Identification and Spatiotemporal Evolution Analysis of the Urban–Rural Fringe in Polycentric Cities Based on K-Means Clustering and Multi-Source Data: A Case Study of Chengdu City
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Data Preprocessing
2.2.1. Selection of Key Urban Feature Parameters for Identifying URF and Data Sources
2.2.2. Data Preprocessing
2.3. K-Means Clustering of GeoDa
2.3.1. The Elbow Method
2.3.2. Selection of Normalization Method
2.3.3. The Method for Evaluating Clustering Results
3. Results
3.1. Determination of the Optimal Number of Clusters
3.1.1. Determination of the K-Value
3.1.2. Verification of the K-Value
3.2. Identification of the URF by K-Means Clustering
3.3. Analysis of the Spatiotemporal Evolution of URF and Its Land Use
3.3.1. The Spatiotemporal Evolution of URF
3.3.2. The Spatiotemporal Evolution of Land Use in URF
4. Discussion
4.1. Verification of the URF Identification
4.2. Advantages of K-Means Clustering and Multi-Source Data
4.2.1. Resolving Mono-Source Limitations with Multi-Source Data
4.2.2. Advantages of K-Means Clustering
4.3. Urban–Rural Conflict in URF and Its Formation Mechanisms
4.4. The Application Potential of URF Identification and Spatiotemporal Evolution Analysis
4.5. Limitations and Prospects
5. Conclusions
- The proposed method in this study can reasonably and efficiently identify the URF in polycentric cities.
- Chengdu exhibited a polycentric urban structure with a “main center-subcenter” pattern, with URF areas being closely adjacent to the main center and subcenters, forming an overall ring-shaped wedge pattern.
- Under the influence of multiple factors, including economy, policy, society, and the environment, the URF has developed rapidly and reached a certain scale. The URF in Chengdu has expanded significantly in the northeast–southwest direction from 2010 to 2020. Both the area in the URF transitioning into urban areas and the area of rural areas transitioning into the URF show an increasing and then decreasing trend. Initially dispersed URF areas gradually expanded and connected in clusters. Moreover, there was a significant change in land use within the URF, with cultivated land, woodland, and water bodies being converted into construction land. These changes exhibit characteristics such as a single urban function, scattered distribution of land use types, landscape fragmentation, and complexity.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Monteros, K.; Dall’Orto, V.; Cempini, C. The Formation of the Urban-Rural Fringe Space in the San Cayetano Area: The Transformation of a Peripheral Urban Landscape in Ecuador. Land 2024, 13, 494. [Google Scholar] [CrossRef]
- Le Bivic, C.; Melot, R. Scheduling Urbanization in Rural Municipalities: Local Practices in Land-Use Planning on the Fringes of the Paris Region. Land Use Policy 2020, 99, 105040. [Google Scholar] [CrossRef]
- Xue, X.; Yu, Z.; Zhu, S.; Zheng, Q.; Weston, M.; Wang, K.; Gan, M.; Xu, H. Delineating Urban Boundaries Using Landsat 8 Multispectral Data and VIIRS Nighttime Light Data. Remote Sens. 2018, 10, 799. [Google Scholar] [CrossRef]
- Un Habitat. State of the World’s Cities 2012/2013: Prosperity of Cities; Routledge: London, UK, 2013; ISBN 978-0-203-75617-1. [Google Scholar]
- da Cruz, N.F.; Oh, D.Y.; Choumar, N.B. The Metropolitan Scale. Cities 2020, 100, 102644. [Google Scholar] [CrossRef]
