a Tropical Forest. Plant Soil 2023, 488, 533–549. [Google Scholar] [CrossRef]
- Pang, J.; Peng, C.; Wang, X.; Zhang, H.; Zhang, S. Soil-Atmosphere Exchange of Carbon Dioxide, Methane and Nitrous Oxide in Temperate Forests along an Elevation Gradient in the Qinling Mountains, China. Plant Soil 2023, 488, 325–342. [Google Scholar] [CrossRef]
- Courtois, E.A.; Stahl, C.; Van den Berge, J.; Bréchet, L.; Van Langenhove, L.; Richter, A.; Urbina, I.; Soong, J.L.; Peñuelas, J.; Janssens, I.A. Spatial Variation of Soil CO2, CH4 and N2O Fluxes Across Topographical Positions in Tropical Forests of the Guiana Shield. Ecosystems 2018, 21, 1445–1458. [Google Scholar] [CrossRef]
- Rajbonshi, M.P.; Mitra, S.; Bhattacharyya, P. Agro-Technologies for Greenhouse Gases Mitigation in Flooded Rice Fields for Promoting Climate Smart Agriculture. Environ. Pollut. 2024, 350, 123973. [Google Scholar] [CrossRef] [PubMed]
- IGAC. Estudio General de Suelos y Zonificación de Tierras Departamento de Caquetá. Escala 1:100.000; Imprenta Nacional de Colombia: Bogotá, Colombia, 2014; ISBN 978-958-8323-73-2.
- Murad, C.A.; Pearse, J. Landsat Study of Deforestation in the Amazon Region of Colombia: Departments of Caquetá and Putumayo. Remote Sens. Appl. 2018, 11, 161–171. [Google Scholar] [CrossRef]
- Rodríguez-León, C.H.; Sterling, A.; Daza-Giraldo, D.D.; Suárez-Córdoba, Y.D.; Roa-Fuentes, L.L. Scaling Plant Functional Strategies from Species to Communities in Regenerating Amazonian Forests: Insights for Restoration in Deforested Landscapes. Diversity 2025, 17, 570. [Google Scholar] [CrossRef]
- Pavelka, M.; Acosta, M.; Kiese, R.; Altimir, N.; Bruemmer, C.; Crill, P.; Darenova, E.; Fuß, R.; Gielen, B.; Graf, A.; et al. Standardisation of Chamber Technique for CO2, N2O and CH4 Fluxes Measurements from Terrestrial Ecosystems. Int. Agrophys. 2018, 32, 569–587. [Google Scholar] [CrossRef]
- Fuss, R. Gasfluxes: Greenhouse Gas Flux Calculation from Chamber Measurements. CRAN: Contributed Packages, 2024. [Google Scholar]
- Pedersen, A.R.; Petersen, S.O.; Schelde, K. A Comprehensive Approach to Soil-Atmosphere Trace-Gas Flux Estimation with Static Chambers. Eur. J. Soil. Sci. 2010, 61, 888–902. [Google Scholar] [CrossRef]
- Hüppi, R.; Felber, R.; Krauss, M.; Six, J.; Leifeld, J.; Fuß, R. Restricting the Nonlinearity Parameter in Soil Greenhouse Gas Flux Calculation for More Reliable Flux Estimates. PLoS ONE 2018, 13, e0200876. [Google Scholar] [CrossRef]
- Parkin, T.B.; Venterea, R.T.; Hargreaves, S.K. Calculating the Detection Limits of Chamber-Based Soil Greenhouse Gas Flux Measurements. J. Environ. Qual. 2012, 41, 705–715. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis; SSSA Book Series; American Society of Agronomy, Inc.; Soil Science Society of America, Inc.: Madison, WI, USA, 1996; pp. 961–1010. ISBN 9780891188667. [Google Scholar]
- Batjes, N.H. Total Carbon and Nitrogen in the Soils of the World. Eur. J. Soil Sci. 1996, 47, 151–163. [Google Scholar] [CrossRef]
- Soil Survey Staff. Kellogg Soil Survey Laboratory Methods Manual; Soil Survey Investigations Report No. 42, Version 6.0. U.S; USDA: Lincoln, NE, USA, 2022.
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2025. [Google Scholar]
- RStudio RStudio Version 2025.05.0 2025. Available online: https://posit.co/blog/rstudio-2025-05-0-whats-new/ (accessed on 10 May 2025).
