Soil Degradation and Contamination Due to Armed Conflict in Ukraine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Investigation Design
2.2. Description of Sites and Soil Sampling
2.3. Soil Sample Characterization
2.3.1. Soil Sample Preparation
2.3.2. Determination of Soil Agrochemical Indicators and Contents of Microelements and Heavy Metals (HMs)
2.3.3. Determination of the Granulometric Composition of the Soil
2.3.4. Microbiological Studies of Soil and Emission of CO2
- Microbiological Study of Soil Microorganisms
- Direction of the Soil Microbiological Process
- Diversity of Soil Microbiomes
- Content of Total Microbial Biomass (Cmic)
- Emission of CO2
2.3.5. Soil Toxicity
2.3.6. Statistical Analysis of Data
3. Results and Discussion
3.1. Destroyed Heavy Armored Vehicles Act as a Factor Influencing Soil Ecosystems
3.2. Effects on Soil Chemistry
3.3. Changes in the Granulometric Composition of the Soil
3.4. Changes in the Microbiological Status of the Soil
3.5. Assessment of Soil Phytotoxicity and Changes in the Soil Mesofauna
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qayyum, U.; Anjum, S.; Sabir, S. Armed Conflict, Militarization and Ecological Footprint: Empirical Evidence from South Asia. J. Clean. Prod. 2021, 281, 125299. [Google Scholar] [CrossRef]
- Pereira, P.; Bašić, F.; Bogunovic, I.; Barcelo, D. Russian-Ukrainian War Impacts the Total Environment. Sci. Total Environ. 2022, 837, 155865. [Google Scholar] [CrossRef] [PubMed]
- Solokha, M.; Pereira, P.; Symochko, L.; Vynokurova, N.; Demyanyuk, O.; Sementsova, K.; Inacio, M.; Barcelo, D. Russian-Ukrainian War Impacts on the Environment. Evidence from the Field on Soil Properties and Remote Sensing. Sci. Total Environ. 2023, 902, 166122. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, P.R.; Medhi, H.; Bhattacharyya, K.G.; Hussain, C.M. Severe Deterioration in Food-Energy-Ecosystem Nexus Due to Ongoing Russia-Ukraine War: A Critical Review. Sci. Total Environ. 2023, 902, 166131. [Google Scholar] [CrossRef] [PubMed]
- Baumann, M.; Kuemmerle, T. The Impacts of Warfare and Armed Conflict on Land Systems. J. Land Use Sci. 2016, 11, 672–688. [Google Scholar] [CrossRef]
- Lawrence, M.J.; Stemberger, H.L.J.; Zolderdo, A.J.; Struthers, D.P.; Cooke, S.J. The Effects of Modern War and Military Activities on Biodiversity and the Environment. Environ. Rev. 2015, 23, 443–460. [Google Scholar] [CrossRef]
- Murillo-Sandoval, P.J.; Gjerdseth, E.; Correa-Ayram, C.; Wrathall, D.; Van Den Hoek, J.; Dávalos, L.M.; Kennedy, R. No Peace for the Forest: Rapid, Widespread Land Changes in the Andes-Amazon Region Following the Colombian Civil War. Glob. Environ. Chang. 2021, 69, 102283. [Google Scholar] [CrossRef]
- Broomandi, P.; Guney, M.; Kim, J.R.; Karaca, F. Soil Contamination in Areas Impacted by Military Activities: A Critical Review. Sustainability 2020, 12, 9002. [Google Scholar] [CrossRef]
- Baliuk, S.A.; Kucher, A.V.; Solokha, M.O.; Solovei, V.B.; Smirnova, K.B.; Momot, H.F.; Levin, A.Y. Impact of Armed Aggression and Hostilities on the Current State of the Soil Cover, Assessment of Damage and Losses, Restoration Measures: Scientific Report; Brovin: Kharkiv, Ukraine, 2022; 102p. [Google Scholar]
- Shumilova, O.; Tockner, K.; Sukhodolov, A.; Khilchevskyi, V.; De Meester, L.; Stepanenko, S.; Trokhymenko, G.; Hernández-Agüero, J.A.; Gleick, P. Impact of the Russia–Ukraine Armed Conflict on Water Resources and Water Infrastructure. Nat. Sustain. 2023, 6, 578–586. [Google Scholar] [CrossRef]
- Xenarios, S. Water at Time of War. Nat. Sustain. 2023, 6, 485–486. [Google Scholar] [CrossRef]
- Rawtani, D.; Gupta, G.; Khatri, N.; Rao, P.K.; Hussain, C.M. Environmental Damages Due to War in Ukraine: A Perspective. Sci. Total Environ. 2022, 850, 157932. [Google Scholar] [CrossRef] [PubMed]
- Solomon, N.; Birhane, E.; Gordon, C.; Haile, M.; Taheri, F.; Azadi, H.; Scheffran, J. Environmental Impacts and Causes of Conflict in the Horn of Africa: A Review. Earth-Sci. Rev. 2018, 177, 284–290. [Google Scholar] [CrossRef]
- Saxena, A. Deteriorating Environmental Quality with Special Reference to War and Its Impact on Climate Change. Natl. Acad. Sci. Lett. 2024, 47, 447–450. [Google Scholar] [CrossRef] [PubMed]
- Brown, O.; Froggatt, A.; Gozak, N.; Katser-Buchkovska, N.; Lutsevych, O. The Consequences of Russia’s War on Ukraine for Climate Action, Food Supply and Energy Security; Royal Institute of International Affairs: London, UK, 2023. [Google Scholar]
- Appiah-Otoo, I.; Chen, X. Russian-Ukrainian War Degrades the Total Environment. Lett. Spat. Resour. Sci. 2023, 16, 32. [Google Scholar] [CrossRef]
- Hupy, J. The Environmental Footprint of War. Environ. Hist. 2008, 14, 405–421. [Google Scholar] [CrossRef]
- Jorgenson, A.K.; Clark, B.; Givens, J.E. The Environmental Impacts of Militarization in Comparative Perspective: An Overlooked Relationship. Nat. Cult. 2012, 7, 314–337. [Google Scholar] [CrossRef]
- Timeline of 20th and 21st Century Wars. Available online: https://www.iwm.org.uk/history/timeline-of-20th-and-21st-century-wars (accessed on 1 January 2024).
