How Does Agricultural Land Lease Policy Affect Agricultural Carbon Emission? Evidence of Carbon Reduction Through Decreasing Transaction Costs in the Context of Heterogeneous Efficiency
Abstract
:1. Introduction
2. Theoretical Analysis and Research Hypotheses
2.1. Consumption Choice
- (1)
- There is a large and continuous set of goods , given that consumers have the same utility function, and representative consumer preferences are in the form of CES utility functions as follows: ; where represents the demand for a good ω, there is substitutability between goods such that , with the elasticity of substitution between any two goods being .
- (2)
- The consumption expenditure function of the representative consumer for all goods is , where represents the price of the .
2.2. Agricultural Supply and Carbon Emissions
- (1)
- Agricultural production uses as an input factor and thus causes carbon emissions. Individual farmers produce the required number of inputs and cause carbon emissions , with the standardized unit price of inputs being 1.
- (2)
- Agricultural products are supplied by a large number of farmers with heterogeneous production efficiencies, where represents the production efficiency of each farmer. The heterogeneity of farmers follows the exogenously given initial production efficiency, which is distributed as , where and represent the cumulative probability distributions.
- (3)
- A profit-maximizing farmer follows a marginal cost markup strategy, with elasticity of substitution between commodities and markup ratio .
- (4)
- Factor inputs and outputs are linearly related: , and the more efficient a farmer is, the less factor inputs are required for the same output.
2.3. Farmer Choice and Equilibrium
2.4. Impact of ALL Policy and Research Assumptions
3. Research Design and Data
3.1. Model Establishment
3.2. Description of Variables
3.3. Data Source and Description
4. Results
4.1. Benchmark Regression Results
4.2. Parallel Trend and Dynamic Test
4.3. Placebo Test
4.4. Sensitivity Test
4.5. Robustness Test
5. Discussion
5.1. Mechanism Test
5.2. Heterogeneity Test
5.3. Discussion with Relevant Research
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chaudhari, U.; Bhadoriya, A.; Jani, M.Y.; Sarkar, B. A generalized payment policy for deteriorating items when demand depends on price, stock, and advertisement under carbon tax regulations. Math. Comput. Simul. 2023, 207, 556–574. [Google Scholar] [CrossRef]
- Bhadoriya, A.; Jani, M.Y.; Chaudhari, U. Combined Effect of Carbon Emission, Exchange Scheme, Trade Credit, and Advertisement Efforts in a Buyer’s Inventory Decision. Process Integr. Optim. Sustain. 2022, 6, 1043–1061. [Google Scholar] [CrossRef]
- Wang, S.; Jin, M.; Liu, L.; Cao, F. Impacts of China’s Main Grain-Producing Areas on Agricultural Carbon Emissions: A Sustainable Development Perspective. Sustainability 2024, 16, 4607. [Google Scholar] [CrossRef]
- Li, L.; Khan, U.S.; Guo, C.; Huang, Y.; Xia, X. Non-agricultural labor transfer, factor allocation and farmland yield: Evidence from the part-time peasants in Loess Plateau region of Northwest China. Land Use Policy 2022, 120, 106289. [Google Scholar] [CrossRef]
- Du, Y.; Liu, H.; Huang, H.; Li, X. The carbon emission reduction effect of agricultural policy-Evidence from China. J. Clean. Prod. 2023, 406, 137005. [Google Scholar] [CrossRef]
- Jin, M.; Feng, Y.; Wang, S.; Chen, N.; Cao, F. Can the development of the rural digital economy reduce agricultural carbon emissions? A spatiotemporal empirical study based on China’s provinces. Sci. Total Environ. 2024, 939, 173437. [Google Scholar] [CrossRef]