- Sparks, A. Nasapower: A NASA POWER Global Meteorology, Surface Solar Energy and Climatology Data Client for R. J. Open Source Softw. 2018, 3, 1035. [Google Scholar] [CrossRef]
- Mombrini, L.M.; de Mello, W.Z.; Ribeiro, R.P.; Silva, C.R.M.; Silveira, C.S. Physical and Hydric Factors Regulating Nitrous Oxide and Methane Fluxes in Mountainous Atlantic Forest Soils in Southeastern Brazil. J. S. Am. Earth Sci. 2022, 116, 103781. [Google Scholar] [CrossRef]
- Hollister, J.; Shah, T.; Nowosad, J.; Robitaille, A.L.; Beck, M.W.; Johnson, M. Elevatr: Access Elevation Data from Various APIs. CRAN: Contributed Packages 2023. Available online: https://cran.r-project.org/web/packages/elevatr/index.html (accessed on 10 May 2025).
- Hijmans, R.J. Terra: Spatial Data Analysis. CRAN: Contributed Packages 2025. Available online: https://cran.r-project.org/web/packages/terra/index.html (accessed on 10 May 2025).
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D. Nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3.1-131.1. 2018. Available online: https://CRAN.R-project.org/package=nlme (accessed on 30 April 2025).
- Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; Gonzalez, L.; Tablada, M.; Robledo, C.W. InfoStat Versión 2020. 2020. Available online: https://www.infostat.com.ar/ (accessed on 30 April 2025).
- Harrell, F.E., Jr. Hmisc: Harrell Miscellaneous. Version: 5.1-3. CRAN: Contributed Packages 2024. Available online: https://cran.r-project.org/web/packages/Hmisc/index.html (accessed on 10 May 2025).
- R Core Team. Package The R Stats Package Version 4.3.3. 2024. Available online: https://stat.ethz.ch/R-manual/R-devel/library/stats/html/00Index.html (accessed on 30 April 2025).
- Wickham, H.; Chang, W.; Henry, L.; Pedersen, T.; Takahashi, K.; Wilke, C.; Woo, K.; Yutani, H.; Dunnington, D. Package ‘Ggplot2’: Create Elegant Data Visualisations Using the Grammar of Graphics Version 3.3.3. 2020. Available online: https://cran.r-project.org/web/packages/ggplot2/index.html (accessed on 10 May 2025).
- Rosseel, Y. Lavaan: An R Package for Structural Equation Modeling. J. Stat. Softw. 2012, 48, 1–36. [Google Scholar] [CrossRef]
- Iannone, R.; Roy, O. DiagrammeR: Graph/Network Visualization. Version: 1.0.11. CRAN: Contributed Packages 2024. Available online: https://cran.r-project.org/web/packages/DiagrammeR/index.html (accessed on 10 May 2025).
- Conant, R.T.; Cerri, C.E.P.; Osborne, B.B.; Paustian, K. Grassland Management Impacts on Soil Carbon Stocks: A New Synthesis. Ecol. Appl. 2017, 27, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Follett, R.F.; Reed, D.A. Soil Carbon Sequestration in Grazing Lands: Societal Benefits and Policy Implications. Rangel. Ecol. Manag. 2010, 63, 4–15. [Google Scholar] [CrossRef]
- Lal, R. Digging Deeper: A Holistic Perspective of Factors Affecting Soil Organic Carbon Sequestration in Agroecosystems. Glob. Change Biol. 2018, 24, 3285–3301. [Google Scholar] [CrossRef]
- Soussana, J.F.; Tallec, T.; Blanfort, V. Mitigating the Greenhouse Gas Balance of Ruminant Production Systems through Carbon Sequestration in Grasslands. Animal 2010, 4, 334–350. [Google Scholar] [CrossRef]
- Lemarpe, S.E.; Musafiri, C.M.; Kiboi, M.N.; Ng’etich, O.K.; Macharia, J.M.; Shisanya, C.A.; Kibet, E.; Zeila, A.; Mutuo, P.; Ngetich, F.K. Smallholder Cropping Systems Contribute Limited Greenhouse Gas Fluxes in Upper Eastern Kenya. Nat.-Based Solut. 2023, 4, 100098. [Google Scholar] [CrossRef]
