The Application of Soil Erosion Models of an Agroforestry Basin under Mediterranean Conditions from a Geotechnical Point of View
Abstract
:1. Introduction
2. Materials and Methods
2.1. Basin Characteristics
- Better use of available physical space;
- Environmental conservation and protection of natural resources;
- Establishment of technical criteria for land use and degraded areas recovery;
- Optimization of public and private resources;
- Population and infrastructures maintenance through the prediction and prevention of geological hazards;
- Guidance of specific studies and tests for engineering projects.
2.2. Hydrogeological and Geomorphological Characterization
2.3. Soil Loss Calculations
3. Results
3.1. RUSLE Application
3.1.1. R Factor
3.1.2. K Factor
3.1.3. LS Factor
3.1.4. CP Factor
3.2. SWAT
4. Discussion
4.1. Susceptibility Charts
4.2. Geotechnical Materials Frameworks
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, W.; Huang, Y.; Lebar, K.; Bezak, N. A systematic review of the incorrect use of an empirical equation for the estimation of the rainfall erosivity around the globe. Earth Sci. Rev. 2023, 238, 104339. [Google Scholar] [CrossRef]
- Garcia-Rodeja, E.; Macias, F.; Ojea, C. Reaccion com el FNa de los suelos da Galícia. I. Características y significado del teste de FNa. Distribuicion de la reatividade en funcion del material de partida. An. Edafol. Agrobiol. 1984, 43, 755–776. [Google Scholar]
- Batista, P.V.; Davies, J.; Silva, M.L.; Quinton, J.N. On the evaluation of soil erosion models: Are we doing enough? Earth-Sci. Rev. 2019, 197, 102898. [Google Scholar] [CrossRef]
- FAO. El estado Mundial de la Agricultura y la Alimentacion 1994. Dilemas del Desarrollo y las Politicas Forestales; Food & Agriculture Organization: Rome, Italy, 1994. [Google Scholar]
- Veron, S.R.P.J.M.; Oesterheld, M. Assessing desertification. J. Arid Environ. 2006, 66, 751–763. [Google Scholar] [CrossRef]
- Gómez, J.A.; Giráldez, J.V.; Pastor, M.; Fereres, E. Effects of tillage method on soil physical properties, infiltration and yield in an olive orchard. Soil Tillage Res. 1999, 52, 167–175. [Google Scholar] [CrossRef]
- Prosdocimi, M.; Cerdà, A. Tarolli, Soil water erosion on Mediterranean vineyards: A review. Catena 2016, 141, 1–21. [Google Scholar] [CrossRef]
- Zhidkin, A.; Gennadiev, A.; Fomicheva, D.; Shamshurina, E.; Golosov, V. Soil erosion models verification in a small catchment for different time windows with changing cropland boundary. Geoderma 2023, 430, 116322. [Google Scholar] [CrossRef]
- Ye, B.; Chen, Y.; Li, Y.; Li, H.; Yang, L.; Wang, W. Risk assessment and water safety plan: Case study in Beijing, China. J. Water Health 2015, 13, 510–521. [Google Scholar] [CrossRef]
- Casalí, J.; Gastesi, R.; Álvarez-Mozos, J.; De Santisteban, L.M.; de Lersundi, J.D.V.; Giménez, R.; Donézar, M. Runoff, erosion, and water quality of agricultural watersheds in central Navarre (Spain). Agric. Water Manag. 2008, 95, 1111–1128. [Google Scholar] [CrossRef]
- Li, P.; Zhang, K.; Ling, P.; Zhao, L. Sediment transport capacity equation for soils from the Loess Plateau and northeast China. Catena 2023, 223, 106929. [Google Scholar] [CrossRef]
- Troeh, F.R.; Hobbs, J.A.; Donahue, R.L. Soil and Water Conservation: Productivity and Environmental Protection; Prentice Hall Inc.: Hoboken, NJ, USA, 1999. [Google Scholar]
- Diário da República. Lei da Água. Lei n.º 58/2005. Diário da República n.º249/2005, Série I-A de 2005-12-29; Diário da República: Lisbon, Portugal, 2005. [Google Scholar]
- Lal, R. Soil erosion and the global carbon budget. Environ. Int. 2003, 29, 437–450. [Google Scholar] [CrossRef] [PubMed]
- Efthimiou, N. Object-oriented soil erosion modelling: A non-stationary approach towards a realistic calculation of soil loss at parcel level. Catena 2023, 222, 106816. [Google Scholar] [CrossRef]
- Oldeman, L.R. Global Extent of Soil Degradation. In Bi-Annual Report; ISRIC: Wageningen, The Netherlands, 1992. [Google Scholar]