- Yang, H.; Wang, X.; Bin, P. Agriculture carbon-emission reduction and changing factors behind agricultural eco-efficiency growth in China. J. Clean. Prod. 2022, 334, 130193. [Google Scholar] [CrossRef]
- Cui, X.; Cai, T.; Deng, W.; Zheng, R.; Jiang, Y.; Bao, H. Indicators for evaluating high-quality agricultural development: Empirical study from Yangtze River Economic Belt, China. Soc. Indic. Res. 2022, 164, 1101–1127. [Google Scholar] [CrossRef]
- Xiong, L.; Shah, F.; Wu, W. Environmental and socio-economic performance of intensive farming systems with varying agricultural resource for maize production. Sci. Total Environ. 2022, 850, 158030. [Google Scholar] [CrossRef]
- Ma, W.; Zhou, X.; Boansi, D.; Seyram, G.; Horlu, A.; Owusu, V. Adoption and intensity of agricultural mechanization and their impact on non-farm employment of rural women. World Dev. 2024, 173, 106434. [Google Scholar] [CrossRef]
- Lu, H.; Chen, Y.; Luo, J. Development of green and low-carbon agriculture through grain production agglomeration and agricultural environmental efficiency improvement in China. J. Clean. Prod. 2024, 442, 141128. [Google Scholar] [CrossRef]
- Hu, Y.; Li, B.; Zhang, Z.; Wang, J. Farm size and agricultural technology progress: Evidence from China. J. Rural Stud. 2022, 93, 417–429. [Google Scholar] [CrossRef]
- Deng, O.; Ran, J.; Huang, S.; Duan, J.; Reis, S.; Zhang, J.; Zhu, Y.; Xu, L.; Gu, B. Managing fragmented croplands for environmental and economic benefits in China. Nat. Food 2024, 5, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Qiao, S.; Jiang, Y. The causal mechanism of farmers’ chemical fertilizer reduction: An empirical perspective from farmland transfer-in and digital extension. Front. Sustain. Food Syst. 2023, 7, 1231574. [Google Scholar] [CrossRef]
- Fu, J.; Ding, R.; Zhu, Y.; Du, L.; Shen, S.; Peng, L.; Zou, J.; Hong, Y.; Liang, J.; Wang, K.; et al. Analysis of the spatial-temporal evolution of Green and low carbon utilization efficiency of agricultural land in China and its influencing factors under the goal of carbon neutralization. Environ. Res. 2023, 237, 116881. [Google Scholar] [CrossRef]
- Zou, J.; Shen, L.; Wang, F.; Tang, H.; Zhou, Z. Dual carbon goal and agriculture in China: Exploring key factors influencing farmers’ behavior in adopting low carbon technologies. J. Integr. Agric. 2024, 23, 3215–3233. [Google Scholar] [CrossRef]
- Wu, J.; Wen, X.; Qi, X.; Fang, S.; Xu, C. More Land, Less Pollution? How Land Transfer Affects Fertilizer Application. Int. J. Environ. 2021, 18, 11268. [Google Scholar] [CrossRef]
- Li, B.; Zeng, Q. The effect of land right stability on the application of fertilizer reduction technologies-evidence from large-scale farmers in China. Sustainability 2022, 14, 8059. [Google Scholar] [CrossRef]
- Gao, L.; Sun, D.; Huang, J. Impact of land tenure policy on agricultural investments in China: Evidence from a panel data study. China Econ. Rev. 2017, 45, 244–252. [Google Scholar] [CrossRef]
- Ntakirutimana, L.; Li, F.; Huang, X.; Wang, S.; Yin, C. Green Manure Planting Incentive Measures of Local Authorities and Farmers’ Perceptions of the Utilization of Rotation Fallow for Sustainable Agriculture in Guangxi, China. Sustainability 2019, 11, 2723. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, P.; Hu, H.; Xie, H.; Yu, Z.; Chen, S. Effect of the grain-growing purpose and farm size on the ability of stable land property rights to encourage farmers to apply organic fertilizers. J. Environ. Manag. 2019, 251, 109621. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Ren, J.; Wimmer, S.; Yin, C.; Li, Z.; Xu, C. Incentive mechanism for promoting farmers to plant green manure in China. J. Clean. Prod. 2020, 267, 122197. [Google Scholar] [CrossRef]