- Ramachandran Nair, P.K.; Mohan Kumar, B.; Nair, V.D. Agroforestry as a Strategy for Carbon Sequestration. J. Plant Nutr. Soil Sci. 2009, 172, 10–23. [Google Scholar] [CrossRef]
- Chauhan, S.; Kengoo, N.; Kishore, K.; Haksinhbhai, M.R.; Rana, P. Carbon Dynamics in Agroforestry Systems: Implications for Climate Change Mitigation and Adaptation. Int. J. Environ. Clim. Change 2025, 15, 109–133. [Google Scholar] [CrossRef]
- Bridgham, S.D.; Cadillo-Quiroz, H.; Keller, J.K.; Zhuang, Q. Methane Emissions from Wetlands: Biogeochemical, Microbial, and Modeling Perspectives from Local to Global Scales. Glob. Change Biol. 2013, 19, 1325–1346. [Google Scholar] [CrossRef]
- Sjögersten, S.; Black, C.R.; Evers, S.; Hoyos-Santillan, J.; Wright, E.L.; Turner, B.L. Tropical Wetlands: A Missing Link in the Global Carbon Cycle? Glob. Biogeochem. Cycles 2014, 28, 1371–1386. [Google Scholar] [CrossRef]
- Bārdule, A.; Butlers, A.; Spalva, G.; Ivanovs, J.; Meļņiks, R.N.; Līcīte, I.; Lazdiņš, A. The Surface-to-Atmosphere GHG Fluxes in Rewetted and Permanently Flooded Former Peat Extraction Areas Compared to Pristine Peatland in Hemiboreal Latvia. Water 2023, 15, 1954. [Google Scholar] [CrossRef]
- Castellón, S.E.M.; Cattanio, J.H.; Berrêdo, J.F.; Rollnic, M.; de Lourdes Ruivo, M.; Noriega, C. Greenhouse Gas Fluxes in Mangrove Forest Soil in an Amazon Estuary. Biogeosciences 2022, 19, 5483–5497. [Google Scholar] [CrossRef]
- Cao, M.; Wang, F.; Ma, S.; Geng, H.; Sun, K. Recent Advances on Greenhouse Gas Emissions from Wetlands: Mechanism, Global Warming Potential, and Environmental Drivers. Environ. Pollut. 2024, 355, 124204. [Google Scholar] [CrossRef]
- Werner, C.; Butterbach-Bahl, K.; Haas, E.; Hickler, T.; Kiese, R. A Global Inventory of N 2 O Emissions from Tropical Rainforest Soils Using a Detailed Biogeochemical Model. Glob. Biogeochem. Cycles 2007, 21, GB3010. [Google Scholar] [CrossRef]
- Butterbach-Bahl, K.; Baggs, E.M.; Dannenmann, M.; Kiese, R.; Zechmeister-Boltenstern, S. Nitrous Oxide Emissions from Soils: How Well Do We Understand the Processes and Their Controls? Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130122. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Wang, Y.-P.; Zhang, H.; Yu, M.; Liu, F.; Xia, S.; Yan, J. Contribution of Litter Layer to Greenhouse Gas Fluxes between Atmosphere and Soil Varies with Forest Succession. Forests 2022, 13, 544. [Google Scholar] [CrossRef]
- Duan, B.; Xiao, R.; Cai, T.; Man, X.; Ge, Z.; Gao, M.; Mencuccini, M. Strong Responses of Soil Greenhouse Gas Fluxes to Litter Manipulation in a Boreal Larch Forest, Northeastern China. Forests 2022, 13, 1985. [Google Scholar] [CrossRef]
- Bond-Lamberty, B.; Thomson, A. Temperature-Associated Increases in the Global Soil Respiration Record. Nature 2010, 464, 579–582. [Google Scholar] [CrossRef]
- Li, J.; Zhang, J.; Ma, T.; Lv, W.; Shen, Y.; Yang, Q.; Wang, X.; Wang, R.; Xiang, Q.; Lv, L.; et al. Responses of Soil Respiration to the Interactive Effects of Warming and Drought in Alfalfa Grassland on the Loess Plateau. Agronomy 2023, 13, 2992. [Google Scholar] [CrossRef]
- Wang, X.; Liu, L.; Piao, S.; Janssens, I.A.; Tang, J.; Liu, W.; Chi, Y.; Wang, J.; Xu, S. Soil Respiration under Climate Warming: Differential Response of Heterotrophic and Autotrophic Respiration. Glob. Change Biol. 2014, 20, 3229–3237. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 2021. Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 30 May 2025).
