Examining the Impact of Coal Contamination on Soil Structural and Moisture Properties: A Comparative Study of Coal-Free and Coal-Impacted Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling Collection
2.3. Sample Determination
2.3.1. Soil Pore Parameters
- Image calibration
- Threshold segmentation and three-dimensional reconstruction
- Quantitative analysis of pore characteristics
2.3.2. Soil Moisture Parameters
2.4. Statistical Analysis
3. Results
3.1. Soil Pore Characteristics
3.1.1. Soil Porosity and Pore Number
3.1.2. Soil Pore Features Based on Two-Dimensional Slices
3.1.3. Soil Pore Connectivity
3.2. Soil Moisture Characteristics
3.3. The Connection between Soil Pores and Moisture
4. Discussion
4.1. Impact of Coal Pollution on Soil Pores
4.2. Impact of Coal Pollution on Soil Moisture
4.3. Potential Impact of Coal Pollution on Soil Microecology
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Full Name |
TP | Total porosity |
CTP | CT-measured porosity |
CTNW/CTN | Proportion of water-retaining pores |
CTPW | Volume of water-retaining pores |
CTNWA/CTN | Proportion of water-air regulating pores |
CTPWA | Volume of water-air regulating pores |
CNic | Coordination number of interconnected pores |
IAic | Inclination angle of interconnected pores |
Nthroat | Number of pore throats |
Lthroat | Length of pore throats |
Pic | Interconnected porosity |
Pisolated | Isolated porosity |
WP | Water-retaining pore |
WAP | Water-air regulating pore |
P < 14 μm | Porosity (d < 14 µm) |
CTN | Number of pores |
DP | Pore equivalent diameter |
References
- Hu, Z.; Li, J.; Zhao, Y. Problems, Reasons and Countermeasures for Environmental Quality and Food Safety in the Overlapped Areas of Crop and Mineral Production. Sci. Technol. Rev. 2006, 24, 93–94. [Google Scholar]
- Nie, X.; Zhao, T.; Su, Y. Fossil fuel carbon contamination impacts soil organic carbon estimation in cropland. Catena 2021, 196, 104889. [Google Scholar] [CrossRef]
- Yunusa, I.; Eamus, D.; Desilva, D.L. Fly-ash: An exploitable resource for management of Australian agricultural soils. Fuel 2006, 85, 2337–2344. [Google Scholar] [CrossRef]
- Jankowski, J.; Ward, C.R.; French, D.; Groves, S. Mobility of trace elements from selected Australian fly ashes and its potential impact on aquatic ecosystems. Fuel 2006, 85, 243–256. [Google Scholar] [CrossRef]
- Zhao, S.W.; Zhao, Y.G.; Wu, J.S. Quantitative analysis of soil pores under natural vegetation successions on the Loess Plateau. Sci. China Earth Sci. 2010, 53, 617–625. [Google Scholar] [CrossRef]
- Song, M.; Lin, S.; Takahashi, F. Coal fly ash amendment to mitigate soil water evaporation in arid/semi-arid area: An approach using simple drying focusing on sieve size and temperature. Resour. Conserv. Recycl. 2020, 156, 104726. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Bai, Z.; Huang, L. The effects of coal gangue and fly ash on the hydraulic properties and water content distribution in reconstructed soil profiles of coal-mined land with a high groundwater table. Hydrol. Process. 2017, 31, 687–697. [Google Scholar] [CrossRef]
- Zhang, Y.; Qi, X.; Zou, J.; Rao, Y.; Chen, L.; Zhang, L.; Ji, Y.; Liang, Z. Effects of water immersion on the pore structure and thermodynamic properties of coal gangue. Fuel 2023, 346, 128273. [Google Scholar] [CrossRef]
- Chen, M.; Chen, X.Y.; Wang, X.G.; Zhang, L.X.; Zhang, D.; Zhu, J.M. Variation of water and air in reconstruction soil profile and its response to temperature gradient in coal mine area. J. Coal Sci. Eng. (China) 2021, 46, 1309–1319. [Google Scholar] [CrossRef]
