Time-Lapse Electromagnetic Conductivity Imaging for Soil Salinity Monitoring in Salt-Affected Agricultural Regions
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling and Laboratory Analysis
2.3. Collection and Inversion of ECa Data
2.4. Prediction of ECe from EMCI Using Site-Specific Calibrations
3. Results
3.1. ECe Data Analysis
3.2. Determination of the Optimal Inversion Parameters and Inversion Technique
3.3. Time-Lapse EMCIs
3.4. Prediction of ECe Using Site-Specific Calibration
3.5. Generation of Soil Salinity Cross-Sections from Time-Lapse EMC
4. Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stavi, I.; Thevs, N.; Priori, S. Soil salinity and sodicity in drylands: A review of causes, effects, monitoring, and restoration measures. Front. Environ. Sci. 2021, 9, 330. [Google Scholar] [CrossRef]
- FAO. Global Symposium on Salt-Affected Soils: Outcome Document; FAO: Rome, Italy, 2022. [Google Scholar]
- Shrivastava, P.; Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef]
- Machado, R.M.A.; Serralheiro, R.P. Soil salinity: Effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 2017, 3, 30. [Google Scholar] [CrossRef]
- Gorji, T.; Sertel, E.; Tanik, A. Monitoring soil salinity via remote sensing technology under data-scarce conditions: A case study from Turkey. Ecol. Indic. 2017, 74, 384–391. [Google Scholar] [CrossRef]
- Bouksila, F.; Persson, M.; Bahri, A.; Berndtsson, R. Electromagnetic induction prediction of soil salinity and groundwater properties in a Tunisian Saharan oasis. Hydrol. Sci. J. 2012, 57, 1473–1486. [Google Scholar] [CrossRef]
- Li, X.-M.; Yang, J.-S.; Liu, M.-X.; Liu, G.-M.; Yu, M. Spatio-temporal changes of soil salinity in arid areas of south Xinjiang using electromagnetic induction. J. Integr. Agric. 2012, 11, 1365–1376. [Google Scholar] [CrossRef]
- Li, H.; Shi, Z.; Webster, R.; Triantafilis, J. Mapping the three-dimensional variation of soil salinity in a rice-paddy soil. Geoderma 2013, 195, 31–41. [Google Scholar] [CrossRef]
- Li, H.; Webster, R.; Shi, Z. Mapping soil salinity in the Yangtze delta: REML and universal kriging (E-BLUP) revisited. Geoderma 2015, 237, 71–77. [Google Scholar] [CrossRef]
- Paz, M.C.; Farzamian, M.; Paz, A.M.; Castanheira, N.L.; Gonçalves, M.C.; Santos, F.M. Assessing soil salinity dynamics using time-lapse electromagnetic conductivity imaging. Soil 2020, 6, 499–511. [Google Scholar] [CrossRef]
- Akça, E.; Aydin, M.; Kapur, S.; Kume, T.; Nagano, T.; Watanabe, T.; Çilek, A.; Zorlu, K. Long-term monitoring of soil salinity in a semi-arid environment of Turkey. Catena 2020, 193, 104614. [Google Scholar] [CrossRef]
- Visconti, F.; De Paz, J.M. A semi-empirical model to predict the EM38 electromagnetic induction measurements of soils from basic ground properties. Eur. J. Soil Sci. 2021, 72, 720–738. [Google Scholar] [CrossRef]
- Visconti, F.; de Paz, J.M. Sensitivity of soil electromagnetic induction measurements to salinity, water content, clay, organic matter, and bulk density. Precis. Agric. 2021, 22, 1559–1577. [Google Scholar] [CrossRef]
- Petsetidi, P.A.; Kargas, G. Assessment and Mapping of Soil Salinity Using the EM38 and EM38MK2 Sensors: A Focus on the Modeling Approaches. Land 2023, 12, 1932. [Google Scholar] [CrossRef]