- Wang, X.; Piao, S.; Ciais, P.; Friedlingstein, P.; Myneni, R.B.; Cox, P.; Heimann, M.; Miller, J.; Peng, S.; Wang, T.; et al. A Two-Fold Increase of Carbon Cycle Sensitivity to Tropical Temperature Variations. Nature 2014, 506, 212–215. [Google Scholar] [CrossRef] [PubMed]
- Pangala, S.R.; Enrich-Prast, A.; Basso, L.S.; Peixoto, R.B.; Bastviken, D.; Hornibrook, E.R.C.; Gatti, L.V.; Marotta, H.; Calazans, L.S.B.; Sakuragui, C.M.; et al. Large Emissions from Floodplain Trees Close the Amazon Methane Budget. Nature 2017, 552, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Li, J.; Zhong, H.; Wang, Y.; Dong, J.; Yang, X. Seasonal Dynamics of Greenhouse Gas Emissions from Island-like Forest Soils in the Sanjiang Plain: Impacts of Soil Characteristics and Climatic Factors. Forests 2024, 15, 996. [Google Scholar] [CrossRef]
- van Lent, J.; Hergoualc’h, K.; Verchot, L.V. Reviews and Syntheses: Soil N 2 O and NO Emissions from Land Use and Land-Use Change in the Tropics and Subtropics: A Meta-Analysis. Biogeosciences 2015, 12, 7299–7313. [Google Scholar] [CrossRef]
- Liu, H.; Zak, D.; Rezanezhad, F.; Lennartz, B. Soil Degradation Determines Release of Nitrous Oxide and Dissolved Organic Carbon from Peatlands. Environ. Res. Lett. 2019, 14, 094009. [Google Scholar] [CrossRef]
- Liptzin, D.; Rieke, E.L.; Cappellazzi, S.B.; Mac Bean, G.G.; Cope, M.; Greub, K.L.H.; Norris, C.E.; Tracy, P.W.; Aberle, E.; Ashworth, A.; et al. An Evaluation of Nitrogen Indicators for Soil Health in Long-term Agricultural Experiments. Soil Sci. Soc. Am. J. 2023, 87, 868–884. [Google Scholar] [CrossRef]
- Pereira, G.S.; Angnes, G.; Franchini, J.C.; Damian, J.M.; Cerri, C.E.P.; Rocha, C.H.; da Silva, R.V.; dos Santos, E.L.; Filho, J.T. Soil Nitrous Oxide Emissions after the Introduction of Integrated Cropping Systems in Subtropical Condition. Agric. Ecosyst. Environ. 2022, 323, 107684. [Google Scholar] [CrossRef]
- Saha, D.; Basso, B.; Robertson, G.P. Machine Learning Improves Predictions of Agricultural Nitrous Oxide (N 2 O) Emissions from Intensively Managed Cropping Systems. Environ. Res. Lett. 2021, 16, 024004. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, T.; Li, J.; Li, N.; Bai, X.; Liu, X.; Ao, J.; Chang, R. Temporal-Scale-Dependent Mechanisms of Forest Soil Nitrous Oxide Emissions under Nitrogen Addition. Commun. Earth Environ. 2024, 5, 512. [Google Scholar] [CrossRef]
- Davidson, E.A.; Janssens, I.A. Temperature Sensitivity of Soil Carbon Decomposition and Feedbacks to Climate Change. Nature 2006, 440, 165–173. [Google Scholar] [CrossRef]
- Bond-Lamberty, B.; Bailey, V.L.; Chen, M.; Gough, C.M.; Vargas, R. Globally Rising Soil Heterotrophic Respiration over Recent Decades. Nature 2018, 560, 80–83. [Google Scholar] [CrossRef]
- Powers, J.S.; Corre, M.D.; Twine, T.E.; Veldkamp, E. Geographic Bias of Field Observations of Soil Carbon Stocks with Tropical Land-Use Changes Precludes Spatial Extrapolation. Proc. Natl. Acad. Sci. USA 2011, 108, 6318–6322. [Google Scholar] [CrossRef] [PubMed]