- Fujikawa, T.; Miyazaki, T. Effects of Bulk Density and Soil Type on the Gas Diffusion Coefficient in Repacked and Undisturbed Soils. Soil Sci. 2005, 170, 892–901. [Google Scholar] [CrossRef]
- Guo, J.; Dan, Z.; Chen, W.; Abdulazeam, S. Experiment research on improving the covering soil of open-pit mine tailings pond with coal slurry. Coal Sci. Technol. 1998, 45–49. [Google Scholar]
- Yu, M.; van Der Ploeg, M.; Ma, X.; Ritsema, C.J.; Geissen, V. Effects of microplastics and earthworm burrows on soil macropore water flow within a laboratory soil column setup. Vadose Zone J. 2021, 19, e20059. [Google Scholar] [CrossRef]
- Liu, M.; Wu, D.; Wu, S.; Liao, L. Characteristic of soil macropores under various types of forest coverage andtheir influence on saturated hydraulic conductivity in the Three GorgesReservoir Area. Acta Ecol. Sin. 2016, 36, 3189–3196. [Google Scholar]
- Qiao, Z.; Cao, Y.; Liu, L.; Wang, J.; Cui, J.; Xu, H.; Abdulazeam, S. Analysis of slurry characteristics and sedimentation influencing factors in Zhunneng Coal Preparation Plant. Coal Process. Compr. Util. 2020, 4, 1–4+8. [Google Scholar] [CrossRef]
- Yu, H.; Dong, Z.; Yang, J.; Liu, R.; Cao, N.; Bi, B.; Bi, Y.; Abdulazeam, S. Study on soil macropore characteristics and infiltration capacity of differentland use types based on CT scanning. J. Arid Land Resour. Environ. 2023, 37, 55–61. [Google Scholar]
- Pires, L.F.; Cooper, M.; Cássaro, F.A.M.; Reichardt, K.; Bacchi, O.O.S.; Dias, N.M.P. Micromorphological analysis to characterize structure modifications of soil samples submitted to wetting and drying cycles. Catena 2008, 72, 297–304. [Google Scholar] [CrossRef]
- Zeng, Z.; Kong, L.; Wang, M.; Sayem, H.M. Assessment of engineering behaviour of an intensely weathered swelling mudstone under full range of seasonal variation and the relationships among measured parameters. Can. Geotech. J. 2018, 1837–1849. [Google Scholar] [CrossRef]
- Wan, Y.; Xue, Q.; Liu, L. Study on the permeability evolution law and the micro-mechanism of CCL in a landfill final cover under the dry-wet cycle. Bull. Eng. Geol. Environ. 2014, 73, 1089–1103. [Google Scholar] [CrossRef]
- Zhang, X.W.; Kong, L.W.; Cui, X.L.; Yin, S. Occurrence characteristics of free iron oxides in soil microstructure: Evidence from XRD, SEM and EDS. Bull. Eng. Geol. Environ. 2016, 75, 1493–1503. [Google Scholar] [CrossRef]
- Yang, C.; Liu, J.; Lu, S. Pyrolysis temperature affects pore characteristics of rice straw and canola stalk biochars and biochar-amended soils. Geoderma 2021, 397, 115097. [Google Scholar] [CrossRef]
- Liu, B.; Ma, R.; Fan, H. Evaluation of the impact of freeze-thaw cycles on pore structure characteristics of black soil using X-ray computed tomography. Soil Tillage Res. 2021, 206, 104810. [Google Scholar] [CrossRef]
- Rogers, E.D.; Monaenkova, D.; Mijar, M.; Nori, A.; Goldman, D.I.; Benfey, P.N. X-ray computed tomography reveals the response of root system architecture to soil texture. Plant Physiol. 2016, 171, 2028–2040. [Google Scholar] [CrossRef] [PubMed]
- Capowiez, Y.; Sammartino, S.; Keller, T.; Bottinelli, N. Decreased burrowing activity of endogeic earthworms and effects on water infiltration in response to an increase in soil bulk density. Pedobiologia 2021, 85–86, 150728. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, Y.; Li, Z.; Xue, X. Study on Crack Development and Micro-Pore Mechanism of Expansive Soil Improved by Coal Gangue under Drying–Wetting Cycles. Materials 2021, 14, 6546. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, J.; Liu, T.; Bai, Z.; Reading, L. Using computed tomography images to characterize the effects of soil compaction resulting from large machinery on three-dimensional pore characteristics in an opencast coal mine dump. J. Soil Sediments 2019, 19, 1467–1478. [Google Scholar] [CrossRef]