- Scott, A.J.; Carter, C.; Reed, M.R.; Larkham, P.; Adams, D.; Morton, N.; Waters, R.; Collier, D.; Crean, C.; Curzon, R.; et al. Disintegrated Development at the Rural–Urban Fringe: Re-Connecting Spatial Planning Theory and Practice. Prog. Plan. 2013, 83, 1–52. [Google Scholar] [CrossRef]
- Grabowska, W.; Kukulska-Kozieł, A.; Noszczyk, T. Insight into the Spatial Nature of the Urban Sprawl Phenomenon in European Capitals. Land Degrad. Dev. 2024, 35, 4330–4342. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Q.; Blaschke, T.; Zhang, Z.; Liu, Y.; Hu, Y.; Wang, M.; Xu, Z.; Wu, J. Integrating Land Development Size, Pattern, and Density to Identify Urban-Rural Fringe in a Metropolitan Region. Landsc. Ecol. 2020, 35, 2045–2059. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, X. Research on the concept and characteristics of urban fringe areas. J. Qiqihar Teach. Coll. 1996, 4, 72–74. [Google Scholar]
- Geneletti, D.; La Rosa, D.; Spyra, M.; Cortinovis, C. A Review of Approaches and Challenges for Sustainable Planning in Urban Peripheries. Landsc. Urban Plan. 2017, 165, 231–243. [Google Scholar] [CrossRef]
- Pryor, R.J. Defining the Rural. Urban Fringe. Soc. Forces 1968, 47, 202. [Google Scholar] [CrossRef]
- Banzhaf, E.; Anderson, S.; Grandin, G.; Hardiman, R.; Jensen, A.; Jones, L.; Knopp, J.; Levin, G.; Russel, D.; Wu, W.; et al. Urban-Rural Dependencies and Opportunities to Design Nature-Based Solutions for Resilience in Europe and China. Land 2022, 11, 480. [Google Scholar] [CrossRef]
- Kim, M.-J.; Woo, Y.S. Fringe Belts and Urban Morphogenesis in Pittsburgh, Pennsylvania, USA. J. Korean Urban Geogr. Soc. 2013, 39, 135–152. [Google Scholar]
- McDonnell, M.J.; Hahs, A.K. The Use of Gradient Analysis Studies in Advancing Our Understanding of the Ecology of Urbanizing Landscapes: Current Status and Future Directions. Landsc. Ecol 2008, 23, 1143–1155. [Google Scholar] [CrossRef]
- Yang, J.; Dong, J.; Sun, Y.; Zhu, J.; Huang, Y.; Yang, S. A Constraint-Based Approach for Identifying the Urban-Rural Fringe of Polycentric Cities Using Multi-Sourced Data. Int. J. Geogr. Inf. Sci. 2022, 36, 114–136. [Google Scholar] [CrossRef]
- Zhu, J.; Lang, Z.; Yang, J.; Wang, M.; Zheng, J.; Na, J. Integrating Spatial Heterogeneity to Identify the Urban Fringe Area Based on NPP/VIIRS Nighttime Light Data and Dual Spatial Clustering. Remote Sens. 2022, 14, 6126. [Google Scholar] [CrossRef]
- Schneider, A.; Woodcock, C.E. Compact, Dispersed, Fragmented, Extensive? A Comparison of Urban Growth in Twenty-Five Global Cities Using Remotely Sensed Data, Pattern Metrics and Census Information. Urban Stud. 2008, 45, 659–692. [Google Scholar] [CrossRef]
- Altes, W.K.K.; van Rij, E. Planning the Horticultural Sector Managing Greenhouse Sprawl in the Netherlands. Land Use Policy 2013, 31, 486–497. [Google Scholar] [CrossRef]
- Tan, J.; Zheng, Y. Reconsidering the Peri-urban: Perspectives of Planetary Urbanisation and Postsuburbia. Urban Probl. 2022, 29, 74–81. [Google Scholar] [CrossRef]
- Irwin, E.G.; Bockstael, N.E. The Evolution of Urban Sprawl: Evidence of Spatial Heterogeneity and Increasing Land Fragmentation. Proc. Natl. Acad. Sci. USA 2007, 104, 20672–20677. [Google Scholar] [CrossRef]
- Ahani, S.; Dadashpoor, H. A Review of Domains, Approaches, Methods and Indicators in Peri-Urbanization Literature. Habitat Int. 2021, 114, 102387. [Google Scholar] [CrossRef]