- Rigon, J.P.G.; Calonego, J.C.; Pivetta, L.A.; Castoldi, G.; Raphael, J.P.A.; Rosolem, C.A. Using Cover Crops to Offset Greenhouse Gas Emissions from a Tropical Soil under No-Till. Exp. Agric. 2021, 57, 217–231. [Google Scholar] [CrossRef]
- Vargas, R.; Baldocchi, D.D.; Allen, M.F.; Bahn, M.; Black, T.A.; Collins, S.L.; Yuste, J.C.; Hirano, T.; Jassal, R.S.; Pumpanen, J.; et al. Looking Deeper into the Soil: Biophysical Controls and Seasonal Lags of Soil CO 2 Production and Efflux. Ecol. Appl. 2010, 20, 1569–1582. [Google Scholar] [CrossRef]
- Groffman, P.M.; Butterbach-Bahl, K.; Fulweiler, R.W.; Gold, A.J.; Morse, J.L.; Stander, E.K.; Tague, C.; Tonitto, C.; Vidon, P. Challenges to Incorporating Spatially and Temporally Explicit Phenomena (Hotspots and Hot Moments) in Denitrification Models. Biogeochemistry 2009, 93, 49–77. [Google Scholar] [CrossRef]
- Anthony, T.L.; Silver, W.L. Hot Moments Drive Extreme Nitrous Oxide and Methane Emissions from Agricultural Peatlands. Glob. Change Biol. 2021, 27, 5141–5153. [Google Scholar] [CrossRef]
- Saggar, S.; Jha, N.; Deslippe, J.; Bolan, N.S.; Luo, J.; Giltrap, D.L.; Kim, D.-G.; Zaman, M.; Tillman, R.W. Denitrification and N2O:N2 Production in Temperate Grasslands: Processes, Measurements, Modelling and Mitigating Negative Impacts. Sci. Total Environ. 2013, 465, 173–195. [Google Scholar] [CrossRef]
- Mühlbachová, G.; Růžek, P.; Kusá, H.; Vavera, R. CO2 Emissions from Soils under Different Tillage Practices and Weather Conditions. Agronomy 2023, 13, 3084. [Google Scholar] [CrossRef]
- Xing, Y.; Wang, X. Impact of Agricultural Activities on Climate Change: A Review of Greenhouse Gas Emission Patterns in Field Crop Systems. Plants 2024, 13, 2285. [Google Scholar] [CrossRef]
- Walkiewicz, A.; Rafalska, A.; Bulak, P.; Bieganowski, A.; Osborne, B. How Can Litter Modify the Fluxes of CO2 and CH4 from Forest Soils? A Mini-Review. Forests 2021, 12, 1276. [Google Scholar] [CrossRef]
- Li, T.; Lu, L.; Kang, Z.; Li, H.; Li, H. Warming Enhances Soil Microbial Respiration through Divergent Mechanisms in a Tropical Forest and a Temperate Forest. Geoderma 2025, 459, 117380. [Google Scholar] [CrossRef]
- Ngaba, M.J.Y.; Mgelwa, A.S.; Gurmesa, G.A.; Uwiragiye, Y.; Zhu, F.; Qiu, Q.; Fang, Y.; Hu, B.; Rennenberg, H. Meta-Analysis Unveils Differential Effects of Agroforestry on Soil Properties in Different Zonobiomes. Plant Soil 2024, 496, 589–607. [Google Scholar] [CrossRef]
- Warner, E.; Cook-Patton, S.C.; Lewis, O.T.; Brown, N.; Koricheva, J.; Eisenhauer, N.; Ferlian, O.; Gravel, D.; Hall, J.S.; Jactel, H.; et al. Young Mixed Planted Forests Store More Carbon than Monocultures—A Meta-Analysis. Front. For. Glob. Change 2023, 6, 1226514. [Google Scholar] [CrossRef]
Biophysical Characteristics | Plot | DP | IP | CaAS | CoAS | SFAE | MPSE | OF |
---|---|---|---|---|---|---|---|---|