- Curchoe, C.L.; Chang, T.A.; Trolice, M.P.; Telfer, E.E.; Quaas, A.M.; Kearns, W.G.; Stern, J.E.; Albertini, D.F. Protecting Life in a Time of War. J. Assist. Reprod. Genet. 2022, 39, 555–557. [Google Scholar] [CrossRef]
- Pereira, P.; Zhao, W.; Symochko, L.; Inacio, M.; Bogunovic, I.; Barcelo, D. The Russian-Ukrainian Armed Conflict Will Push Back the Sustainable Development Goals. Geogr. Sustain. 2022, 3, 277–287. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils: Rome; FAO and ITPS; Status of the World’s Soil Resources (SWSR): Rome, Italy, 2015.
- Gomiero, T. Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge. Sustainability 2016, 8, 281. [Google Scholar] [CrossRef]
- Lang, T.; McKee, M. The Reinvasion of Ukraine Threatens Global Food Supplies. BMJ 2022, 376, o676. [Google Scholar] [CrossRef]
- Kemmerling, B.; Schetter, C.; Wirkus, L. The Logics of War and Food (in)Security. Glob. Food Secur. 2022, 33, 100634. [Google Scholar] [CrossRef]
- Ben Hassen, T.; El Bilali, H. Impacts of the Russia-Ukraine War on Global Food Security: Towards More Sustainable and Resilient Food Systems? Foods 2022, 11, 2301. [Google Scholar] [CrossRef] [PubMed]
- Pichtel, J. Distribution and Fate of Military Explosives and Propellants in Soil: A Review. Appl. Environ. Soil Sci. 2012, 2012, 617236. [Google Scholar] [CrossRef]
- Shukla, S.; Mbingwa, G.; Khanna, S.; Dalal, J.; Sankhyan, D.; Malik, A.; Badhwar, N. Environment and Health Hazards Due to Military Metal Pollution: A Review. Environ. Nanotechnol. Monit. Manag. 2023, 20, 100857. [Google Scholar] [CrossRef]
- Kucher, A. Methodology for assessing damages and losses caused by the armed aggression to the land fund and soils: Problems and directions of improvement. J. Innov. Sustain. 2022, 6, 10. [Google Scholar] [CrossRef]
- Zaitsev, Y.; Hryshchenko, O.; Romanova, S.; Zaitseva, I. Influence of Combat Actions on the Content of Gross Forms of Heavy Metals in the Soils of Sumy and Okhtyrka Districts of Sumy Region. Agroecol. J. 2022, 3, 136–149. [Google Scholar] [CrossRef]
- Splodytel, A.; Holubtsov, O.; Chumachenko, S.; Sorokina, L. The Impact of Russia’s War against Ukraine on the State of Ukrainian Soils. Kyiv: Public organization “Center for Environmental Initiatives “Ecoaction”. 2023. Available online: https://en.ecoaction.org.ua/wp-content/uploads/2023/05/impact-on-soil-russian-war.pdf (accessed on 1 January 2024).
- Bonchkovskyi, O.S.; Ostapenko, P.O.; Shvaiko, V.M.; Bonchkovskyi, A.S. Remote Sensing as a Key Tool for Assessing War-Induced Damage to Soil Cover in Ukraine (the Case Study of Kyinska Territorial Hromada). J. Geol. Geogr. Geoecol. 2023, 32, 474–487. [Google Scholar] [CrossRef]
- Kulish, I.M. A Mini-Review of the Problem of Pollution of the Territories of Ukraine as a Result of Hostilities. Mod. Concepts Dev. Agron. 2023, 13, 000812. [Google Scholar] [CrossRef]
- Stadler, T.; Temesi, Á.; Lakner, Z. Soil Chemical Pollution and Military Actions: A Bibliometric Analysis. Sustainability 2022, 14, 7138. [Google Scholar] [CrossRef]
- Francis, R.A.; Krishnamurthy, K. Human Conflict and Ecosystem Services: Finding the Environmental Price of Warfare. International Affairs. Int. Aff. 2014, 90, 853–869. [Google Scholar] [CrossRef]
- Darbyshire, E.; Weir, D. Environmental Dimensions during and after the Nagorno-Karabakh Conflict of 2020. Integr. Environ. Assess. Manag. 2023, 19, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Zheng, F.; Xiao, C.; Feng, Z. Impact of Armed Conflict on Land Use and Land Cover Changes in Global Border Areas. Land Degrad. Dev. 2023, 34, 873–884. [Google Scholar] [CrossRef]
- Alhasan, M.; Lakmes, A.; Alobaidy, M.G.; AlHaeek, S.; Assaf, M.; Dawson, L.; Pirrie, D.; Abdeldayem, Z.; Bridge, J. A Baseline Survey of Potentially Toxic Elements in the Soil of North-West Syria Following a Decade of Conflict. Environ. Sci. Adv. 2023, 2, 886–897. [Google Scholar] [CrossRef]
- Gorecki, S.; Nesslany, F.; Hubé, D.; Mullot, J.-U.; Vasseur, P.; Marchioni, E.; Camel, V.; Noël, L.; Le Bizec, B.; Guérin, T.; et al. Human Health Risks Related to the Consumption of Foodstuffs of Plant and Animal Origin Produced on a Site Polluted by Chemical Munitions of the First World War. Sci. Total Environ. 2017, 599–600, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Symochko, L.; Pereira, P.; Demyanyuk, O.; Coelho Pinheiro, M.N.; Barcelo, D. Resistome in a Changing Environment: Hotspots and Vectors of Spreading with a Focus on the Russian-Ukrainian War. Heliyon 2024, 10, e32716. [Google Scholar] [CrossRef]