- Zeng, T.; Jin, H.; Geng, Z.; Kang, Z.; Zhang, Z. Urban-Rural Fringe Long-Term Sequence Monitoring Based on a Comparative Study on DMSP-OLS and NPP-VIIRS Nighttime Light Data: A Case Study of Shenyang, China. Int. J. Environ. Res. Public Health 2022, 19, 11835. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; He, X.; Zhu, Y. Identification and Evaluation of the Polycentric Urban Structure: An Empirical Analysis Based on Multi-Source Big Data Fusion. Remote Sens. 2022, 14, 2705. [Google Scholar] [CrossRef]
- Lv, Y.; Zheng, X.; Zhou, L.; Zhang, L. Decentralization and Polycentricity: Spatial Changes of Employment in Beijing Metropolitan Area, China. Sustainability 2017, 9, 1880. [Google Scholar] [CrossRef]
- Deng, Y.; Liu, J.; Liu, Y.; Luo, A. Detecting Urban Polycentric Structure from POI Data. ISPRS Int. J. Geo-Inf. 2019, 8, 283. [Google Scholar] [CrossRef]
- Peng, J.; Ma, J.; Yuan, Y. Research Progress and Prospect on the Identification of Urban Fringe. Prog. Geogr. 2014, 33, 1068–1077. [Google Scholar]
- Haase, D.; Nuissl, H. The Urban-to-Rural Gradient of Land Use Change and Impervious Cover: A Long-Term Trajectory for the City of Leipzig. J. Land Use Sci. 2010, 5, 123–141. [Google Scholar] [CrossRef]
- Myers, R.R.; Beegle, J.A. Delineation and Analysis of the Rural-Urban Fringe. Appl. Anthropol. 1947, 6, 14–22. [Google Scholar] [CrossRef]
- Vizzari, M.; Sigura, M. Landscape Sequences along the Urban-Rural-Natural Gradient: A Novel Geospatial Approach for Identification and Analysis. Landsc. Urban Plan. 2015, 140, 42–55. [Google Scholar] [CrossRef]
- Zhang, L.; She, J.; Li, R.; Chen, D. Study on Demarcation of Urban-Rural Fringe Based on Gravity Model. J. Cent. South Univ. For. Technol. 2017, 37, 99–104. [Google Scholar]
- Chang, S.; Jiang, Q.; Wang, Z.; Xu, S.; Jia, M. Extraction and Spatial-Temporal Evolution of Urban Fringes: A Case Study of Changchun in Jilin Province, China. ISPRS Int. J. Geo-Inf. 2018, 7, 241. [Google Scholar] [CrossRef]
- Wan, Y.; Deng, C.; Wu, T.; Jin, R.; Chen, P.; Kou, R. Quantifying the Spatial Integration Patterns of Urban Agglomerations along an Inter-City Gradient. Sustainability 2019, 11, 5000. [Google Scholar] [CrossRef]
- Li, X.; Gong, P.; Zhou, Y.; Wang, J.; Bai, Y.; Chen, B.; Hu, T.; Xiao, Y.; Xu, B.; Yang, J.; et al. Mapping Global Urban Boundaries from the Global Artificial Impervious Area (GAIA) Data. Environ. Res. Lett. 2020, 15, 094044. [Google Scholar] [CrossRef]
- Hu, X.; Qian, Y.; Pickett, S.T.A.; Zhou, W. Urban Mapping Needs Up-to-Date Approaches to Provide Diverse Perspectives of Current Urbanization: A Novel Attempt to Map Urban Areas with Nighttime Light Data. Landsc. Urban Plan. 2020, 195, 103709. [Google Scholar] [CrossRef]
- Ding, W.; Chen, H. Urban-Rural Fringe Identification and Spatial Form Transformation during Rapid Urbanization: A Case Study in Wuhan, China. Build. Environ. 2022, 226, 109697. [Google Scholar] [CrossRef]
- Li, J.; Peng, B.; Liu, S.; Ye, H.; Zhang, Z.; Nie, X. An Accurate Fringe Extraction Model of Small- and Medium-Sized Urban Areas Using Multi-Source Data. Front. Environ. Sci. 2023, 11, 1118953. [Google Scholar] [CrossRef]
- Pénzes, J.; Hegedűs, L.D.; Makhanov, K.; Túri, Z. Changes in the Patterns of Population Distribution and Built-Up Areas of the Rural–Urban Fringe in Post-Socialist Context—A Central European Case Study. Land 2023, 12, 1682. [Google Scholar] [CrossRef]
- Imhoff, M.L.; Zhang, P.; Wolfe, R.E.; Bounoua, L. Remote Sensing of the Urban Heat Island Effect across Biomes in the Continental USA. Remote Sens. Environ. 2010, 114, 504–513. [Google Scholar] [CrossRef]