Location | 1; 2; 3; 4; 5 | 1°17′23.86″ N, 75°51′47.63″ W; 1°11′52.36″ N, 76°7′17.47″ W; 1°23′05.44″ N, 75°27′17.95″ W; 1°09′17.09″ N, 76°1′59.81″ W; 1°18′52.70″ N, 75°46′35.18″ W | 1°11′53.48″ N, 76°7′21.25″ W; 1°11′53.47″ N, 76°7′22.60″ W; 1°17′11.06″ N, 75°51′56.18″ W; 1°17′09.24″ N, 75°51′58.10″ W; 1°20′27.08″ N, 75°58′17.22″ W | 1°16′07.23″ N, 76°0′26.39″ W; 1°16′06.61″ N, 76°0′25.59″ W; 1°22′01.17″ N, 75°58′16.99″ W; 1°09′03.09″ N, 76°2′11.20″ W; 1°09′02.43″ N, 76°2′12.06″ W | 1°15′42.87″ N, 75°45′43.03″ W; 1°15′42.88″ N, 75°45′45.32″ W; 1°15′32.21″ N, 75°45′36.23″ W; 1°15′31.80″ N, 75°45′36.43″ W; 1°18′23.39″ N, 75°48′06.82″ W | 1°14′46.03″ N, 75°45′27.71″ W; 1°14′47.40″ N, 75°45′28.17″ W; 1°18′59.81″ N, 75°46′28.67″ W; 1°17′25.37″ N, 75°51′34.85″ W; 1°16′02.59″ N, 76°0′24.16″ W | 1°22′52.60″ N, 75°27′11.80″ W; 1°22′54.04″ N, 75°27′10.84″ W; 1°23′04.84″ N, 75°24′43.66″ W; 1°23′01.37″ N, 75°24′52.36″ W; 1°22′59.61″ N, 75°24′54.03″ W | 1°11′50.71″ N, 76°7′25.00″ W; 1°11′49.66″ N, 76°7′26.39″ W; 1°17′31.99″ N, 75°51′29.59″ W; 1°18′49.95″ N, 75°46′41.00″ W; 1°15′27.55″ N, 75°45′41.14″ W |
Elevation (m a.s.l.) | 1; 2; 3; 4; 5 | 265; 269; 232; 244; 254 | 323; 324; 268; 265; 414 | 367; 369; 592; 248; 244 | 242; 242; 242; 242; 264 | 242; 242; 254; 265; 367 | 232; 232; 242; 242; 242 | 323; 323; 256; 254; 242 |
Slope (°) | 1; 2; 3; 4; 5 | 0.09; 2.27; 0.22; 0.29; 0.47 | 1.55; 1.55; 0.61; 0.61; 0.61 | 5.99; 5.99; 15.06; 0.29; 0.29 | 0.40; 0.40; 0.13; 0.13; 0.32 | 1.02; 1.02; 0.47; 0.24; 5.99 | 0.16; 0.16; 0.56; 0.23; 0.23 | 1.55; 2.91; 0.50; 0.33; 0.13 |
Dominant species | Systems are characterized by low cattle-carrying capacity, high soil compaction, and dominance of grasses such as Paspalum notatum Flüggé; Cynodon nlemfuensis Vanderyst (Bogdan). | System managed under rotational grazing schemes for more than 15 years, and included pasture subdivisions with species such as Brachiaria decumbes (Stapf) R.D. Webster, B. humidicola (Rendle) Schweick; B. brizantha cv. Marandú (A.Rich.) Stapf | Theobroma cacao L.; Cariniana pyriformis Miers; Cedrela odorata L.; Minquartia guianensis Aubl.; Chrysopogon zizanioides (L.) Roberty | Theobroma grandiflorum [Willd. ex Spreng.] Schum.; C. pyriformis; M. guianensis; Hevea brasiliensis (Willd. ex A. Juss.) Müll. Arg. | Henriettea fascicularis (Sw.) M. Gómez; Miconia elata (Sw.) DC.; Siparuna guianensis Aubl.; Cyathea lasiosora (Mett. ex Kuhn) Domin; Euterpe precatoria Mart.; Oenocarpus bataua Mart.; T. grandiflorum; Cedrelinga cateniformis (Ducke); M. guianensis | Mauritia flexuosa L.f.; M. guianensis; Virola elongata (Benth.) Warb.; Aniba panurensis (Meisn.) Mez; C. cateni-formis; Couma macrocarpa Barb.Rodr.; E. precatoria; O. bataua | Pseudosenefeldera inclinata (Müll.Arg.) Esser; Compsoneura capitellata (Poepp. ex A.DC.) Warb.; Hymenaea oblongifolia Huber; Dialium guianense (Aubl.) Sandwith; Iriartea deltoidea Ruiz & Pav.; Wettinia praemorsa (Willd.) Wess. Boer; Talisia cerasina (Benth.) Radlk; Calliandra surinamensis Benth.; Licania harlingii Prance, C. odorata; Virola sebifera Aubl. | |