- Perkins, D.B.; Haws, N.W.; Jawitz, J.W.; Das, B.S.; Rao, P.S.C. Soil Hydraulic Properties as Ecological Indicators in Forested Watersheds Impacted by Mechanized Military Training. Ecol. Indic. 2007, 7, 589–597. [Google Scholar] [CrossRef]
- Certini, G.; Scalenghe, R.; Woods, W.I. The Impact of Warfare on the Soil Environment. Earth-Sci. Rev. 2013, 127, 1–15. [Google Scholar] [CrossRef]
- Schwenk, M. Chemical Warfare Agents. Classes and Targets. Toxicol. Lett. 2018, 293, 253–263. [Google Scholar] [CrossRef]
- Fayiga, A.O. Remediation of Inorganic and Organic Contaminants in Military Ranges. Environ. Chem. 2019, 16, 81. [Google Scholar] [CrossRef]
- Harada, K.H.; Soleman, S.R.; Ang, J.S.M.; Trzcinski, A.P. Conflict-Related Environmental Damages on Health: Lessons Learned from the Past Wars and Ongoing Russian Invasion of Ukraine. Environ. Health Prev. Med. 2022, 27, 35. [Google Scholar] [CrossRef]
- Zwijnenburg, W.; Hochhauser, D.; Dewachi, O.; Sullivan, R.; Nguyen, V.-K. Solving the Jigsaw of Conflict-Related Environmental Damage: Utilizing Open-Source Analysis to Improve Research into Environmental Health Risks. J. Public Health 2020, 42, e352–e360. [Google Scholar] [CrossRef] [PubMed]
- Tešan Tomić, N.; Smiljanić, S.; Jović, M.; Gligorić, M.; Povrenović, D.; Došić, A. Examining the Effects of the Destroying Ammunition, Mines and Explosive Devices on the Presence of Heavy Metals in Soil of Open Detonation Pit; Part 2: Determination of Heavy Metal Fractions. Water Air Soil Pollut. 2018, 229, 303. [Google Scholar] [CrossRef]
- Fernandez-Lopez, C.; Posada-Baquero, R.; Ortega-Calvo, J.-J. Nature-Based Approaches to Reducing the Environmental Risk of Organic Contaminants Resulting from Military Activities. Sci. Total Environ. 2022, 843, 157007. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, S.; Chauhan, S.; D’Cruz, R.; Faruqi, S.; Singh, K.K.; Varma, S.; Singh, M.; Karthik, V. Chemical Warfare Agents. Environ. Toxicol. Pharmacol. 2008, 26, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Tovar-Sánchez, E.; Hernández-Plata, I.; Martínez, M.S.; Valencia-Cuevas, L.; Galante, P.M. Heavy Metal Pollution as a Biodiversity Threat. In Heavy Metals; Saleh, H.E.-D.M., Aglan, R.F., Eds.; InTech: Houston, TX, USA, 2018; ISBN 978-1-78923-360-5. [Google Scholar]
- Skalny, A.V.; Aschner, M.; Bobrovnitsky, I.P.; Chen, P.; Tsatsakis, A.; Paoliello, M.M.B.; Buha Djordevic, A.; Tinkov, A.A. Environmental and Health Hazards of Military Metal Pollution. Environ. Res. 2021, 201, 111568. [Google Scholar] [CrossRef]
- Singh, R.; Ahirwar, N.K.; Tiwari, J.; Pathak, J. Review on Sources and Effect of Heavy Metal in Soil: Its Bioremediation. Int. J. Res. Appl. Nat. Soc. Sci. 2018, 8, 1–22. [Google Scholar]
- Kicińska, A.; Pomykała, R.; Izquierdo-Diaz, M. Changes in Soil pH and Mobility of Heavy Metals in Contaminated Soils. Eur. J. Soil Sci. 2022, 73, e13203. [Google Scholar] [CrossRef]
- Kumar, D.; Malik, S.; Rani, R.; Kumar, R.; Duhan, J.S. Behavior, Risk, and Bioremediation Potential of Heavy Metals/Metalloids in the Soil System. Rend. Lincei Sci. Fis. Nat. 2023, 34, 809–831. [Google Scholar] [CrossRef]
- Panz, K.; Miksch, K.; Sójka, T. Synergetic Toxic Effect of an Explosive Material Mixture in Soil. Bull. Environ. Contam. Toxicol. 2013, 91, 555–559. [Google Scholar] [CrossRef]
- Wu, Y.; Song, Q.; Wu, J.; Zhou, J.; Zhou, L.; Wu, W. Field Study on the Soil Bacterial Associations to Combined Contamination with Heavy Metals and Organic Contaminants. Sci. Total Environ. 2021, 778, 146282. [Google Scholar] [CrossRef] [PubMed]
- Yao, K.; Cai, A.; Han, J.; Che, R.; Hao, J.; Wang, F.; Ye, M.; Jiang, X. The Characteristics and Metabolic Potentials of the Soil Bacterial Community of Two Typical Military Demolition Ranges in China. Sci. Total Environ. 2023, 874, 162562. [Google Scholar] [CrossRef] [PubMed]
- Pal, Y.; Mayilraj, S.; Krishnamurthi, S. Exploring the Distinct Distribution of Archaeal Communities in Sites Contaminated with Explosives. Biomolecules 2022, 12, 489. [Google Scholar] [CrossRef] [PubMed]
- Elgh Dalgren, K.; Waara, S.; Düker, A.; Von Kronhelm, T.; Van Hees, P.A.W. Anaerobic Bioremediation of a Soil With Mixed Contaminants: Explosives Degradation and Influence on Heavy Metal Distribution, Monitored as Changes in Concentration and Toxicity. Water Air Soil Pollut. 2009, 202, 301–313. [Google Scholar] [CrossRef]
