Integrating Remote Sensing and Geospatial Big Data for Land Cover and Land Use Mapping and Monitoring
1. Introduction
2. Overview of Papers in the Special Issue
2.1. Urban Applications
2.2. Changes in Land Cover and Land Use over Space and Time
2.3. Applications in Other Domains
3. Conclusions
Funding
Conflicts of Interest
List of Contributions
- 1.
- Zheng, K.; Zhang, H.; Wang, H.; Qin, F.; Wang, Z.; Zhao, J. Using Multiple Sources of Data and “Voting Mechanisms” for Urban Land-Use Mapping. Land 2022, 11, 2209. https://doi.org/10.3390/land11122209.
- 2.
- Kenyon, G.E.; Arribas-Bel, D.; Robinson, C. Extracting Features from Satellite Imagery to Understand the Size and Scale of Housing Sub-Markets in Madrid. Land 2024, 13, 575. https://doi.org/10.3390/land13050575.
- 3.
- Shih, H.-C.; Stow, D.A.; Weeks, J.R.; Goulias, K.G.; Carvalho, L.M.V. The Relative Timing of Population Growth and Land Use Change—A Case Study of North Taiwan from 1990 to 2015. Land 2022, 11, 2204. https://doi.org/10.3390/land11122204.
- 4.
- Li, Y.; Yang, X.; Wu, B.; Zhao, J.; Deng, X. Impervious Surface Mapping Based on Remote Sensing and an Optimized Coupled Model: The Dianchi Basin as an Example. Land 2023, 12, 1210. https://doi.org/10.3390/land12061210.
- 5.
- Thomas, I.N.; Giuliani, G. Exploring Switzerland’s Land Cover Change Dynamics Using a National Statistical Survey. Land 2023, 12, 1386. https://doi.org/10.3390/land12071386.
- 6.
- Copenhaver, K.L. Combining Tabular and Satellite-Based Datasets to Better Understand Cropland Change. Land 2022, 11, 714. https://doi.org/10.3390/land11050714.
- 7.
- Ghassemi, B.; Immitzer, M.; Atzberger, C.; Vuolo, F. Evaluation of Accuracy Enhancement in European-Wide Crop Type Mapping by Combining Optical and Microwave Time Series. Land 2022, 11, 1397. https://doi.org/10.3390/land11091397.
- 8.
- Borgogno-Mondino, E.; De Petris, S.; Sarvia, F.; Momo, E.J.; Sussio, F.; Pari, P. Adoption of Digital Aerial Photogrammetry in Forest Planning: A Case Study of Canavese Forestry Consortium, NW Italy with Technical and Economic Issues. Land 2022, 11, 1350. https://doi.org/10.3390/land11081350.
- 9.
- Morales, N.S.; Fernández, I.C.; Durán, L.P.; Pérez-Martínez, W.A. RePlant Alfa: Integrating Google Earth Engine and R Coding to Support the Identification of Priority Areas for Ecological Restoration. Land 2023, 12, 303. https://doi.org/10.3390/land12020303.
References
- Berman, J.J. Introduction. In Principles of Big Data; Elsevier: Amsterdam, The Netherlands, 2013; pp. 19–26. ISBN 978-0-12-404576-7. [Google Scholar]
- Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the Archive: How Free Data Has Enabled the Science and Monitoring Promise of Landsat. Remote Sens. Environ. 2012, 122, 2–10. [Google Scholar] [CrossRef]
- Showstack, R. Sentinel Satellites Initiate New Era in Earth Observation. EOS 2014, 95, 239–240. [Google Scholar] [CrossRef]
- Safyan, M. Planet’s Dove Satellite Constellation. In Handbook of Small Satellites; Pelton, J.N., Madry, S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1057–1073. ISBN 978-3-030-36307-9. [Google Scholar]
- Bonney, R.E.; Cooper, C.B.; Dickinson, J.; Kelling, S.; Phillips, T.; Rosenberg, K.V.; Shirk, J. Citizen Science: A Developing Tool for Expanding Science Knowledge and Scientific Literacy. BioScience 2009, 59, 977–984. [Google Scholar] [CrossRef]
- Goodchild, M.F. Citizens as Sensors: The World of Volunteered Geography. GeoJournal 2007, 69, 211–221. [Google Scholar] [CrossRef]