Current land-use description | Degraded pastures under extensive grazing for over 15 years. | Complementary feeding systems, such as mixed forage banks with species such as Pennisetum spp.; Cratylia argentea (Desv.) Kuntze; Tithonia diversifolia (Hemsl.) A.Gray; Piptocoma discolor (Kunth) Pruski. Liquid organic fertilization with pig-slurry digestate, represents a more sustainable livestock production model. | Agroforestry cacao systems with 10 to 14 years since planting. | Agroforestry copoazu systems with 10 to 14 years since planting. | Secondary forests aged 8–12 years, enriched with native palms and fruit tree species | Wetland areas are predominantly colonized by M. flexuosa. | Natural forest areas that are relatively well-conserved, with limited selective logging primarily for household use. | |
Land-use history | Previously secondary forest areas. | Previously secondary forest areas. | Previously secondary forest lands used for transitional crops (e.g., maize, plantain, cassava) and occasional grazing. | Areas previously used for pastures and/or secondary forests. | Previously used for pastures and subsistence crops. | Lightly disturbed wetlands. | Forests with minimal to moderate human activity, mainly associated with small-scale timber extraction, as previously reported [24]. | |
SOC (Mg ha−1) | 48.13 | 56.83 | 57.30 | 58.88 | 57.10 | 63.32 | 73.57 | |
AGBc (Mg C ha−1) | 3.66 | 6.80 | 18.38 | 19.73 | 28.04 | 108.48 | 102.64 |
Variable | Season | CO2 Flux | CH4 Flux | N2O Flux |
---|---|---|---|---|
ST | Dry | 0.055 | 0.862 | 0.037 |
ST | Rainy | 0.201 | 0.041 | 0.012 |
SWC | Dry | 0.134 | 0.879 | 0.190 |
SWC | Rainy | 0.288 | 0.057 | 0.894 |
Season | Land-Use | |||||||
---|---|---|---|---|---|---|---|---|
CaAS | CoAS | DP | IP | MPSE | OF | SFAE | ||
GWP (Mg CO2 Eq ha−1 year−1) | Dry | 38.32 | 45.38 | 98.18 | 62.17 | 41.36 | 64.12 | 64.16 |
Rainy | 34.44 | 36.54 | 70.29 | 57.15 | 38.29 | 56.66 | 57.71 | |
Mean | 36.38 | 40.96 | 84.23 | 59.66 | 39.83 | 60.39 | 60.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sterling, A.; Suárez-Córdoba, Y.D.; Rodríguez-Castillo, N.A.; Rodríguez-León, C.H. Soil–Atmosphere Greenhouse Gas Fluxes Across a Land-Use Gradient in the Andes–Amazon Transition Zone: Insights for Climate Innovation. Land 2025, 14, 1980. https://doi.org/10.3390/land14101980
Sterling A, Suárez-Córdoba YD, Rodríguez-Castillo NA, Rodríguez-León CH. Soil–Atmosphere Greenhouse Gas Fluxes Across a Land-Use Gradient in the Andes–Amazon Transition Zone: Insights for Climate Innovation. Land. 2025; 14(10):1980. https://doi.org/10.3390/land14101980
Chicago/Turabian StyleSterling, Armando, Yerson D. Suárez-Córdoba, Natalia A. Rodríguez-Castillo, and Carlos H. Rodríguez-León. 2025. "Soil–Atmosphere Greenhouse Gas Fluxes Across a Land-Use Gradient in the Andes–Amazon Transition Zone: Insights for Climate Innovation" Land 14, no. 10: 1980. https://doi.org/10.3390/land14101980
APA StyleSterling, A., Suárez-Córdoba, Y. D., Rodríguez-Castillo, N. A., & Rodríguez-León, C. H. (2025). Soil–Atmosphere Greenhouse Gas Fluxes Across a Land-Use Gradient in the Andes–Amazon Transition Zone: Insights for Climate Innovation. Land, 14(10), 1980. https://doi.org/10.3390/land14101980