- Chatterjee, S.; Deb, U.; Datta, S.; Walther, C.; Gupta, D.K. Common Explosives (TNT, RDX, HMX) and Their Fate in the Environment: Emphasizing Bioremediation. Chemosphere 2017, 184, 438–451. [Google Scholar] [CrossRef] [PubMed]
- Aguero, S.; Terreux, R. Degradation of High Energy Materials Using Biological Reduction: A Rational Way to Reach Bioremediation. Int. J. Mol. Sci. 2019, 20, 5556. [Google Scholar] [CrossRef] [PubMed]
- Rylott, E.L.; Bruce, N.C. Right on Target: Using Plants and Microbes to Remediate Explosives. Int. J. Phytoremediat. 2019, 21, 1051–1064. [Google Scholar] [CrossRef]
- Aamir Khan, M.; Sharma, A.; Yadav, S.; Celin, S.M.; Sharma, S. A Sketch of Microbiological Remediation of Explosives-Contaminated Soil Focused on State of Art and the Impact of Technological Advancement on Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (RDX) Degradation. Chemosphere 2022, 294, 133641. [Google Scholar] [CrossRef]
- Luo, J.; Li, Y.; Cao, H.; Zhu, Y.; Liu, X.; Li, H.; Liao, X. Variations of Microbiota in Three Types of Typical Military Contaminated Sites: Diversities, Structures, Influence Factors, and Co-Occurrence Patterns. J. Hazard. Mater. 2023, 443, 130290. [Google Scholar] [CrossRef]
- Gui, H.; Wang, J.; Hu, M.; Zhou, Z.; Wan, S. Impacts of Fire on Soil Respiration and Its Components: A Global Meta-Analysis. Agric. For. Meteorol. 2023, 336, 109496. [Google Scholar] [CrossRef]
- Bond-Lamberty, B.; Thomson, A. Temperature-Associated Increases in the Global Soil Respiration Record. Nature 2010, 464, 579–582. [Google Scholar] [CrossRef]
- Hu, M.; Song, J.; Li, S.; Li, Z.; Hao, Y.; Di, M.; Wan, S. Understanding the Effects of Fire and Nitrogen Addition on Soil Respiration of a Field Study by Combining Observations with a Meta-Analysis. Agric. For. Meteorol. 2020, 292–293, 108106. [Google Scholar] [CrossRef]
- Krishnan, G.; Horst, G.L.; Shea, P.J. Differential Tolerance of Cool- and W Arm-Season Grasses to TNT -Contaminated Soil. Int. J. Phytoremediat. 2000, 2, 369–382. [Google Scholar] [CrossRef]
- Rylott, E.L.; Lorenz, A.; Bruce, N.C. Biodegradation and Biotransformation of Explosives. Curr. Opin. Biotechnol. 2011, 22, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Vila, M.; Lorber-Pascal, S.; Laurent, F. Phytotoxicity to and Uptake of TNT by Rice. Environ. Geochem. Health 2008, 30, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Winfield, L.E.; Rodger, J.H.; D’surney, S.J. The Responses of Selected Terrestrial Plants to Short (<12 Days) and Long Term (2, 4 and 6 Weeks) Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (RDX) Exposure. Part I: Growth and Developmental Effects. Ecotoxicology 2004, 13, 335–347. [Google Scholar] [CrossRef]
- Vila, M.; Mehier, S.; Lorber-Pascal, S.; Laurent, F. Phytotoxicity to and Uptake of RDX by Rice. Environ. Pollut. 2007, 145, 813–817. [Google Scholar] [CrossRef]
- Lachance, B.; Renoux, A.Y.; Sarrazin, M.; Hawari, J.; Sunahara, G.I. Toxicity and Bioaccumulation of Reduced TNT Metabolites in the Earthworm Eisenia Andrei Exposed to Amended Forest Soil. Chemosphere 2004, 55, 1339–1348. [Google Scholar] [CrossRef]
- Schäfer, R.; Achazi, R.K. The Toxicity of Soil Samples Containing TNT and Other Ammunition Derived Compounds in the Enchytraeid and Collembola-Biotest. Environ. Sci. Pollut. Res. 1999, 6, 213–219. [Google Scholar] [CrossRef]
- Best, E.P.H.; Geter, K.N.; Tatem, H.E.; Lane, B.K. Effects, Transfer, and Fate of RDX from Aged Soil in Plants and Worms. Chemosphere 2006, 62, 616–625. [Google Scholar] [CrossRef]
- Robidoux, P.Y.; Hawari, J.; Bardai, G.; Paquet, L.; Ampleman, G.; Thiboutot, S.; Sunahara, G.I. TNT, RDX, and HMX Decrease Earthworm (Eisenia Andrei) Life-Cycle Responses in a Spiked Natural Forest Soil. Arch. Environ. Contam. Toxicol. 2002, 43, 379–388. [Google Scholar] [CrossRef]
- Simini, M.; Checkai, R.T.; Kuperman, R.G.; Phillips, C.T.; Kolakowski, J.E.; Kurnas, C.W.; Sunahara, G.I. Reproduction and Survival of Eisenia Fetida in a Sandy Loam Soil Amended with the Nitro-Heterocyclic Explosives RDX and HMX. Pedobiologia 2003, 47, 657–662. [Google Scholar] [CrossRef]
- Google Earth. Google (2024) Cardiff Bay. Available online: http://maps.google.co.uk (accessed on 1 January 2024).