- Ferreira, T.R.; Archilha, N.L.; Pires, L.F. An analysis of three XCT-based methods to determine the intrinsic permeability of soil aggregates. J. Hydrol. 2022, 612, 128024. [Google Scholar] [CrossRef]
- Min, X.; Dong, Z.; Bo, H.; Zheng, G.; Li, Q.; Chang, X.; Li, X. Alternative Soil Substrates Addition Cause Deterioration in Reclaimed Soil Macropore Networks at Eastern Mining Area, China. Sustainability 2022, 14, 10519. [Google Scholar] [CrossRef]
- An, R.; Kong, L.; Zhang, X.; Li, C. Effects of dry-wet cycles on three-dimensional pore structure and permeability characteristics of granite residual soil using X-ray micro computed tomography. J. Rock Mech. Geotech. Eng. 2022, 14, 851–860. [Google Scholar] [CrossRef]
- Cheng, J.; Nie, X.; Liu, C. Spatial variation of soil organic carbon in coal-mining subsidence areas. J. China Coal Soc. 2014, 39, 2495–2500. [Google Scholar]
- Rumpel, C.; Balesdent, J.; Grootes, P.; Weber, E.; Gel-Knabner, I.K. Quantification of lignite- and vegetation-derived soil carbon using 14C activity measurements in a forested chronosequence. Geoderma 2003, 112, 155–166. [Google Scholar] [CrossRef]
- Ussiri, D.A.N.; Lal, R. Method for Determining Coal Carbon in the Reclaimed Minesoils Contaminated with Coal. Soil Sci. Soc. Am. J. 2008, 72, 231–237. [Google Scholar] [CrossRef]
- Chabbi, A.; Rumpel, C.; Grootes, P.M.; Mariotti, A. Isotopic tracers for the analysis of vegetation-derived organic matter in lignite-containing soils and sediments along a transect ranging from a forest soil to submerged lake sediment. Org. Geochem. 2006, 37, 740–753. [Google Scholar] [CrossRef]
- Nie, X.J.; Liu, X.; Sun, Y.T.; Xie, F.F.; He, J.; Gao, S. Effect of Coal Accumulation on Soil Aggregate Structure in the Mine-crop Overlapped Zone. J. Soil Water Conserv. 2019, 33, 169–175. [Google Scholar] [CrossRef]
- Taina, I.A.; Heck, R.J.; Elliot, T.R. Application of X-ray computed tomography to soil science: A literature review. Can. J. Soil Sci. 2008, 88, 1–19. [Google Scholar] [CrossRef]
- Kumar, S.; Anderson, S.H.; Udawatta, R.P.; Gantzer, C.J. CT-measured macropores as affected by agroforestry and grass buffers for grazed pasture systems. Agroforest. Syst. 2010, 79, 59–65. [Google Scholar] [CrossRef]
- Ko, S.J.; Lee, Y.H. Center weighted median filters and their applications to image enhancement. IEEE Trans. Circuits Syst. 1991, 38, 984–993. [Google Scholar] [CrossRef]
- Wang, R.; Li, J.; Zhang, J. Grain shape analysis of calcareous soil. Rock Soil Mech. 2005, 1389–1392. [Google Scholar] [CrossRef]
- Li, X.; Lu, Y.; Zhang, X.; Lu, Y.; Yang, Y. Pore-fissure ldentification and Characterization of Paleosol Based on X-rayComputed Tomography. Bull. Soil Water Conserv. 2018, 38, 224–230. [Google Scholar]
- Capowiez, Y.; Sammartino, S.; Michel, E. Using X-ray tomography to quantify earthworm bioturbation non-destructively in repacked soil cores. Geoderma 2011, 162, 124–131. [Google Scholar] [CrossRef]
- Christensen, B.T. Physical fractionation of soil and structural and functional complexity in organic matter turnover. EJSS 2001, 52, 345–353. [Google Scholar] [CrossRef]
- South Eastern Kenya University. DAS 101: Principles of Soil Physics. 2017. Available online: http://repository.seku.ac.ke/handle/123456789/5959 (accessed on 27 February 2020).