- Zhou, Y.; Smith, S.J.; Elvidge, C.D.; Zhao, K.; Thomson, A.; Imhoff, M. A Cluster-Based Method to Map Urban Area from DMSP/OLS Nightlights. Remote Sens. Environ. 2014, 147, 173–185. [Google Scholar] [CrossRef]
- Peng, J.; Zhao, S.; Liu, Y.; Tian, L. Identifying the Urban-Rural Fringe Using Wavelet Transform and Kernel Density Estimation: A Case Study in Beijing City, China. Environ. Model. Softw. 2016, 83, 286–302. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, M.; Tan, C.; Li, W. Spatial Recognition of the Urban-Rural Fringe of Beijing Using DMSP/OLS Nighttime Light Data. Remote Sens. 2017, 9, 1141. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, C.; Zhang, H. Improved K-Means Algorithm Based on Density Canopy. Knowl.-Based Syst. 2018, 145, 289–297. [Google Scholar] [CrossRef]
- Feng, Z.; Peng, J.; Wu, J. Using DMSP/OLS Nighttime Light Data and K-Means Method to Identify Urban-Rural Fringe of Megacities. Habitat Int. 2020, 103, 102227. [Google Scholar] [CrossRef]
- Liang, C.; Zeng, J.; Zhang, R.-C.; Wang, Q.-W. Connecting Urban Area with Rural Hinterland: A Stepwise Ecological Security Network Construction Approach in the Urban-Rural Fringe. Ecol. Indic. 2022, 138, 108794. [Google Scholar] [CrossRef]
- Song, X.-P.; Sexton, J.O.; Huang, C.; Channan, S.; Townshend, J.R. Characterizing the Magnitude, Timing and Duration of Urban Growth from Time Series of Landsat-Based Estimates of Impervious Cover. Remote Sens. Environ. 2016, 175, 1–13. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, B.; Song, W.; Liu, H.; Wu, Q.; Shi, K.; Wu, J. A New Approach for Detecting Urban Centers and Their Spatial Structure With Nighttime Light Remote Sensing. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6305–6319. [Google Scholar] [CrossRef]
- Sun, C.; Wu, Z.; Lv, Z.; Yao, N.; Wei, J. Quantifying Different Types of Urban Growth and the Change Dynamic in Guangzhou Using Multi-Temporal Remote Sensing Data. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 409–417. [Google Scholar] [CrossRef]
- Qin, B. City Profile: Chengdu. Cities 2015, 43, 18–27. [Google Scholar] [CrossRef]
- Zhang, M.; Wen, T. The Rise of Chengdu between Geopolitics and Geo-Economics: City-Regional Development under the Belt and Road Initiative and Beyond. Trans. Inst. Br. Geogr. 2022, 47, 971–989. [Google Scholar] [CrossRef]
- Gu, C.; Chen, L.; Ding, R.; Li, Z.; Dai, M. Globalization and Restructuring China’s National Urban Systems. Sci. Geogr. Sin. 2005, 25, 641–654. [Google Scholar]
- Chen, C.; LeGates, R.; Fang, C. From Coordinated to Integrated Urban and Rural Development in China’s Megacity Regions. J. Urban Aff. 2019, 41, 150–169. [Google Scholar] [CrossRef]
- Liu, Y.; He, L.; Wang, J.; Zhang, Y.; Yang, Q. Deep Learning Analysis of Urban Growth Boundaries: An Evaluation of Effectiveness in Mitigating Urban Sprawl in China. J. Urban Plan. Dev. 2024, 150, 04023058. [Google Scholar] [CrossRef]
- Sun, Y.; Fan, H.; Li, M.; Zipf, A. Identifying the City Center Using Human Travel Flows Generated from Location-Based Social Networking Data. Environ. Plan. B-Plan. Des. 2016, 43, 480–498. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, L.; Zhao, S.; Zong, H. Assessing Land-Use Conflict Potential and Its Correlation with LULC Based on the Perspective of Multi-Functionality and Landscape Complexity: The Case of Chengdu, China. Land 2023, 12, 742. [Google Scholar] [CrossRef]