- ISO 10381-1:2002; Soil Quality—Sampling—Part 1: Guidance on the Design of Sampling Programmes (DSTU ISO 10381-1:2004). ISO: Geneva, Switzerland, 2002.
- ISO 10381-2:2002; Soil Quality—Sampling—Part 2: Guidance on Sampling Techniques (DSTU ISO 10381-2:2004). ISO: Geneva, Switzerland, 2002.
- ISO 10381-5:2005; Soil Quality—Sampling—Part 5: Guidance on the Procedure for the Investigation of Urban and Industrial Sites with Regard to Soil Contamination (DSTU ISO 10381-5:2009). ISO: Geneva, Switzerland, 2005.
- DSTU 4362:2004; Soil Quality Fertility Indexes of Soils. Derzhspozhyvstandart: Kyiv, Ukraine, 2005.
- ISO 11464:2006; Soil Quality—Pretreatment of Samples for Physicochemical Analyses. (DSTU ISO 11464:2007). ISO: Geneva, Switzerland, 2006.
- DSTU 8346:2015; Soil Quality—Methods for Determining the Conductivity, pH and Solid Residue of a Water Extract. Derzhspozhyvstandart: Kyiv, Ukraine, 2017.
- DSTU 4289:2004; Soil Quality—Methods for Determination of Organic Matter. Derzhspozhyvstandart: Kyiv, Ukraine, 2004.
- DSTU 4114-2002; Soils. Determination of Mobile Compounds of Phosphorus and Potassium according to the Modified Machigin Method. Derzhspozhyvstandart: Kyiv, Ukraine, 2002.
- DSTU 8347:2015; Soil Quality—Determination of Mobile Sulfur in Modification of Nsc Issar Sokolovsky O.N. Derzhspozhyvstandart: Kyiv, Ukraine, 2015.
- ISO 18400-102:2017(E); Soil Quality—Sampling—Part 104: Selection and Application Sampling Techniques. ISO: Geneva, Switzerland, 2017.
- DSTU 4730:2007; Soil Quality—The Soil Granulometric Composition Analysis by Pipette Method in Modification of N.A. Kachinskiy. Derzhspozhyvstandart: Kyiv, Ukraine, 2007.
- Zvyagintsev, D.G. Methods of Soil Microbiology and Biochemistry; MSU Press: East Lansing, MI, USA, 1991. [Google Scholar]
- Strickland, M.S.; Rousk, J. Considering Fungal: Bacterial Dominance in Soils—Methods, Controls, and Ecosystem Implications. Soil Biol. Biochem. 2010, 42, 1385–1395. [Google Scholar] [CrossRef]
- Andreyuk, E.I.; Valagurova, E.V. Fundamentals of the Ecology of Soil Microorganisms; Naukova Dumka: Kyiv, Ukraine, 1992. [Google Scholar]
- Magurran, A.E. Diversity Indices and Species Abundance Models. In Ecological Diversity and Its Measurement; Springer: Dordrecht, The Netherlands, 1988; pp. 7–45. ISBN 978-94-015-7360-3. [Google Scholar]
- Anderson, J.P.E.; Domsch, K.H. A Physiological Method for the Quantitative Measurement of Microbial Biomass in Soils. Soil Biol. Biochem. 1978, 10, 215–221. [Google Scholar] [CrossRef]
- Blagodatsky, S.A.; Blagodatskaya, E.V.; Gorbenko, A.Y.; Panikov, N.S. Rehydration Method for Microbial Biomass Determination in Soil. Eurasian Soil Sci. 1987, 4, 64–71. [Google Scholar]
- Anderson, T.-H.; Domsch, K.H. Application of Eco-Physiological Quotients (qCO2 and qD) on Microbial Biomasses from Soils of Different Cropping Histories. Soil Biology and Biochemistry 1990, 22, 251–255. [Google Scholar] [CrossRef]
- Volkohon, V.V. Experimental Soil Microbiology; Agrarian Science: Kyiv, Ukraine, 2010. [Google Scholar]
- DSTU ISO 22030:2007; Soil Quality. Biological Methods. Chronic Toxicity to Higher Plants (ISO 22030:2005, IDT). Derzhspozhyvstandart: Kyiv, Ukraine, 2007.
- DSTU ISO 11268-1:2003; Soil Quality. Effects of Pollutants on Earthworms (Eisenia Fetida). Derzhspozhyvstandart: Kyiv, Ukraine, 2003.
- Russo-Ukrainian Warspotting. Available online: https://ukr.warspotting.net/uk/map/ (accessed on 1 January 2024).