- Auken, E.; Christiansen, A.V.; Kirkegaard, C.; Fiandaca, G.; Schamper, C.; Behroozmand, A.A.; Binley, A.; Nielsen, E.; Effersø, F.; Christensen, N.B. An overview of a highly versatile forward and stable inverse algorithm for airborne, ground-based, and bore-hole electromagnetic and electric data. Explor. Geophys. 2015, 46, 223–235. [Google Scholar] [CrossRef]
- Santos, F.A.M. 1-D laterally constrained inversion of EM34 profiling data. J. Appl. Geophys. 2004, 56, 123–134. [Google Scholar] [CrossRef]
- Dakak, H.; Huang, J.; Zouahri, A.; Douaik, A.; Triantafilis, J. Mapping soil salinity in 3-dimensions using an EM38 and EM4Soil inversion modelling at the reconnaissance scale in central Morocco. Soil Use Manag. 2017, 33, 553–567. [Google Scholar] [CrossRef]
- Corwin, D.L.; Yemoto, K. Measurement of soil salinity: Electrical conductivity and total dissolved solids. Soil Sci. Soc. Am. J. 2019, 83, 1–2. [Google Scholar] [CrossRef]
- Wang, F.; Yang, S.; Wei, Y.; Shi, Q.; Ding, J. Characterizing soil salinity at multiple depth using electromagnetic induction and remote sensing data with random forests: A case study in Tarim River Basin of southern Xinjiang, China. Sci. Total Environ. 2021, 754, 142030. [Google Scholar] [CrossRef]
- Xie, W.; Yang, J.; Yao, R.; Wang, X. Spatial and temporal variability of soil salinity in the Yangtze River estuary using electromagnetic induction. Remote Sens. 2021, 13, 1875. [Google Scholar] [CrossRef]
- Gómez Flores, J.L.; Ramos Rodríguez, M.; González Jiménez, A.; Farzamian, M.; Herencia Galán, J.F.; Salvatierra Bellido, B.; Cermeño Sacristan, P.; Vanderlinden, K. Depth-Specific Soil Electrical Conductivity and NDVI Elucidate Salinity Effects on Crop Development in Reclaimed Marsh Soils. Remote Sens. 2022, 14, 3389. [Google Scholar] [CrossRef]
- Khongnawang, T.; Zare, E.; Srihabun, P.; Khunthong, I.; Triantafilis, J. Digital soil mapping of soil salinity using EM38 and quasi-3d modelling software (EM4Soil). Soil Use Manag. 2022, 38, 277–291. [Google Scholar] [CrossRef]
- Brogi, C.; Huisman, J.; Pätzold, S.; Von Hebel, C.; Weihermüller, L.; Kaufmann, M.; Van Der Kruk, J.; Vereecken, H. Large-scale soil mapping using multi-configuration EMI and supervised image classification. Geoderma 2019, 335, 133–148. [Google Scholar] [CrossRef]
- Ding, J.; Yang, S.; Shi, Q.; Wei, Y.; Wang, F. Using apparent electrical conductivity as indicator for investigating potential spatial variation of soil salinity across seven oases along Tarim River in Southern Xinjiang, China. Remote Sens. 2020, 12, 2601. [Google Scholar] [CrossRef]
- Shi, X.; Wang, H.; Song, J.; Lv, X.; Li, W.; Li, B.; Shi, J. Impact of saline soil improvement measures on salt content in the abandonment-reclamation process. Soil Tillage Res. 2021, 208, 104867. [Google Scholar] [CrossRef]
- Ben Slimane, A.; Bouksila, F.; Selim, T.; Joumada, F. Soil salinity assessment using electromagnetic induction method in a semi-arid environment—A case study in Tunisia. Arab. J. Geosci. 2022, 15, 1031. [Google Scholar] [CrossRef]