- Shidan, B. Analysis of Soil Agricultural Chemistry; China Agriculture Press: Beijing, China, 2000; ISBN 7109066444. [Google Scholar]
- GB 7836-1987; Determination of Forest Soil Maximum Hygroscopicity. Code of China: Beijing, China, 1988.
- Marshall, T.J. A relation between permeability and size distribution of pores. J. Soil Sci. 1958, 9, 1–8. [Google Scholar] [CrossRef]
- Edwards, W.M.; Shipitalo, M.J.; Traina, S.J.; Edwards, C.A.; Owens, L.B. Role of lumbricus terrestris (L.) burrows on quality of infiltrating water. Soil Biol. Biochem. 1992, 24, 1555–1561. [Google Scholar] [CrossRef]
- Da Veiga, M.; Horn, R.; Reinert, D.J.; Reichert, J.M. Soil compressibility and penetrability of an Oxisol from southern Brazil, as affected by long-term tillage systems. Soil Tillage Res. 2007, 92, 104–113. [Google Scholar] [CrossRef]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Dal Ferro, N.; Sartori, L.; Simonetti, G.; Berti, A.; Morari, F. Soil macro- and microstructure as affected by different tillage systems and their effects on maize root growth. Soil Tillage Res. 2014, 140, 55–65. [Google Scholar] [CrossRef]
- Martin, S.L.; Mooney, S.J.; Dickinson, M.J.; West, H.M. The effects of simultaneous root colonisation by three Glomus species on soil pore characteristics. Soil Biol. Biochem. 2012, 49, 167–173. [Google Scholar] [CrossRef]
- Tian, D. The Experimental Study of Influence of Biochar on DifferentTexture Soils Structure and Hydraulic Characteristic Parameters. Master’s Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2013. [Google Scholar]
- Yan, C.; Hong, M.; Qin, J.; Fu, J.; Li, H.; Wang, Y. Effects of biochar on hydraulic characteristics of aeolian sandy soil in Hetian. Agric. Res. Arid Areas 2021, 39, 21–28. [Google Scholar]
- Denney, D. Robust Determination of the Pore-Space Morphology in Sedimentary Rocks. J. Pet. Technol. 2004, 56, 69–70. [Google Scholar] [CrossRef]
- Rabot, E.; Wiesmeier, M.; Schlüter, S.; Vogel, H.J. Soil structure as an indicator of soil functions: A review. Geoderma 2018, 314, 122–137. [Google Scholar] [CrossRef]
- Wang, J.; Huang, C.; Feng, S.; Liu, C.; Li, H.; Han, Q. Using Biochar Amendment to lmprove the Physicochemical Properties of Soil in Coastal Tidal Area. J. Irrig. Drain. 2022, 41, 125–130. [Google Scholar] [CrossRef]
- Yin, C.; Zhao, J.; Liu, X.; Yu, Z.; Liu, H. Effect of Coal Water Slurry Gasification Slag on Soil Water Physical Characteristics and Properties in Saline-Alkali Soil Improvement. J. Sens. 2022. [Google Scholar] [CrossRef]
- Qiao, Z. Study on the influence factors of wilting point. J. Water Resour. Water Eng. 2008, 2, 82–84. [Google Scholar]
- Wei, Y.Q.; Zhao, Y.; Lu, Q.; Cao, Z.; Wei, Z. Organophosphorus-degrading bacterial community during composting from different sources and their roles in phosphorus transformation. Bioresource Technol. 2018, 264, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Nan, J.; Xu, D.; Mo, L.; Zheng, Y.; Chao, L.; Qu, H.; Guo, Y.; Li, F.; Bao, Y. Response differences between soil fungal and bacterial communities under opencast coal mining disturbance conditions. Catena 2020, 194, 104779. [Google Scholar] [CrossRef]