- Ros-Tonen, M.; Pouw, N.; Bavinck, M. Governing Beyond Cities: The Urban-Rural Interface. In Geographies of Urban Governance: Advanced Theories, Methods and Practices; Gupta, J., Pfeffer, K., Verrest, H., Ros-Tonen, M., Eds.; Springer International Publishing: Cham, Switerland, 2015; pp. 85–105. ISBN 978-3-319-21272-2. [Google Scholar]
- Mustak, S.; Baghmar, N.K.; Srivastava, P.K.; Singh, S.K.; Binolakar, R. Delineation and Classification of Rural-Urban Fringe Using Geospatial Technique and Onboard DMSP-Operational Linescan System. Geocarto Int. 2018, 33, 375–396. [Google Scholar] [CrossRef]
- Cao, Y.; Li, G.; Cao, Y.; Wang, J.; Fang, X.; Zhou, L.; Liu, Y. Distinct Types of Restructuring Scenarios for Rural Settlements in a Heterogeneous Rural Landscape: Application of a Clustering Approach and Ecological Niche Modeling. Habitat Int. 2020, 104, 102248. [Google Scholar] [CrossRef]
- Li, G.; Cao, Y.; He, Z.; He, J.; Cao, Y.; Wang, J.; Fang, X. Understanding the Diversity of Urban–Rural Fringe Development in a Fast Urbanizing Region of China. Remote Sens. 2021, 13, 2373. [Google Scholar] [CrossRef]
- Sun, X.; Liu, X.; Zhou, Y. Delineating Peri-Urban Areas Using Multi-Source Geo-Data: A Neural Network Approach and SHAP Explanation. Remote Sens. 2023, 15, 4106. [Google Scholar] [CrossRef]
- Arthur, D.; Vassilvitskii, S. K-Means plus plus: The Advantages of Careful Seeding. In Proceedings of the Eighteenth Annual Acm-Siam Symposium on Discrete Algorithms, New Orleans, LA, USA, 7–9 January 2007; Siam: Philadelphia, PA, USA, 2007; pp. 1027–1035. [Google Scholar]
- Everitt, B.S.; Landau, S.; Leese, M.; Stahl, D. An Introduction to Classification and Clustering; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Xie, Z.; Ye, X.; Zheng, Z.; Li, D.; Sun, L.; Li, R.; Benya, S. Modeling Polycentric Urbanization Using Multisource Big Geospatial Data. Remote Sens. 2019, 11, 310. [Google Scholar] [CrossRef]
- Miao, J.T. Planning Particularities: Reinterpreting Urban Planning in China with the Case of Chengdu. Plan. Theory Pract. 2019, 20, 512–536. [Google Scholar] [CrossRef]
- Wu, Z.; Zheng, X.; Chen, Y.; Huang, S.; Duan, C.; Hu, W. Regional Differences and Dynamic Evolution of High-Quality Development in Service Industry: A Case Study of the Chengdu-Chongqing Economic Circle. PLoS ONE 2024, 19, e0297755. [Google Scholar] [CrossRef]
- Li, W.; Kang, J.; Wang, Y. The Dynamic Impact of Landscape Urbanization on Ecosystem Service Multifunctionality in the Chengdu–Chongqing Urban Agglomeration: A Panel VAR Approach. Land Degrad. Dev. 2023, 34, 5207–5223. [Google Scholar] [CrossRef]
- Dadashpoor, H.; Azizi, P.; Moghadasi, M. Land Use Change, Urbanization, and Change in Landscape Pattern in a Metropolitan Area. Sci. Total Environ. 2019, 655, 707–719. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Dong, S.; Li, Y.; Wang, Y.; Li, Z.; Li, F. Effects of Land Use Change on Ecosystem Services in the China–Mongolia–Russia Economic Corridor. J. Clean. Prod. 2022, 360, 132175. [Google Scholar] [CrossRef]
- Bagheri, B.; Tousi, S.N. An Explanation of Urban Sprawl Phenomenon in Shiraz Metropolitan Area (SMA). Cities 2018, 73, 71–90. [Google Scholar] [CrossRef]
- Ye, Y.; LeGates, R.; Qin, B. Coordinated Urban-Rural Development Planning in China The Chengdu Model. J. Am. Plann. Assoc. 2013, 79, 125–137. [Google Scholar] [CrossRef]