- Jia, R.; Lu, Q. Land transfer, collective action and the adoption of soil and water conservation measures in the Loess Plateau of China. Nat. Hazards 2020, 102, 1279–1304. [Google Scholar] [CrossRef]
- Zhou, L.; Lu, H.; Wu, B. Identifying the effects of the stability of farmland transfer management rights on the use of organic fertilizer with different farmland scales and crop types. Front. Environ. Sci. 2020, 10, 1006405. [Google Scholar] [CrossRef]
- Zhang, Q.; Tian, J.; Zheng, J.; Abdullahi, N.M.; Huo, X. How Does Land Tenure Security Affect Farm Succession? Evidence from Apple Growers in China. Land 2022, 11, 1036. [Google Scholar] [CrossRef]
- Tang, M.; Hu, F. How Does Land Urbanization Promote CO2 Emissions Reduction? Evidence From Chinese Prefectural-Level Cities. Front. Environ. Sci. 2021, 9, 766839. [Google Scholar] [CrossRef]
- Adamopoulos, T.; Brandt, L.; Leight, J.; Restuccia, D. Misallocation, selection, and productivity: A quantitative eanalysis with panel data from China. Econometrica 2022, 90, 1261–1282. [Google Scholar] [CrossRef]
- Cheng, C.; Zhang, F.; Shi, J.; Kung, H. What is the relationship between land use and surface water quality? A review and prospects from remote sensing perspective. Environ. Sci. Pollut. 2022, 29, 56887–56907. [Google Scholar] [CrossRef]
- Guo, L.; Song, Y.; Tang, M.; Tang, J.; Dogbe, B.; Su, M.; Li, H. Assessing the Relationship among Land Transfer, Fertilizer Usage, and PM2.5 Pollution: Evidence from Rural China. Int. J. Environ. 2022, 19, 8387. [Google Scholar] [CrossRef]
- Qi, Y.; Chen, X.; Zhang, J.; Li, Y.; Zhu, D. How Do Rising Farmland Costs Affect Fertilizer Use Efficiency? Evidence from Gansu and Jiangsu, China. Land 2022, 11, 1730. [Google Scholar] [CrossRef]
- Tesfaye, K.; Takele, R.; Sapkota, T.B.; Chhetric, A.K.; Solomon, D.; Stirling, C.; Albanito, F. Model comparison and quantification of nitrous oxide emission and mitigation potential from maize and wheat fields at a global scale. Sci. Total Environ. 2021, 782, 146696. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Wu, Q.; Zhu, H. Could the Aging of the Rural Population Boost Green Agricultural Total Factor Productivity? Evidence from China. Sustainability 2024, 16, 6117. [Google Scholar] [CrossRef]
- Yu, Y.; Hu, Y.; Gu, B.; Reis, S.; Yang, L. Reforming smallholder farms to mitigate agricultural pollution. Environ. Sci. Pollut. Res. 2022, 29, 13869–13880. [Google Scholar] [CrossRef] [PubMed]
- Yasmeen, R.; Tao, R.; Shah, W.U.H. The nexuses between carbon emissions, agriculture production efficiency, research and development, and government effectiveness: Evidence from major agriculture-producing countries. Environ. Sci. Pollut. Res. 2022, 29, 52133–52146. [Google Scholar] [CrossRef]
- Chari, A.; Liu, M.E.; Wang, S.; Wang, Y. Property rights, land misallocation, and agricultural efficiency in China. Rev. Econ. Stud. 2021, 88, 1831–1862. [Google Scholar] [CrossRef]
- Jiang, M.; Paudel, K.P.; Mi, Y.; Li, J. Farmland transfer and rural financial structure: Evidence from China. Int. Rev. Financ. Anal. 2023, 90, 102897. [Google Scholar] [CrossRef]
- Song, H.; Li, X.; Xin, L.; Wang, X. Do farmland transfers mitigate farmland abandonment? —A case study of China’s mountainous areas. Habitat Int. 2024, 146, 103023. [Google Scholar] [CrossRef]