- Lu, D.; Mao, Z.; Tang, Y.; Feng, B.; Xu, L. Driving Factors Influencing Soil Microbial Community Succession of Coal Mining Subsidence Areas during Natural Recovery in Inner Mongolia Grasslands. Microorganisms 2024, 12, 87. [Google Scholar] [CrossRef]
- Genesio, L.; Miglietta, F.; Lugato, E.; Baronti, S.; Pieri, M.; Vaccari, F.P. Surface albedo following biochar application in durum wheat thermal properties of loess. Rock Soil Mech. 2017, 38, 2888–2894. [Google Scholar] [CrossRef]
- Wang, M.; Sun, M.; Zhao, Y.; Shi, Y.; Sun, S.; Wang, S.; Zhou, Y.; Chen, L. Seasonal changes of soil microbiota and its association with environmental factors in coal mining subsidence area. AMB Express 2023, 13, 147. [Google Scholar] [CrossRef] [PubMed]
- Schuerings, J.; Jentsch, A.; Hammerl, V.; Lenz, K.; Henry, H.A.L.; Malyshev, A.V.; Kreyling, J. Increased winter soil temperature variability enhances nitrogen cycling and soil biotic activity in temperate heathland and grassland mesocosms. Biogeosciences 2014, 11, 7051–7060. [Google Scholar] [CrossRef]
- Yang, S.; Jansen, B.; Absalah, S.; Kalbitz, K.; Castro, F.O.C.; Cammeraat, E.L.H. Soil organic carbon content and mineralization controlled by the composition, origin and molecular diversity of organic matter: A study in tropical alpine grasslands. Soil Tillage Res. 2022, 215, 105203. [Google Scholar] [CrossRef]
- John, L. Let the Soil Work for Us. BioScience 1997, 47, 321–322. [Google Scholar]
- Kravchenko, A.N.; Guber, A.K. Soil pores and their contributions to soil carbon processes. Geoderma 2016, 287, 31–39. [Google Scholar] [CrossRef]
- Juarez, S.; Nunan, N.; Duday, A.C.; Pouteau, V.; Schmidt, S.; Hapca, S.; Falconer, R.; Otten, W.; Chenu, C. Effects of different soil structures on the decomposition of native and added organic carbon. Eur. J. Soil Biol. 2013, 58, 81–90. [Google Scholar] [CrossRef]
- Juarez, S.; Nunan, N.; Duday, A.C.; Pouteau, V.; Chenu, C. Soil carbon mineralisation responses to alterations of microbial diversity and soil structure. Biol. Fertil. Soils 2013, 49, 939–948. [Google Scholar] [CrossRef]
- Gaillard, V.; Chenu, C.; Recous, S. Carbon mineralisation in soil adjacent to plant residues of contrasting biochemical quality. Soil Biol. Biochem. 2003, 35, 93–99. [Google Scholar] [CrossRef]
- Toosi, E.R.; Kravchenko, A.N.; Guber, A.K.; Rivers, M.L. Pore characteristics regulate priming and fate of carbon from plant residue. Soil Biol. Biochem. 2017, 113, 219–230. [Google Scholar] [CrossRef]
- Ruamps, L.S.; Nunan, N.; Chenu, C. Microbial biogeography at the soil pore scale. Soil Biol. Biochem. 2011, 43, 280–286. [Google Scholar] [CrossRef]