- Bonds, E. Legitimating the Environmental Injustices of War: Toxic Exposures and Media Silence in Iraq and Afghanistan. Environ. Politics 2016, 25, 395–413. [Google Scholar] [CrossRef]
- Lengefeld, M.R.; Hooks, G.; Smith, C.L. War and the Environment. In Handbook of Environmental Sociology; Schaefer Caniglia, B., Jorgenson, A., Malin, S.A., Peek, L., Pellow, D.N., Huang, X., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 381–401. ISBN 978-3-030-77711-1. [Google Scholar]
- Jagtap, S.; Trollman, H.; Trollman, F.; Garcia-Garcia, G.; Parra-López, C.; Duong, L.; Martindale, W.; Munekata, P.E.S.; Lorenzo, J.M.; Hdaifeh, A.; et al. The Russia-Ukraine Conflict: Its Implications for the Global Food Supply Chains. Foods 2022, 11, 2098. [Google Scholar] [CrossRef]
- Yang, X.; Huan, Z.; Zhao, S.; Xi, H. Study on Environmental Pollution Behavior/Fate of Ammunition Soil and Microbial Remediation of TNT and Its Intermediates. J. Clean. Prod. 2023, 432, 139715. [Google Scholar] [CrossRef]
- Angurets, O.; Khazan, P.; Kolesnikova, K.; Kushch, M.; Černochova, M.; Havránek, M. Environmental Consequences of Russian War in Ukraine; Arnika: Prague, Czech Republic, 2023; ISBN 978-80-88508-05-2. [Google Scholar]
- Johnsen, A.R.; Boe, U.S.; Henriksen, P.; Malmquist, L.M.V.; Christensen, J.H. Full-scale bioremediation of diesel-polluted soil in an Arctic landfarm. Environ. Pollut. 2021, 280, 116946. [Google Scholar] [CrossRef]
- Decree of the Ministry of Health of Ukraine “On Approval of Hygienic Regulations for Permissible Content of Chemical Substances in Soil” Dated July 14, 2020, № 1595. Available online: https://zakon.rada.gov.ua/laws/show/z0722-20#Text (accessed on 1 January 2024).
- Sun, W.; Luo, X.; Fang, Y.; Shiga, Y.P.; Zhang, Y.; Fisher, J.B.; Keenan, T.F.; Michalak, A.M. Biome-Scale Temperature Sensitivity of Ecosystem Respiration Revealed by Atmospheric CO2 Observations. Nat. Ecol. Evol. 2023, 7, 1199–1210. [Google Scholar] [CrossRef]
- Hu, X.; Wang, J.; Lv, Y.; Liu, X.; Zhong, J.; Cui, X.; Zhang, M.; Ma, D.; Yan, X.; Zhu, X. Effects of Heavy Metals/Metalloids and Soil Properties on Microbial Communities in Farmland in the Vicinity of a Metals Smelter. Front. Microbiol. 2021, 12, 707786. [Google Scholar] [CrossRef] [PubMed]
- Scheidemann, P.; Klunk, A.; Sens, C.; Werner, D. Species Dependent Uptake and Tolerance of Nitroaromatic Compounds by Higher Plants. J. Plant Physiol. 1998, 152, 242–247. [Google Scholar] [CrossRef]
- Gong, P.; Wilke, B.-M.; Fleischmann, S. Soil-Based Phytotoxicity of 2,4,6-Trinitrotoluene (TNT) to Terrestrial Higher Plants. Arch. Environ. Contam. Toxicol. 1999, 36, 152–157. [Google Scholar] [CrossRef] [PubMed]
- OECD. Guideline for the Testing of Chemicals №. 207. Earthworm, Acute Toxicity; OECD: Paris, France, 1984. [Google Scholar]
- Yadav, R.; Kumar, R.; Gupta, R.K.; Kaur, T.; Kiran; Kour, A.; Kaur, S.; Rajput, A. Heavy Metal Toxicity in Earthworms and Its Environmental Implications: A Review. Environ. Adv. 2023, 12, 100374. [Google Scholar] [CrossRef]
- Zheng, R.; Li, C. Effect of Lead on Survival, Locomotion and Sperm Morphology of Asian Earthworm, Pheretima Guillelmi. J. Environ. Sci. 2009, 21, 691–695. [Google Scholar] [CrossRef]
- Takacs, V.; Molnar, L.; Klimek, B.; Gałuszka, A.; Morgan, A.J.; Plytycz, B. Exposure of Eisenia Andrei (Oligochaeta; Lumbricidea) to Cadmium Polluted Soil Inhibits Earthworm Maturation and Reproduction but Not Restoration of Experimentally Depleted Coelomocytes or Regeneration of Amputated Segments. Folia Biol. 2016, 64, 275–284. [Google Scholar] [CrossRef]
- Lukkari, T.; Taavitsainen, M.; Väisänen, A.; Haimi, J. Effects of Heavy Metals on Earthworms along Contamination Gradients in Organic Rich Soils. Ecotoxicol. Environ. Saf. 2004, 59, 340–348. [Google Scholar] [CrossRef]