- Cox, K.R. The Problem of Metropolitan Governance and the Politics of Scale. Reg. Stud. 2010, 44, 215–227. [Google Scholar] [CrossRef]
- Long, Y.; Liu, X.; Luo, S.; Luo, T.; Hu, S.; Zheng, Y.; Shao, J.; Liu, X. Evolution and Prediction of Urban Fringe Areas Based on Logistic-CA-Markov Models: The Case of Wuhan City. Land 2023, 12, 1874. [Google Scholar] [CrossRef]
- Zikirya, B.; He, X.; Li, M.; Zhou, C. Urban Food Takeaway Vitality: A New Technique to Assess Urban Vitality. Int. J. Environ. Res. Public Health 2021, 18, 3578. [Google Scholar] [CrossRef]
- Peng, J.; Hu, Y.; Liu, Y.; Ma, J.; Zhao, S. A New Approach for Urban-Rural Fringe Identification: Integrating Impervious Surface Area and Spatial Continuous Wavelet Transform. Landsc. Urban Plan. 2018, 175, 72–79. [Google Scholar] [CrossRef]
- Cao, H.; Jiang, W.; Chen, J.; Chen, C.; He, J.; Liu, C. Multi-Dimensional Identification and Feature Analysis of Nanjing’s Urban-Rural Fringe. J. Nat. Resour. 2023, 38, 795–807. [Google Scholar] [CrossRef]
- Liu, J.; Wang, H.; Hui, L.; Tang, B.; Zhang, L.; Jiao, L. Identifying the Coupling Coordination Relationship between Urbanization and Ecosystem Services Supply–Demand and Its Driving Forces: Case Study in Shaanxi Province, China. Remote Sens. 2024, 16, 2383. [Google Scholar] [CrossRef]
- Zasada, I. Multifunctional Peri-Urban Agriculture-A Review of Societal Demands and the Provision of Goods and Services by Farming. Land Use Policy 2011, 28, 639–648. [Google Scholar] [CrossRef]
- Zhu, J.; Lang, Z.; Wang, S.; Zhu, M.; Na, J.; Zheng, J. Using Dual Spatial Clustering Models for Urban Fringe Areas Extraction Based on Night-Time Light Data: Comparison of NPP/VIIRS, Luojia 1-01, and NASA’s Black Marble. ISPRS Int. J. Geo-Inf. 2023, 12, 408. [Google Scholar] [CrossRef]
- Popescu, C. The Economy of a Regional Metropolis. Case-Study: Iasi, Romania. Transylv. Rev. Adm. Sci. 2011, 7, 255–276. [Google Scholar]
- Gomes, E.; Banos, A.; Abrantes, P.; Rocha, J.; Kristensen, S.B.P.; Busck, A. Agricultural Land Fragmentation Analysis in a Peri-Urban Context: From the Past into the Future. Ecol. Indic. 2019, 97, 380–388. [Google Scholar] [CrossRef]
- Oueslati, W.; Salanié, J.; Wu, J. Urbanization and Agricultural Productivity: Some Lessons from European Cities. J. Econ. Geogr. 2019, 19, 225–249. [Google Scholar] [CrossRef]
- Pirro, C.; Anguelovski, I. Farming the Urban Fringes of Barcelona: Competing Visions of Nature and the Contestation of a Partial Sustainability Fix. Geoforum 2017, 82, 53–65. [Google Scholar] [CrossRef]
- Paasi, A. Regional Planning and the Mobilization of ‘Regional Identity’: From Bounded Spaces to Relational Complexity. Reg. Stud. 2013, 47, 1206–1219. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, F.; Li, Y. Key Issues of Land Use in China and Implications for Policy Making. Land Use Policy 2014, 40, 6–12. [Google Scholar] [CrossRef]
- Chen, Y.; Ni, X.; Liang, Y. The Influence of External Environment Factors on Farmers’ Willingness to Withdraw from Rural Homesteads: Evidence from Wuhan and Suizhou City in Central China. Land 2022, 11, 1602. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Q.; Jiao, F. Rural Homestead Reform in China: Unveiling Urbanization Dynamics and Lessons for Sustainable Development. Front. Sustain. 2024, 5, 1391612. [Google Scholar] [CrossRef]
- Gallent, N.; Shaw, D. Spatial Planning, Area Action Plans and the Rural-Urban Fringe. J. Environ. Plan. Manag. 2007, 50, 617–638. [Google Scholar] [CrossRef]