- Dechesne, A.; Pallud, C.; Debouzie, D.; Flandrois, J.P.; Vogel, T.M.; Gaudet, J.P.; Grundmann, G.L. A novel method for characterizing the microscale 3D spatial distribution of bacteria in soil. Soil Biol. Biochem. 2003, 35, 1537–1546. [Google Scholar] [CrossRef]
- Kravchenko, A.N.; Negassa, W.; Guber, A.K.; Schmidt, S. New Approach to Measure Soil ParticulateOrganic Matter in Intact Samples Using X-ray Computed Microtomography. Soil Sci. Soc. Am. J. 2014, 78, 1177–1185. [Google Scholar] [CrossRef]
- Negassa, W.C.; Guber, A.K.; Kravchenko, A.N.; Marsh, T.L.; Britton, H.; Rivers, M.L.; Wenju, L. Properties of Soil Pore Space Regulate Pathways of Plant Residue Decomposition and Community Structure of Associated Bacteria. PLoS ONE 2015, 10, e123999. [Google Scholar] [CrossRef]
- Cambi, M.; Certini, G.; Neri, F.; Marchi, E. The impact of heavy traffic on forest soils: A review. For. Ecol. Manag. 2015, 338, 124–138. [Google Scholar] [CrossRef]
- Indorante, S.J.; Jansen, I.J.; Boast, C.W. Surface mining and reclamation: Initial changes in soil character. J. Soil Water Conserv. 1981, 36, 347–351. [Google Scholar]
- Frouz, J. Development of soil microbial properties in topsoil layer during spontaneous succession in heaps after brown coal mining in relation to humus microstructure development. Geoderma 2005, 129, 54–64. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, J.; Bai, Z.; Reading, L. Effects of surface coal mining and land reclamation on soil properties: A review. Earth-Sci. Rev. 2019, 191, 12–25. [Google Scholar] [CrossRef]
- Zipper, C.E.; Burger, J.A.; Skousen, J.G.; Angel, P.N.; Barton, C.D.; Davis, V.; Franklin, J.A. Restoring Forests and Associated Ecosystem Services on Appalachian Coal Surface Mines. Environ. Manag. 2011, 47, 751–765. [Google Scholar] [CrossRef]
TP (%) | CTP (%) | P < 14 μm (%) | CTPW (%) | CTPWA (%) | CTN | CTNW/CTN (%) | CTNWA/CTN (%) | |
---|---|---|---|---|---|---|---|---|
CFS | 52.94 (1.10) A | 23.23 (2.31) A | 29.71 (0.41) A | 0.01 (0.01) B | 23.22 (0.03) A | 7074.67 (1707.09) A | 37.35 (1.16) B | 62.65 (1.16) A |
CCS | 46.64 (1.67) B | 13.79 (5.68) B | 32.85 (5.02) A | 0.23 (0.08) A | 13.56 (0.74) B | 2271.67 (756.99) B | 55.08 (1.20) A | 46.27 (1.20) B |
3%-CCS | 45.45 (1.55) a | 15.28 (2.56) a | 30.17 (1.37) a | 0.26 (0.04) a | 15.02 (1.46) a | 2588.33 (119.64) a | 53.76 (0.07) b | 46.23 (0.07) a |
4%-CCS | 46.73 (1.08) a | 14.49 (9.82) a | 32.24 (8.74) a | 0.29 (0.12) a | 14.20 (5.60) a | 2190.33 (1355.54) a | 59.58 (1.35) a | 40.42 (1.35) b |
7%-CCS | 47.50 (1.94) a | 11.60 (3.88) a | 35.90 (3.82) a | 0.14(0.09) a | 11.47 (2.25) a | 2036.33 (443.80) a | 57.33 (2.97) a | 43.00 (2.97) b |
Distribution of Different Pore Throat Diameters (μm) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pisolated | Pic | Nthroat | Lthroat (μm) | 14–45 | 45–74 | 74–150 | 150–250 | 250–500 | >500 μm | CNic | IAic (°) | DP (μm) | |