- Utili, S. Monitoring of earthen long linear embankments by geophysical tools integrated with geotechnical probes. In Proceedings of the E3S Web of Conferences, Lisbon, Portugal, 24–26 June 2020; p. 01031. [Google Scholar]
- Apostolopoulos, G.; Kapetanios, A. Geophysical investigation, in a regional and local mode, at Thorikos Valley, Attica, Greece, trying to answer archaeological questions. Archaeol. Prospect. 2021, 28, 435–452. [Google Scholar] [CrossRef]
- Koganti, T.; Narjary, B.; Zare, E.; Pathan, A.L.; Huang, J.; Triantafilis, J. Quantitative mapping of soil salinity using the DUA-LEM-21S instrument and EM inversion software. Land Degrad. Dev. 2018, 29, 1768–1781. [Google Scholar] [CrossRef]
- Yao, R.; Yang, J.; Wu, D.; Xie, W.; Gao, P.; Jin, W. Digital mapping of soil salinity and crop yield across a coastal agricultural landscape using repeated electromagnetic induction (EMI) surveys. PLoS ONE 2016, 11, e0153377. [Google Scholar] [CrossRef]
- Yao, R.; Yang, J. Quantitative evaluation of soil salinity and its spatial distribution using electromagnetic induction method. Agric. Water Manag. 2010, 97, 1961–1970. [Google Scholar] [CrossRef]
- Corwin, D.; Scudiero, E. Review of soil salinity assessment for agriculture across multiple scales using proximal and/or remote sensors. Adv. Agron. 2019, 158, 1–130. [Google Scholar]
- USDA. Soil survey manual. In Soil Survey Division Staff; Soil Conservation Service Volume Handbook 18; U.S. Department of Agriculture: Washington, DC, USA, 2017; Chapter 3. [Google Scholar]
- Geiger, R. Classification of Climates after W. Köppen. Landolt-Börnstein-Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, alte Serie; Springer: Berlin/Heidelberg, Germany, 1954; pp. 603–607. [Google Scholar]
- Aziz, A.; Berndtsson, R.; Attia, T.; Hamed, Y.; Selim, T. Noninvasive Monitoring of Subsurface Soil Conditions to Evaluate the Efficacy of Mole Drain in Heavy Clay Soils. Water 2022, 15, 110. [Google Scholar] [CrossRef]
- Available online: https://en.tutiempo.net/ (accessed on 6 October 2023).
- Between Clay and Cement: Is Egypt’s Canal Lining a Solution or Dilemma for Farmers? Available online: https://infonile.org/en/2023/01/is-egypts-canal-lining-a-solution-or-dilemma-for-farmers/ (accessed on 11 September 2023).
- Rhoades, J.; Kandiah, A.; Mashali, A. The Use of Saline Waters for Crop Production-FAO Irrigation and Drainage Paper 48; FAO: Rome, Italy, 1992; p. 133. [Google Scholar]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 1985; Volume 29. [Google Scholar]
- Yollybayev, A.; Gurbanov, A. Cultivation of Sorghum and Sudan Grass on Saline Areas. Available online: https://tohi.edu.tm/usuly-gollanma/en/file/21.pdf (accessed on 10 November 2023).
- Clark, A. Managing Cover Crops Profitably; Diane Publishing: Darby, PA, USA, 2008. [Google Scholar]
- Mirsharipova, G.; Mustafakulov, D. Planting rate of Sudan grass photosynthetic activity and dependence on the period of harvest. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Online, 13–16 October 2023; p. 012062. [Google Scholar]
- Richards, L.A. Diagnosis and Improvement of Saline and Alkali Soils; US Government Printing Office: Washington, DC, USA, 1954.