- Huo, C.; Chen, L. The impact of land transfer policy on sustainable agricultural development in China. Sci. Rep. 2024, 14, 7064. [Google Scholar] [CrossRef]
- Hu, Y.; Ren, S.; Wang, Y.; Chen, X. Can carbon emission trading scheme achieve energy conservation and emission reduction? Evidence from the industrial sector in China. Energy Econ. 2020, 85, 104590. [Google Scholar] [CrossRef]
- Melitz, M.J. The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry Productivity. Econometrica 2003, 6, 1695–1725. [Google Scholar] [CrossRef]
- Wang, J.; Cramer, G.L.; Wailes, E.J. Production efficiency of Chinese agriculture: Evidence from rural household survey data. Agric. Econ. 1996, 15, 17–28. [Google Scholar]
- Yang, J.; Wang, H.; Jin, S.; Chen, K.; Riedinger, J.; Peng, C. Migration, local off-farm employment, and agricultural production efficiency: Evidence from China. J. Prod. Anal. 2016, 45, 247–259. [Google Scholar] [CrossRef]
- Lewis, W.A. Economic Development with unlimited supply of labor. Manch. Sch. 1954, 22, 139–191. [Google Scholar] [CrossRef]
- Fortson, J.G. HIV/AIDS and fertility. Am. Econ. J. Appl. Econ. 2009, 1, 170–194. [Google Scholar] [CrossRef]
- Lal, R. Carbon emission from farm operations. Environ. Int. 2004, 30, 981–990. [Google Scholar] [CrossRef]
- Tian, Y.; Lautz, S.; Wallis, A.O.; Lambiotte, R. Extracting complements and substitutes from sales data: A network perspective. EPJ Data Sci. 2021, 10, 45. [Google Scholar] [CrossRef]
- Liu, Y.; Zou, L.; Wang, Y. Spatial-temporal characteristics and influencing factors of agricultural eco-efficiency in China in recent 40 years. Land Use Policy 2020, 97, 10479. [Google Scholar] [CrossRef]
- Farooq, U.; Gang, F.; Guan, Z.; Rauf, A.; Chandio, A.A.; Ahsan, F. Exploring the long-run relationship between financial inclusion and agricultural growth: Evidence from Pakistan. Int. J. Emerg. Mark. 2023, 18, 1677–1696. [Google Scholar] [CrossRef]
- Lu, F.; Meng, J.; Cheng, B. How does improving agricultural mechanization affect the green development of agriculture? Evidence from China. J. Clean. Prod. 2024, 472, 143298. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, D.; Wang, H.; Wang, X.; Yu, G.; Zhao, X. An evaluation of China’s agricultural green production: 1978–2017. J. Clean. Prod. 2020, 243, 118483. [Google Scholar] [CrossRef]
- Yang, G.; Li, S.; Wang, H.; Wang, L. Study on agricultural cultivation development layout based on the matching characteristic of water and land resources in North China Plain. Agric. Water Manag. 2022, 259, 107272. [Google Scholar] [CrossRef]
- Chao, P.; Ma, B.; Zhang, C. Poverty alleviation through e-commerce: Village involvement and demonstration policies in rural China. J. Integr. Agric. 2021, 20, 998–1011. [Google Scholar]
- Nunn, N.; Qian, N. The potato’s contribution to population and urbanization: Evidence from a historical experiment. Q. J. Econ. 2011, 126, 593–650. [Google Scholar] [CrossRef]
- Wang, F.; Ge, X. Can low-carbon transition impact employment empirical evidence from low-carbon city pilot policy. China Ind. Econ. 2022, 5, 81–99. (In Chinese) [Google Scholar]
- Jani, M.Y.; Chaudhari, U.; Sarkar, B. How does an industry control a decision support system for a long time? RAIRO-Oper. Res. 2021, 55, 3141–3152. [Google Scholar] [CrossRef]
- Jiang, T. Mediating effects and moderating effeets in causal inference. China Ind. Econ. 2022, 5, 100–120. (In Chinese) [Google Scholar]
- Sun, J.; Zhai, N.; Miao, J.; Mu, H.; Li, W. How do heterogeneous environmental regulations affect the sustainable development of marine green economy? Empirical evidence from China’s coastal areas. Ocean Coast. Manag. 2023, 232, 106448. [Google Scholar] [CrossRef]