- Jokar Arsanjani, J.; Zipf, A.; Mooney, P.; Helbich, M. (Eds.) OpenStreetMap in GIScience: Experiences, Research, and Applications, 1st ed.; Lecture Notes in Geoinformation and Cartography; Springer International Publishing: Cham, Switzerland, 2015; ISBN 978-3-319-14280-7. [Google Scholar]
- See, L.; Bayas, J.C.L.; Lesiv, M.; Schepaschenko, D.; Danylo, O.; McCallum, I.; Dürauer, M.; Georgieva, I.; Domian, D.; Fraisl, D.; et al. Lessons Learned in Developing Reference Data Sets with the Contribution of Citizens: The Geo-Wiki Experience. Environ. Res. Lett. 2022, 17, 065003. [Google Scholar] [CrossRef]
- Unger, S.; Rollins, M.; Tietz, A.; Dumais, H. iNaturalist as an Engaging Tool for Identifying Organisms in Outdoor Activities. J. Biol. Educ. 2020, 55, 537–547. [Google Scholar] [CrossRef]
- Droste, A.M.; Pape, J.J.; Overeem, A.; Leijnse, H.; Steeneveld, G.J.; Van Delden, A.J.; Uijlenhoet, R. Crowdsourcing Urban Air Temperatures through Smartphone Battery Temperatures in São Paulo, Brazil. J. Atmospheric Ocean. Technol. 2017, 34, 1853–1866. [Google Scholar] [CrossRef]
- Raysoni, A.U.; Pinakana, S.D.; Mendez, E.; Wladyka, D.; Sepielak, K.; Temby, O. A Review of Literature on the Usage of Low-Cost Sensors to Measure Particulate Matter. Earth 2023, 4, 168–186. [Google Scholar] [CrossRef]
- Mao, F.; Khamis, K.; Krause, S.; Clark, J.; Hannah, D.M. Low-Cost Environmental Sensor Networks: Recent Advances and Future Directions. Front. Earth Sci. 2019, 7, 221. [Google Scholar] [CrossRef]
- Zhu, Y.; Newsam, S. Land Use Classification Using Convolutional Neural Networks Applied to Ground-Level Images. In Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, Seattle, WA, USA, 3–6 November 2015; pp. 1–4. [Google Scholar]
- Martinez-Sanchez, L.; See, L.; Yordanov, M.; Verhegghen, A.; Elvekjaer, N.; Muraro, D.; d’Andrimont, R.; Van Der Velde, M. Automatic Classification of Land Cover from LUCAS In-Situ Landscape Photos Using Semantic Segmentation and a Random Forest Model. Environ. Model. Softw. 2024, 172, 105931. [Google Scholar] [CrossRef]
- Yin, J.; Dong, J.; Hamm, N.A.S.; Li, Z.; Wang, J.; Xing, H.; Fu, P. Integrating Remote Sensing and Geospatial Big Data for Urban Land Use Mapping: A Review. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102514. [Google Scholar] [CrossRef]
- Dou, Y.; Cosentino, F.; Malek, Z.; Maiorano, L.; Thuiller, W.; Verburg, P.H. A New European Land Systems Representation Accounting for Landscape Characteristics. Landsc. Ecol. 2021, 36, 2215–2234. [Google Scholar] [CrossRef]
- Lesiv, M.; Schepaschenko, D.; Buchhorn, M.; See, L.; Dürauer, M.; Georgieva, I.; Jung, M.; Hofhansl, F.; Schulze, K.; Bilous, A.; et al. Global Forest Management Data for 2015 at a 100 m Resolution. Sci. Data 2022, 9, 199. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
See, L.; Lesiv, M.; Schepaschenko, D. Integrating Remote Sensing and Geospatial Big Data for Land Cover and Land Use Mapping and Monitoring. Land 2024, 13, 769. https://doi.org/10.3390/land13060769
See L, Lesiv M, Schepaschenko D. Integrating Remote Sensing and Geospatial Big Data for Land Cover and Land Use Mapping and Monitoring. Land. 2024; 13(6):769. https://doi.org/10.3390/land13060769
Chicago/Turabian StyleSee, Linda, Myroslava Lesiv, and Dmitry Schepaschenko. 2024. "Integrating Remote Sensing and Geospatial Big Data for Land Cover and Land Use Mapping and Monitoring" Land 13, no. 6: 769. https://doi.org/10.3390/land13060769