- Barrett-Lennard, E.; Bennett, S.J.; Colmer, T. Standardising terminology for describing the level of salinity in soils in Australia. In Proceedings of the 2nd International Salinity Forum: Salinity, Water and Society: Global Issues, Local Action, Adelaide, Australia, 31 March–3 April 2005. [Google Scholar]
- EMTOMO. EMTOMO Manual for EM4Soil, A Program for 1-D Laterally Constrained Inversion of EM Data; EMTOMO: Lisbon, Portugal, 2018. [Google Scholar]
- Monteiro Santos, F.; Triantafilis, J.; Bruzgulis, K.; Roe, J. Inversion of multiconfiguration electromagnetic (DUALEM-421) profiling data using a one-dimensional laterally constrained algorithm. Vadose Zone J. VZJ 2010, 9, 117–125. [Google Scholar] [CrossRef]
- Monteiro Santos, F.A.; Triantafilis, J.; Bruzgulis, K. A spatially constrained 1D inversion algorithm for quasi-3D conductivity imaging: Application to DUALEM-421 data collected in a riverine plain. Geophysics 2011, 76, B43–B53. [Google Scholar] [CrossRef]
- Kaufman, A.A.; Keller, G.V. Frequency and transient soundings methods in geochemistry and geophysics. Geophys. J. Int. 1983, 77, 935–937. [Google Scholar] [CrossRef]
- Sasaki, Y. Two-dimensional joint inversion of magnetotelluric and dipole-dipole resistivity data. Geophysics 1989, 54, 254–262. [Google Scholar] [CrossRef]
- Sasaki, Y. Full 3-D inversion of electromagnetic data on PC. J. Appl. Geophys. 2001, 46, 45–54. [Google Scholar] [CrossRef]
- deGroot-Hedlin, C.; Constable, S. Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data. Geophysics 1990, 55, 1613–1624. [Google Scholar] [CrossRef]
- Triantafilis, J.; Santos, F.M. Electromagnetic conductivity imaging (EMCI) of soil using a DUALEM-421 and inversion modelling software (EM4Soil). Geoderma 2013, 211, 28–38. [Google Scholar] [CrossRef]
- Zare, E.; Li, N.; Khongnawang, T.; Farzamian, M.; Triantafilis, J. Identifying Potential Leakage Zones in an Irrigation Supply Channel by Mapping Soil Properties Using Electromagnetic Induction, Inversion Modelling and a Support Vector Machine. Soil Syst. 2020, 4, 25. [Google Scholar] [CrossRef]
- Farzamian, M.; Autovino, D.; Basile, A.; De Mascellis, R.; Dragonetti, G.; Monteiro Santos, F.; Binley, A.; Coppola, A. Assessing the dynamics of soil salinity with time-lapse inversion of electromagnetic data guided by hydrological modelling. Hydrol. Earth Syst. Sci. 2021, 25, 1509–1527. [Google Scholar] [CrossRef]
- Moore, D.S.; Kirkland, S. The Basic Practice of Statistics; WH Freeman: New York, NY, USA, 2007; Volume 2. [Google Scholar]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: Berlin/Heidelberg, Germany, 2013; Volume 112. [Google Scholar]
- Lawrence, I.; Lin, K. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989, 45, 255–268. [Google Scholar] [CrossRef]
- Singh, J.; Knapp, H.V.; Arnold, J.; Demissie, M. Hydrological modeling of the Iroquois River watershed using HSPF and SWAT 1. JAWRA J. Am. Water Resour. Assoc. 2005, 41, 343–360. [Google Scholar] [CrossRef]
- Bouksila, F. Sustainability of Irrigated Agriculture under Salinity Pressure—A Study in Semiarid Tunisia; Lund University Publications: Lund, Sweden, 2011. [Google Scholar]
- Zare, E.; Huang, J.; Santos, F.M.; Triantafilis, J. Mapping salinity in three dimensions using a DUALEM-421 and electromagnetic inversion software. Soil Sci. Soc. Am. J. 2015, 79, 1729–1740. [Google Scholar] [CrossRef]