- Sivakumar, S. Effects of Metals on Earthworm Life Cycles: A Review. Environ. Monit. Assess. 2015, 187, 530. [Google Scholar] [CrossRef]
- Homa, J.; Stürzenbaum, S.R.; Kolaczkowska, E. Metallothionein 2 and Heat Shock Protein 72 Protect Allolobophora Chlorotica from Cadmium But Not Nickel or Copper Exposure: Body Malformation and Coelomocyte Functioning. Arch. Environ. Contam. Toxicol. 2016, 71, 267–277. [Google Scholar] [CrossRef]
- Demuynck, S.; Succiu, I.R.; Grumiaux, F.; Douay, F.; Leprêtre, A. Effects of Field Metal-Contaminated Soils Submitted to Phytostabilisation and Fly Ash-Aided Phytostabilisation on the Avoidance Behaviour of the Earthworm Eisenia Fetida. Ecotoxicol. Environ. Saf. 2014, 107, 170–177. [Google Scholar] [CrossRef]
- Yang, G.; Chen, C.; Yu, Y.; Zhao, H.; Wang, W.; Wang, Y.; Cai, L.; He, Y.; Wang, X. Combined Effects of Four Pesticides and Heavy Metal Chromium (VI) on the Earthworm Using Avoidance Behavior as an Endpoint. Ecotoxicol. Environ. Saf. 2018, 157, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Aguzie, I.O.; Enekwe, K.D.; Emekekwue, I.J.; Asogwa, C.N.; Onyishi, G.C.; Oluah, N.S.; Ekeh, F.N.; Nwani, C.D. Behavioral and Oxidative Stress Responses of Earthworm, Nsukkadrilus Mbae (Segun 1976), Exposed to Lead and Cadmium: A Preliminary Investigation: Behavior and Oxidative Stress in Earthworm on Pb and Cd Exposure. Soil Sediment Contam. Int. J. 2021, 30, 569–589. [Google Scholar] [CrossRef]
Type of Soil | pH | Humus, % | Content, mg·kg−1 of Soil | ||
---|---|---|---|---|---|
Hydrolysable Nitrogen | Active Phosphorus | Exchangeable Potassium | |||
Chernic Phaeozems | 5.7–6.1 | 3.4–4.7 | 35–45 | 150–200 | 120–170 |
Samples | pH | Organic Carbon, % | Humus, % | Content, mg·kg−1 of Soil | ||
---|---|---|---|---|---|---|
P2O5 | K2O | S | ||||
Control 1 (for T72B3 tank) | 7.19 | 4.34 | 2.52 | 24.27 | 171.11 | 0.50 |
Fragments of T72B3 (bottom) | 7.00 | 4.70 | 2.73 | 18.09 | 337.40 | 14.17 |
Tank T72B3 (stern) | 6.46 | 5.06 | 2.94 | 55.88 | 301.25 | 32.50 |
Control 2 (for tank T80) | 7.14 | 4.70 | 2.73 | 41.45 | 277.15 | 2.83 |
Fragments of T80 (bottom) | 7.47 | 4.29 | 2.49 | 24.50 | 180.75 | 158.46 |
Control 3 (TOS-1 “Solntsepek”) | 8.07 | 3.86 | 2.24 | 19.01 | 207.26 | 3.41 |
Fragments of TOS-1 “Solntsepek” | 7.46 | 14.27 | 8.28 | 45.11 | 277.15 | 56.18 |
Samples | Concentrations of Heavy Metals, mg·kg−1 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Cd | Co | Cr | Cu | Fe | Mn | Ni | Pb | Zn | |
Control 1 (for the T72B3) | 0.44 | 0.01 | 0.86 | 0.01 | 1.00 | 13.64 | 0.65 | 0.80 | 0.02 |
Fragments of T72B3 (bottom) | 5.95 | 0.87 | 1.74 | 13.13 | 151.08 | 132.29 | 1.76 | 233.22 | 170.43 |
T72B3 (stern) | 0.35 | 0.38 | 4.01 | 0.19 | 10.47 | 234.68 | 0.19 | 4.46 | 12.11 |
Control 2 (for the T80) | 1.10 | 1.26 | 0.50 | 0.53 | 3.77 | 26.12 | 1.43 | 4.76 | 1.63 |
Fragments of the T80 (bottom) | 1.65 | 1.76 | 3.91 | 1.09 | 5.28 | 24.40 | 3.03 | 472.89 | 14.25 |
Control 3 (TOS-1 “Solntsepek”) | 0.15 | 0.59 | 0.17 | 0.57 | 1.50 | 12.52 | 0.65 | 0.08 | 0.27 |
Fragments of the TOS-1 “Solntsepek” | 0.22 | 4.88 | 0.31 | 0.74 | 31.31 | 142.30 | 0.90 | 4.35 | 33.34 |
Threshold limit value (TLV) | 0.70 | 5.00 | 6.00 | 3.00 | - | 140.0 | 4.00 | 6.00 | 23.00 |
Samples | The Content of Particle Size Fractions, % | Class of Soil | ||
---|---|---|---|---|
2.0–0.05 mm | 0.05–0.002 mm | <0.002 mm | ||
Control 1 (for T72B3 tank) | 8.39 | 41.75 | 49.86 | Silty clay |
Min/Max | 7.98/8.80 | 41.12/42.38 | 49.14/50.58 | |
SD, ± | 0.41 | 0.63 | 0.72 | |
Error, % | 4.88 | 1.50 | 1.44 | |
Fragments of T72B3 (bottom) | 15.53 | 43.28 | 41.19 | Silty clay |
Min/Max | 14.8/16.26 | 42.64/43.92 | 40.44/41.94 | |
SD, ± | 0.73 | 0.64 | 0.75 | |
Error, % | 4.72 | 1.48 | 1.82 | |
Tank T72B3 (stern) | 10.73 | 46.69 | 42.58 | Silty clay |