CFS | 0.44 (0.15) A | 22.79 (2.16) A | 23,783.33 (7731.57) A | 7260.67 (1693.24) A | 14.14 (3.61) A | 16.02 (3.32) A | 32.91 (3.60) A | 20.29 (2.33) A | 12.87 (5.26) B | 3.77 (2.32) A | 7.49 (1.87) A | 59.73 (1.16) B | 743.18 (337.45) A |
CCS | 0.60 (0.33) A | 13.20 (5.92) A | 7756.33 (3213.21) B | 2038.78 (124.63) B | 10.51 (1.70) A | 11.74 (1.79) B | 25.49 (2.74) B | 21.72 (1.23) A | 23.07 (3.97) A | 7.47 (2.35) A | 6.03 (0.63) A | 64.55 (1.17) A | 527.22 (54.99) A |
3%-CCS | 0.38 (0.10) b | 14.91 (2.51) a | 7761.00 (1125.63) a | 2077.47 (30.56) a | 11.19 (1.95) a | 11.92 (2.23) a | 25.83 (2.35) a | 21.43 (0.13) a | 22.69 (4.23) a | 6.95 (2.17) a | 6.27 (0.10) a | 64.18 (0.91) a | 550.43 (33.88) a |
4%-CCS | 0.60 (0.53) ab | 13.89 (10.25) a | 8247.33 (6036.11) a | 1988.31 (211.07) a | 10.14 (1.92) a | 11.06 (2.35) a | 23.83 (1.92) a | 22.32 (1.42) a | 25.18 (4.64) a | 7.46 (0.51) a | 6.23 (1.06) ab | 64.88 (1.89) a | 558.08 (61.46) a |
7%-CCS | 0.82 (0.07) a | 10.79 (3.84) a | 7260.67 (1693.24) a | 2050.56 (101.84) a | 10.21 (1.76) a | 12.24 (1.08) a | 26.80 (3.74) a | 21.43 (1.81) a | 21.34 (3.47) a | 7.99 (4.03) a | 5.58 (0.09) b | 64.60 (0.84) a | 473.14 (23.34) b |
Maximum Water Holding Capacity (%) | Capillary Water Holding Capacity (%) | Field Capacity (%) | Soil Permanent Wilting Point (%) | Maximum Water Holding Capacity (%) | Saturated Hydraulic Conductivity (cm/h) | |
---|---|---|---|---|---|---|
CFS | 44.10 (5.22) A | 33.37 (1.23) A | 19.64 (0.18) B | 8.20 (0.32) A | 11.41 (0.55) B | 1.03 (0.28) A |
CCS | 37.51 (2.84) B | 32.28 (2.23) A | 20.45 (0.67) A | 7.48 (0.47) B | 12.91 (0.84) A | 0.35 (0.22) B |
3%-CCS | 37.38 (4.01) a | 32.69 (0.89) a | 20.47 (0.50) a | 7.13 (0.28) b | 13.27 (0.45) a | 0.55 (0.19) a |
4%-CCS | 37.40 (2.11) a | 32.54 (3.56) a | 20.16 (0.86) a | 7.99 (0.36) a | 12.02 (0.61) b | 0.40 (0.09) a |
7%-CCS | 37.75 (2.59) a | 31.61 (1.60) a | 20.71 (0.59) a | 7.30 (0.19) b | 13.43 (0.70) a | 0.11 (0.05) b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Nie, X.; Zhao, T.; Liu, X. Examining the Impact of Coal Contamination on Soil Structural and Moisture Properties: A Comparative Study of Coal-Free and Coal-Impacted Soils. Land 2024, 13, 1437. https://doi.org/10.3390/land13091437
Zhang W, Nie X, Zhao T, Liu X. Examining the Impact of Coal Contamination on Soil Structural and Moisture Properties: A Comparative Study of Coal-Free and Coal-Impacted Soils. Land. 2024; 13(9):1437. https://doi.org/10.3390/land13091437
Chicago/Turabian StyleZhang, Wenjing, Xiaoju Nie, Tongqian Zhao, and Xuan Liu. 2024. "Examining the Impact of Coal Contamination on Soil Structural and Moisture Properties: A Comparative Study of Coal-Free and Coal-Impacted Soils" Land 13, no. 9: 1437. https://doi.org/10.3390/land13091437
APA StyleZhang, W., Nie, X., Zhao, T., & Liu, X. (2024). Examining the Impact of Coal Contamination on Soil Structural and Moisture Properties: A Comparative Study of Coal-Free and Coal-Impacted Soils. Land, 13(9), 1437. https://doi.org/10.3390/land13091437