- Mohammadi, A.; Rafiee, S.; Jafari, A.; Keyhani, A.; Mousavi-Avval, S.H.; Nonhebel, S. Energy use efficiency and greenhouse gas emissions of farming systems in north Iran. Renew. Sustain. Energy Rev. 2014, 30, 724–773. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.; Zhang, S.; Wang, Y. What could promote farmers to replace chemical fertilizers with organic fertilizers? J. Clean. Prod. 2018, 199, 882–890. [Google Scholar] [CrossRef]
- He, P.; Zhang, J.; Li, W. The role of agricultural green production technologies in improving low-carbon efficiency in China: Necessary but not effective. J. Environ. Manag. 2021, 293, 112837. [Google Scholar] [CrossRef]
- Xie, H.; Zhang, Y.; Choi, Y. Measuring the Cultivated Land Use Efficiency of the Main Grain-Producing Areas in China under the Constraints of Carbon Emissions and Agricultural Nonpoint Source Pollution. Sustainability 2018, 10, 1932. [Google Scholar] [CrossRef]
- Ertunç, E. The Effect of Land Consolidation Projects on Carbon Footprint. Land 2023, 12, 507. [Google Scholar] [CrossRef]
ALL Reduce the ACE | |
---|---|
Wu [17] and Li [18] | ALL reduces the use of chemical fertilizers. |
Gao [19], Ntakirutimana [20], Lu [21], Li [22], and Jia [23] | ALL increases the use of organic fertilizers. |
Zhou [24] | After ALL, the scale of land increases, and new agricultural technologies have been adopted at a higher level. |
Zhang [25] | ALL has improved the efficiency of agricultural mechanization. |
Tang [26] and Adamopoulos [27] | ALL enabled farmers to better match their field management level with the actual cultivated area. |
ALL Increase the ACE | |
Cheng [28] and Guo [29] | For the sake of profit, farmers after ALL apply more fertilizer to increase agricultural yields. |
Li [13] and Qi [30] | After ALL, intensive farming accelerates soil depletion, forcing landowners to use more fertilizers. |
Tesfaye [31] | After ALL, to prevent pests and diseases, landowners use more pesticides. |
Variable Name | Observations | Mean | SD | Min | Max |
---|---|---|---|---|---|
ACE | 480 | 14.947 | 1.023 | 11.899 | 16.404 |
ALL policy | 480 | 0.242 | 0.428 | 0 | 1 |
SL | 480 | 4.111 | 0.428 | 3.040 | 5.625 |
FA | 480 | 2.296 | 0.370 | 0.758 | 3.015 |
DM | 480 | 0.600 | 0.253 | 0.211 | 1.416 |
SA | 480 | 0.523 | 0.086 | 0.342 | 0.746 |
HA | 480 | 2.019 | 0.092 | 1.637 | 2.276 |
RS | 480 | 0.431 | 0.096 | 0.207 | 0.748 |
AE | 480 | 0.582 | 0.159 | 0.135 | 0.988 |
ACI | 480 | −0.147 | 0.265 | −0.678 | 0.564 |
Variable Name | ACE | |
---|---|---|
(1) | (2) | |
ALL policy | −0.103 ** (0.050) | −0.091 ** (0.040) |
Cons_ | 14.972 *** (0.012) | 14.14 *** (1.089) |
Control variable | NO | YES |
Province fixed | YES | YES |
Time fixed | YES | YES |
Observations | 480 | 480 |
0.991 | 0.993 |
Variable Name | ACE | |||||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
ALL policy | −0.095 ** (0.044) | −0.094 ** (0.044) | −0.090 ** (0.041) | −0.089 ** (0.042) | −0.090 ** (0.042) | −0.091 ** (0.040) |
SL | 0.326 ** (0.136) | 0.337 ** (0.134) | 0.374 *** (0.135) | 0.372 *** (0.133) | 0.372 *** (0.133) | 0.391 *** (0.130) |
FA | -- | 0.098 (0.092) | 0.102 (0.089) | 0.103 (0.089) | 0.103 (0.085) | 0.086 (0.085) |
DM | -- | -- | 0.238 * (0.115) | 0.236 * (0.116) | 0.237 * (0.118) | 0.245 ** (0.114) |
SA | -- | -- | -- | 0.107 (0.355) | 0.107 (0.353) | 0.036 (0.334) |
HA | -- | -- | -- | -- | 0.022 (0.406) | −0.452 (0.401) |
RS | -- | -- | -- | -- | -- | −0.539 ** (0.243) |