Min/Max | 10.21/11.25 | 46.12/47.26 | 41.87/43.29 | |
SD, ± | 0.52 | 0.57 | 0.71 | |
Error, % | 4.89 | 1.23 | 1.66 | |
Control 2 (for tank T80) | 8.79 | 44.64 | 46.57 | Silty clay |
Min/Max | 8.37/9.21 | 43.94/45.34 | 46.05/47.09 | |
SD, ± | 0.42 | 0.7 | 0.52 | |
Error, % | 4.78 | 1.56 | 1.12 | |
Fragments of T80 (bottom) | 13.21 | 44.03 | 42.75 | Silty clay |
Min/Max | 12.57/13.85 | 43.34/44.72 | 42.13/43.37 | |
SD, ± | 0.64 | 0.69 | 0.62 | |
Error, % | 4.82 | 1.57 | 1.76 | |
Control 3 (TOS-1 “Solntsepek”) | 29.06 | 38.02 | 32.92 | Clay loam |
Min/Max | 27.67/30.45 | 36.98/39.06 | 31.95/33.89 | |
SD, ± | 1.39 | 1.04 | 0.97 | |
Error, % | 4.80 | 2.73 | 2.95 | |
Fragments of TOS-1 “Solntsepek” | 35.96 | 33.09 | 30.95 | Clay loam |
Min/Max | 34.84/37.08 | 32.42/33.76 | 30.33/31.57 | |
SD, ± | 1.12 | 0.67 | 0.62 | |
Error, % | 3.11 | 2.04 | 2.00 |
Samples | Number of Microorganisms, ×106 CFU g−1 of Soil | ||||
---|---|---|---|---|---|
Ammonifiers | Streptomycetes | Bacteria Utilizing Mineral Nitrogen | Oligotrophs | Pedotrophs | |
Control 1 Natural ecosystems (fallow land) | 4.00 ± 0.01 | 0.67 ± 0.06 | 19.33 ± 0.72 | 204.00 ± 0.02 | 30.67 ± 0.10 |
Control 2 Agroecosystem (arable soil) | 19.00 ± 0.02 | 1.00 ± 0.01 | 42.67 ± 0.51 | 181.00 ± 0.43 | 58.67 ± 0.13 |
Tank T-72B3 (bottom) | 56.00 ± 0.05 | 0.67 ± 0.06 | 28.00 ± 0.73 | 291.33 ± 1.21 | 91.33 ± 0.09 |
Tank T-72B3 (stern) | 45.00 ± 0.04 | 4.33 ± 0.30 | 12.33 ± 0.24 | 298.00 ± 0.14 | 93.33 ± 0.11 |
Tank T-72B3 (stern + 3 m) | 29.33 ± 0.04 | 5.00 ± 0.18 | 152.67 ± 1.59 | 301.33 ± 0.44 | 95.00 ± 0.29 |
Samples | Shannon (H) | Simpson (D) |
---|---|---|
Control 1 Natural ecosystems (fallow land) | 5.45 ± 0.04 | 0.02 ± 0.005 |
Control 2 Agroecosystem (arable soil) | 3.29 ± 0.05 | 0.15 ± 0.004 |
Tank T-72 (bottom) | 1.9 ± 0.02 | 0.28 ± 0.009 |
Tank T-72 (stern) | 2.1 ± 0.08 | 0.24 ± 0.004 |
Tank T-72 (stern + 3 m) | 2.5 ± 0.06 | 0.21 ± 0.005 |
Samples | Coefficient of Mineralization, Kmin | Coefficient of Oligotrophity, Kol | Coefficient of Pedotrophity, Kped | Coefficient of Transformation of Organic Matter, Ktom |
---|---|---|---|---|
Control 1 Natural ecosystems (fallow land) | 4.83 | 8.74 | 1.59 | 112.7 |
Control 2 Agroecosystem (arable soil) | 2.25 | 2.93 | 1.37 | 138.5 |
Tank T-72B3 (bottom) | 0.50 | 3.47 | 3.26 | 42.0 |
Tank T-72B3 (stern) | 0.27 | 5.20 | 7.56 | 15.7 |
Tank T-72B3 (stern + 3 m) | 5.20 | 1.66 | 0.62 | 147.2 |
Time, Hours | Number of Individuals | |||
---|---|---|---|---|
Control | Epicenter of the Explosion | 2 m from the Epicenter of the Explosion | 4 m from the Epicenter of the Explosion | |
24 | 49.5 | 2.6 | 3.1 | 5.6 |
48 | 49.2 | 1.5 | 2.9 | 5.6 |
72 | 49.2 | 1.1 | 2.9 | 5.6 |
96 | 49.2 | 0 | 2.5 | 5.6 |
120 | 49.0 | 0 | 0.5 | 5.5 |
Toxicity, % | - | 98.9 | 95.2 | 88.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solokha, M.; Demyanyuk, O.; Symochko, L.; Mazur, S.; Vynokurova, N.; Sementsova, K.; Mariychuk, R. Soil Degradation and Contamination Due to Armed Conflict in Ukraine. Land 2024, 13, 1614. https://doi.org/10.3390/land13101614
Solokha M, Demyanyuk O, Symochko L, Mazur S, Vynokurova N, Sementsova K, Mariychuk R. Soil Degradation and Contamination Due to Armed Conflict in Ukraine. Land. 2024; 13(10):1614. https://doi.org/10.3390/land13101614
Chicago/Turabian StyleSolokha, Maksym, Olena Demyanyuk, Lyudmyla Symochko, Svitlana Mazur, Nadiya Vynokurova, Kateryna Sementsova, and Ruslan Mariychuk. 2024. "Soil Degradation and Contamination Due to Armed Conflict in Ukraine" Land 13, no. 10: 1614. https://doi.org/10.3390/land13101614
APA StyleSolokha, M., Demyanyuk, O., Symochko, L., Mazur, S., Vynokurova, N., Sementsova, K., & Mariychuk, R. (2024). Soil Degradation and Contamination Due to Armed Conflict in Ukraine. Land, 13(10), 1614. https://doi.org/10.3390/land13101614