- Wu, Y.; Mo, Z.; Peng, Y.; Skitmore, M. Market-Driven Land Nationalization in China: A New System for the Capitalization of Rural Homesteads. Land Use Policy 2018, 70, 559–569. [Google Scholar] [CrossRef]
- Peng, C. Analysis of the Influence of Peasants’ Social Stratum on Their Choice of Monetary Compensation Model for Leaving Their Rural Homestead: Based on Survey Data of Farmers in Anhui Province. Comp. Econ. Soc. Syst 2013, 6, 133–146. [Google Scholar]
- Gao, J.; Song, G.; Liu, S. Factors Influencing Farmers’ Willingness and Behavior Choices to Withdraw from Rural Homesteads in China. Growth Chang. 2022, 53, 112–131. [Google Scholar] [CrossRef]
- van Rensburg, J.D.J.; Campbell, M.M. The Management of Urban Sprawl by Applying an Urban Edge Strategy. Urban Forum 2012, 23, 61–72. [Google Scholar] [CrossRef]
- Shi, W.; Tian, J.; Namaiti, A.; Xing, X. Spatial-Temporal Evolution and Driving Factors of the Coupling Coordination between Urbanization and Urban Resilience: A Case Study of the 167 Counties in Hebei Province. Int. J. Environ. Res. Public. Health 2022, 19, 13128. [Google Scholar] [CrossRef]
- Salet, W.; Vermeulen, R.; Savini, F.; Dembski, S. Planning for the New European Metropolis: Functions, Politics, and Symbols. Plan. Theory Pract. 2015, 16, 251–254. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, S. Polycentric Development and the Role of Urban Polycentric Planning in China’s Mega Cities: An Examination of Beijing’s Metropolitan Area. Sustainability 2018, 10, 1588. [Google Scholar] [CrossRef]
- Ning, X.; Zhang, X.; Zhang, X.; Wang, H.; Zhang, W. A Method for Assessing Urban Ecological Resilience and Identifying Its Critical Distance Belt Based on the “Source-Sink” Theory: A Case Study of Beijing. Remote Sens. 2023, 15, 2502. [Google Scholar] [CrossRef]
- Ni, L.; Li, J.; Namaiti, A. Classification and Planning Strategies of Multidimensional Resilience Units for Urban Waterlogging: A Case Study of the Old City District in Shijiazhuang, China. Sustainability 2024, 16, 2717. [Google Scholar] [CrossRef]
Data Type | Date | Resolution/m | Data Sources |
---|---|---|---|
CNLUCC data | 2010–2020 | 30 | http://www.resdc.cn, accessed on 15 October 2023 |
POI data | 2012–2020 | - | http://lbs.amap.com, accessed on 15 October 2023 |
Population density | 2010–2020 | 100 | https://www.worldpop.org/, accessed on 15 October 2023 |
NPP-VIIRS Night-time light data | 2010–2020 | 500 | https://www.earth-system-science-data.net/, accessed on 15 October 2023 |
GDP | 2010–2019 | 1000 | https://www.resdc.cn/, accessed on 15 October 2023 |
Administrative boundary | 2023 | - | https://www.ngcc.cn/, accessed on 15 October 2023 |
First-Level Classification and Definition | Second-Level Classification | Third-Level Definition |
---|---|---|
1 Cultivated land: Refers to the land where crops are grown, including mature cultivated land, newly opened wasteland, fallow land, rotational land, and grassland rotation land; agricultural fruits, mulberry, and agricultural forestry land mainly planted with crops; flats and tidal flats cultivated for more than three years. | 11 Paddy Fields 12 Drylands | - |
2 Woodland: Refers to land used for forestry purposes, including areas where trees, shrubs, bamboo, and coastal mangroves are grown. | 21 Woodland 22 Shrubland 23 Sparse Woodland 24 Other Woodland | - |