- Khongnawang, T.; Zare, E.; Srihabun, P.; Triantafilis, J. Comparing electromagnetic induction instruments to map soil salinity in two-dimensional cross-sections along the Kham-rean Canal using EM inversion software. Geoderma 2020, 377, 114611. [Google Scholar] [CrossRef]
- Ramos, T.B.; Oliveira, A.R.; Darouich, H.; Gonçalves, M.C.; Martínez-Moreno, F.J.; Rodríguez, M.R.; Vanderlinden, K.; Farzamian, M. Field-scale assessment of soil water dynamics using distributed modeling and electromagnetic conductivity imaging. Agric. Water Manag. 2023, 288, 108472. [Google Scholar] [CrossRef]
- Dawoud, M.A. Design of national groundwater quality monitoring network in Egypt. Environ. Monit. Assess. 2004, 96, 99–118. [Google Scholar] [CrossRef]
- Salem, Z.E.; Elsaiedy, G.; ElNahrawy, A. Assessment of the groundwater quality for drinking and irrigation purposes in the Central Nile Delta Region, Egypt. In Groundwater in the Nile Delta; Springer: Berlin/Heidelberg, Germany, 2019; pp. 647–684. [Google Scholar] [CrossRef]
- Mabrouk, M.; Jonoski, A.; Solomatine, D.; Uhlenbrook, S. A review of seawater intrusion in the Nile Delta groundwater system–the basis for assessing impacts due to climate changes and water resources development. Hydrol. Earth Syst. Sci. Discuss. 2013, 10, 10873–10911. [Google Scholar] [CrossRef]
- Francois, L.E.; Donovan, T.; Maas, E.V. Salinity effects on seed yield, growth and germination of grain sorghum. Agron. J. 1984, 76, 741–744. [Google Scholar] [CrossRef]
- Calone, R.; Sanoubar, R.; Lambertini, C.; Speranza, M.; Vittori Antisari, L.; Vianello, G.; Barbanti, L. Salt tolerance and Na allocation in Sorghum bicolor under variable soil and water salinity. Plants 2020, 9, 561. [Google Scholar] [CrossRef]
- Almodares, A.; Sharif, M. Effects of irrigation water qualities on biomass and sugar contents of sugar beet and sweet sorghum cultivars. J. Environ. Biol. 2007, 28, 213–218. [Google Scholar]
- McNeill, J.D. Electromagnetic Terrain Conductivity Measurement at Low Induction Numbers; Technical note TN-6; Geonics Limited: Mississauga, ON, Canada, 1980. [Google Scholar]
- Dragonetti, G.; Farzamian, M.; Basile, A.; Monteiro Santos, F.; Coppola, A. In situ estimation of soil hydraulic and hydrodisper-sive properties by inversion of electromagnetic induction measurements and soil hydrological modeling. Hydrol. Earth Syst. Sci. 2022, 26, 5119–5136. [Google Scholar] [CrossRef]
- Farzamian, M.; Bouksila, F.; Paz, A.M.; Santos, F.A.; Zemin, N.; Salma, F.; Ben Slimane, A.; Selimi, T.; Triantafilis, J. Landscape-scale mapping of soil salinity with multi-height electromagnetic induction and quasi-3D inversion (Saharan Oasis, Tunisia). Agric. Water Manag. 2023, 284, 108330. [Google Scholar] [CrossRef]
- Worku, A.; Nekir, B.; Mamo, L.; Bekele, T. Comparative Advantage of Forage Grasses for Salt Tolerance and Ameliorative Effect under Salt Affected Soil of Amibara, Afar. Results of Natural Resources Management Research 2020. Available online: https://www.researchgate.net/publication/347468684_Comparative_Advantage_of_Forage_Grasses_for_Salt_Tolerance_and_Ameliorative_Effect_under_Salt_Affected_Soil_of_Amibara_Afar (accessed on 10 November 2023).