Cons_ | 13.630 *** (0.557) | 13.360 *** (0.585) | 13.050 *** (0.578) | 13.010 *** (0.602) | 12.960 *** (1.022) | 14.14 *** (1.089) |
Control variable | YES | YES | YES | YES | YES | YES |
Province fixed | YES | YES | YES | YES | YES | YES |
Time fixed | YES | YES | YES | YES | YES | YES |
Observations | 480 | 480 | 480 | 480 | 480 | 480 |
0.992 | 0.992 | 0.993 | 0.993 | 0.993 | 0.993 |
Variable Name | Truncated 5% | Replacing Explanatory Variable | Add L.ACE | PSM-DID | Exclude Other Policy |
---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | |
ALL policy | −0.0756 * (0.038) | −0.101 *** (0.051) | −0.061 *** (0.005) | −0.188 * (0.921) | −0.065 ** (0.035) |
L.ACE | -- | -- | 0.918 *** (0.016) | -- | -- |
D2015 | -- | -- | -- | -- | −0.059 * (0.033) |
Cons_ | 15.364 *** (0.948) | 0.908 * (0.502) | 1.093 *** (0.266) | 14.389 *** (1.049) | 14.192 *** (1.089) |
Control variable | YES | YES | YES | YES | YES |
Province fixed | YES | YES | YES | YES | YES |
Time fixed | YES | YES | YES | YES | YES |
Observations | 432 | 480 | 450 | 426 | 480 |
0.993 | 0.971 | 0.999 | 0.995 | 0.994 |
Variable Name | AE | ACE |
---|---|---|
(1) | (2) | |
ALL policy | −0.088 * (0.051) | -- |
AE | -- | 1.327 *** (0.159) |
Cons_ | 1.055 ** (0.498) | 12.720 *** (0.723) |
Control variable | YES | YES |
Province fixed | YES | YES |
Time fixed | YES | YES |
Observations | 480 | 480 |
0.922 | 0.997 |
Variable Name | North Regions | South Regions | Low-Income Regions | High-Income Regions | Low Intensity of Fertilizer | High Intensity of Fertilizer | Agriculturally Advantaged Regions | Agriculturally Disadvantaged Regions |
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
ALL policy | −0.288 ** (0.130) | −0.240 *** (0.076) | −0.009 (0.089) | −0.277 ** (0.104) | 0.062 (0.072) | −0.351 ** (0.130) | 0.030 (0.029) | −0.155 ** (0.067) |
Cons_ | 13.680 ** (1.636) | 13.680 *** (0.664) | 15.620 ** (1.076) | 14.220 *** (0.732) | 13.850 *** (0.745) | 15.510 *** (1.545) | 16.050 *** (1.063) | 13.210 *** (1.274) |
Control variable | YES | YES | YES | YES | YES | YES | YES | YES |
Province fixed | YES | YES | YES | YES | YES | YES | YES | YES |
Time fixed | YES | YES | YES | YES | YES | YES | YES | YES |
Observations | 240 | 240 | 352 | 144 | 208 | 272 | 208 | 272 |
0.995 | 0.997 | 0.994 | 0.998 | 0.997 | 0.994 | 0.990 | 0.992 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Zeng, B.; Feng, Y.; Cao, F. How Does Agricultural Land Lease Policy Affect Agricultural Carbon Emission? Evidence of Carbon Reduction Through Decreasing Transaction Costs in the Context of Heterogeneous Efficiency. Land 2024, 13, 2192. https://doi.org/10.3390/land13122192
Wang S, Zeng B, Feng Y, Cao F. How Does Agricultural Land Lease Policy Affect Agricultural Carbon Emission? Evidence of Carbon Reduction Through Decreasing Transaction Costs in the Context of Heterogeneous Efficiency. Land. 2024; 13(12):2192. https://doi.org/10.3390/land13122192
Chicago/Turabian StyleWang, Shuokai, Bo Zeng, Yong Feng, and Fangping Cao. 2024. "How Does Agricultural Land Lease Policy Affect Agricultural Carbon Emission? Evidence of Carbon Reduction Through Decreasing Transaction Costs in the Context of Heterogeneous Efficiency" Land 13, no. 12: 2192. https://doi.org/10.3390/land13122192
APA StyleWang, S., Zeng, B., Feng, Y., & Cao, F. (2024). How Does Agricultural Land Lease Policy Affect Agricultural Carbon Emission? Evidence of Carbon Reduction Through Decreasing Transaction Costs in the Context of Heterogeneous Efficiency. Land, 13(12), 2192. https://doi.org/10.3390/land13122192