3 Grassland: Refers to areas dominated by herbaceous vegetation with a coverage of more than 5%, including shrub grasslands primarily used for grazing and woodland grasslands with a canopy density of less than 10%. | 31 High-coverage Grassland 32 Medium-Coverage Grassland 33 Low Coverage Grassland | - |
4 Water Bodies: Refers to natural inland water areas and land used for water conservancy facilities. | 41 Canals and Ditches 42 Lakes 43 Reservoirs and Ponds 44 Glaciers and Permanent Snow 45 Tidal Flats 46 Beaches | - |
5 Construction Land (urban and rural areas, industrial and mining areas, residential land): Refers to land used for industrial, mining, transportation, and other purposes outside of urban and rural residential areas. | 51 Town 52 Rural Settlement 53 Land for Industrial and Commercial Construction | 51: Land used for built-up areas of large, medium, and small cities, as well as towns and counties above the county level. 52: Rural residential points that are independent of urban and town areas. 53: Land used for factories, mines, large industrial parks, oil fields, salt fields, quarries, transportation roads, airports, and special purpose areas. |
6 Unused Land: Land that is not currently utilized, including land that is difficult to utilize. | 61 Sandy Land 62 Gobi 63 Saline-Alkali Land 64 Swamps 65 Bare Land 66 Rocky and Gravel Land 67 Other Unused Land | - |
K-Value | BSS/TSS of Z-Score Normalization | BSS/TSS of Median Absolute Deviation |
---|---|---|
3 | 0.62 | 0.66 |
4 | 0.70 | 0.71 |
5 | 0.73 | 0.74 |
K-Value | BSS/TSS | ||
---|---|---|---|
2010 | 2015 | 2020 | |
3 | 0.66 | 0.61 | 0.63 |
4 | 0.71 | 0.68 | 0.70 |
5 | 0.74 | 0.73 | 0.74 |
K = 5 | 2010 | 2015 | 2020 | |||
---|---|---|---|---|---|---|
Area (km2) | Area Ratio (%) | Area (km2) | Area Ratio (%) | Area (km2) | Area Ratio (%) | |
Urban–Rural | 868 | 6.28% | 1000 | 7.23% | 1199 | 8.67% |
Urban | 288 | 2.08% | 480 | 3.47% | 566 | 4.09% |
Rural | 12,672 | 91.64% | 12,348 | 89.30% | 12,063 | 87.24% |
Stage | 2010–2015 | 2015–2020 | |||
---|---|---|---|---|---|
Region | GA (km2) | AAGR (%) | GA (km2) | AAGR (%) | |
Urban | 192 | 10.76% | 86 | 3.35% | |
Urban–rural | 132 | 2.87% | 199 | 3.70% | |
Rural | −324 | −0.51% | −285 | −0.47% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, D.; Tian, J.; Zhang, J.; Zeng, J.; Namaiti, A. Identification and Spatiotemporal Evolution Analysis of the Urban–Rural Fringe in Polycentric Cities Based on K-Means Clustering and Multi-Source Data: A Case Study of Chengdu City. Land 2024, 13, 1727. https://doi.org/10.3390/land13111727
Ji D, Tian J, Zhang J, Zeng J, Namaiti A. Identification and Spatiotemporal Evolution Analysis of the Urban–Rural Fringe in Polycentric Cities Based on K-Means Clustering and Multi-Source Data: A Case Study of Chengdu City. Land. 2024; 13(11):1727. https://doi.org/10.3390/land13111727
Chicago/Turabian StyleJi, Dan, Jian Tian, Jiahao Zhang, Jian Zeng, and Aihemaiti Namaiti. 2024. "Identification and Spatiotemporal Evolution Analysis of the Urban–Rural Fringe in Polycentric Cities Based on K-Means Clustering and Multi-Source Data: A Case Study of Chengdu City" Land 13, no. 11: 1727. https://doi.org/10.3390/land13111727
APA StyleJi, D., Tian, J., Zhang, J., Zeng, J., & Namaiti, A. (2024). Identification and Spatiotemporal Evolution Analysis of the Urban–Rural Fringe in Polycentric Cities Based on K-Means Clustering and Multi-Source Data: A Case Study of Chengdu City. Land, 13(11), 1727. https://doi.org/10.3390/land13111727