Campaign | Date of Measurement | State of Agriculture | Number of Boreholes | Survey Data Utilization |
---|---|---|---|---|
1st | August 2021 | Before cultivation | 1 | Validation |
2nd | September 2021 | After fertilization and sowing | 2 | |
3rd | February 2022 | After second harvesting | 6 | Calibration |
4th | April 2022 | After fourth harvesting | 6 | Validation |
5th | June 2022 | After the last harvesting | 6 | |
6th | June 2023 | One year later | 4 |
Surveys | ECe Min (dS m−1) | ECe Max (dS m−1) | ECe Range * | Number of Soil Samples |
---|---|---|---|---|
First survey | 5.29 | 15.24 | 9.95 | 3 |
Second survey | 9.51 | 15.70 | 6.19 | 6 |
Third (calibration) survey | 4.63 | 16.95 | 12.32 | 18 |
Fourth survey | 5.45 | 13.58 | 8.13 | 18 |
Fifth survey | 6.10 | 15.16 | 9.06 | 18 |
Sixth survey | 6.40 | 14.90 | 8.50 | 12 |
All surveys | 4.63 | 16.95 | 12.32 | 75 |
Validation surveys (all surveys except the 3rd survey) | 5.29 | 15.70 | 10.41 | 57 |
ECe Calibration Data (dS m−1) | ||||||
Soil Layer (m) | N | Min | Max | Mean | SD | Cv |
All soil layers | 18 | 4.63 | 16.95 | 10.68 | 3.52 | 32.92 |
0.0–0.3 | 6 | 4.63 | 8.19 | 7.16 | 1.37 | 19.11 |
0.3–0.6 | 6 | 8.66 | 11.50 | 9.96 | 1.06 | 10.65 |
0.6–0.9 | 6 | 12.95 | 16.95 | 14.92 | 1.39 | 9.30 |
ECe Validation Data (dS m−1) | ||||||
Soil Layer (m) | N | Min | Max | Mean | SD | Cv |
All soil layers | 57 | 5.29 | 15.70 | 10.55 | 2.94 | 27.87 |
0.0–0.3 | 19 | 5.29 | 11.80 | 7.47 | 1.82 | 24.39 |
0.3–0.6 | 19 | 8.00 | 12.59 | 10.89 | 1.55 | 14.23 |
0.6–0.9 | 19 | 10.90 | 15.70 | 13.38 | 1.46 | 10.91 |
Surveys | Type of Inversion | RMSE (dS m−1) | ME (dS m−1) | Lin’s CCC | R2 |
---|---|---|---|---|---|
All surveys | IN | 1.91 | 0.85 | 0.84 | 0.77 |
TL | 1.38 | 0.17 | 0.90 | 0.81 | |
Validation surveys (all surveys except third survey) | IN | 2.10 | 1.15 | 0.81 | 0.77 |
TL | 1.45 | 0.24 | 0.88 | 0.79 | |
First survey | IN | 1.48 | 0.04 | 0.93 | 0.87 |
TL | 1.52 | 0.95 | 0.92 | 0.93 | |
Second survey | IN | 3.65 | 3.48 | 0.55 | 0.96 |
TL | 1.24 | −0.26 | 0.90 | 0.92 | |
Third (calibration) survey | IN | 1.15 | 0.00 | 0.94 | 0.88 |
TL | 1.14 | 0.00 | 0.94 | 0.89 | |
Fourth survey | IN | 1.94 | 0.63 | 0.79 | 0.69 |
TL | 1.58 | 0.06 | 0.84 | 0.73 | |
Fifth survey | IN | 1.62 | 0.57 | 0.86 | 0.79 |
TL | 1.35 | −0.07 | 0.89 | 0.80 | |
Sixth survey | IN | 1.96 | 1.81 | 0.81 | 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eltarabily, M.G.; Amer, A.; Farzamian, M.; Bouksila, F.; Elkiki, M.; Selim, T. Time-Lapse Electromagnetic Conductivity Imaging for Soil Salinity Monitoring in Salt-Affected Agricultural Regions. Land 2024, 13, 225. https://doi.org/10.3390/land13020225
Eltarabily MG, Amer A, Farzamian M, Bouksila F, Elkiki M, Selim T. Time-Lapse Electromagnetic Conductivity Imaging for Soil Salinity Monitoring in Salt-Affected Agricultural Regions. Land. 2024; 13(2):225. https://doi.org/10.3390/land13020225
Chicago/Turabian StyleEltarabily, Mohamed G., Abdulrahman Amer, Mohammad Farzamian, Fethi Bouksila, Mohamed Elkiki, and Tarek Selim. 2024. "Time-Lapse Electromagnetic Conductivity Imaging for Soil Salinity Monitoring in Salt-Affected Agricultural Regions" Land 13, no. 2: 225. https://doi.org/10.3390/land13020225
APA StyleEltarabily, M. G., Amer, A., Farzamian, M., Bouksila, F., Elkiki, M., & Selim, T. (2024). Time-Lapse Electromagnetic Conductivity Imaging for Soil Salinity Monitoring in Salt-Affected Agricultural Regions. Land, 13(2), 225. https://doi.org/10.3390/land13020225