- Azevedo, J.C.R.D.; Nozaki, J. Análise de fluorescência de substâncias húmicas extraídas da água, solo e sedimento da Lagoa dos Patos-MS. Química Nova 2008, 31, 1324–1329. [Google Scholar] [CrossRef]
- FAO. World Reference Base for Soil Resources; FAO World Soil Resources Report 84; Food and Agriculture Organization of United Nations: Rome, Italy, 1998. [Google Scholar]
- Cortês, N.; Abreu, M.M. Solo—Recurso natural a preservar. In Solo: A Pele da Terra; Departamento de Geologia FCUL: Lisboa, Portugal, 2008. [Google Scholar]
- Jabbour, C.J.C.; Fiorini, P.D.C.; Wong, C.W.; Jugend, D.; Jabbour, A.B.D.L.S.; Seles, B.M.P.R.; da Silva, H.M.R. First-mover firms in the transition towards the sharing economy in metallic natural resource-intensive industries: Implications for the circular economy and emerging industry 4.0 technologies. Resour. Policy 2020, 66, 101596. [Google Scholar] [CrossRef]
- Jetten, V.; De Roo, A.D.; Favis-Mortlock, D. Evaluation of field-scale and catchment-scale soil erosion models. Catena 1999, 37, 521–541. [Google Scholar] [CrossRef]
- Gonzales-Romero, J.; Zema, D.; Carrà, B.; Neris, J.; Fajardo, A.; Plaza-Álvarez, P.; Moya, D.; Peña-Molina, E.; Heras, J.; Lucas-Borja, M. Soil erosion modelling of burned and mulched soils following a Mediterranean forest wildfire. Soil Use Manag. 2022, 39, 881–899. [Google Scholar] [CrossRef]
- Bai, Y.; Cui, H. An improved vegetation cover and management factor for RUSLE model in prediction of soil erosion. Environ. Sci. Pollut. Res. 2021, 28, 21132–21144. [Google Scholar] [CrossRef]
- Morgan, R.P.C.; McIntyre, K.; Vickers, A.W.; Quinton, J.N.; Rickson, R.J. A rainfall simulation study of soil erosion on rangeland in Swaziland. Soil Technol. 1997, 11, 291–299. [Google Scholar] [CrossRef]
- Abdelsamie, E.; Abdellatif, M.; Hassan, F.; El Baroudy, A.; Mohamed, E.; Kucher, D.; Shokr, M. Integration of RUSLE Model, Remote Sensing and GIS Techniques for Assessing Soil Erosion Hazards in Arid Zones. Agriculture 2023, 13, 35. [Google Scholar] [CrossRef]
- Gonçalves, V.; Albuquerque, A.; Almeida, P.G.; Cavaleiro, V. DRASTIC Index GIS-Based Vulnerability Map for the Entre-os-Rios Thermal Aquifer. Water 2022, 14, 2448. [Google Scholar] [CrossRef]
- Cronshey, R.G.; Theurer, F.D. AnnAGNPS-non point pollutant loading model. In Proceedings of the First Federal Interagency Hydrologic Modeling Conference, Las Vegas, NV, USA, 19–23 April 1998. [Google Scholar]
- Arnold, J.G.; Allen, P.M. Estimating hydrologic budgets for three Illinois watersheds. J. Hydrol. 1996, 176, 57–77. [Google Scholar] [CrossRef]
- Knisel, W.G.; Moffitt, D.C.; Dumper, T.A. Representing seasonally frozen soil with the CREAMS model. Trans. ASAE 1985, 28, 1487–1493. [Google Scholar] [CrossRef]
- Laflen, J.M.; Elliot, W.J.; Flanagan, D.C.; Meyer, C.R.; Nearing, M.A. WEPP-predicting water erosion using a process-based model. J. Soil Water Conserv. 1997, 52, 96–102. [Google Scholar]
- Williams, J.R.; Renard, K.G. Assessments of soil erosion and crop productivity with process models (EPIC). In Soil Erosion and Crop Productivity; American Society Agronomy: Madison, WI, USA, 1985; pp. 67–103. [Google Scholar]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning; Department of Agriculture, Science and Education Administration: USDA, MD, USA, 1978; Volume 537. [Google Scholar]
- Renard, K.G. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); United States Government Printing: Washington, DC, USA, 1997. [Google Scholar]
- Smith, R.E.; Goodrich, D.C.; Quinton, J.N. Dynamic, distributed simulation of watershed erosion: The KINEROS2 and EUROSEM models. J. Soil Water Conserv. 1995, 50, 517–520. [Google Scholar]
- Cavaleiro, V.M.P. Condicionantes Geotécnicas à Expansão do Núcleo Urbano da Covilhã. Ph.D. Thesis, Universidade da Beira Interior, Covilhã, Portugal, 2001. [Google Scholar]
- Marchiori, L. Mechanical and Hydraulic Long-Term Behavior for an Experimental Compacted Liner Embankment. Master’s Thesis, Universidade Beira Interior, Covilhã, Portugal, 13 December 2022. [Google Scholar]
- da Silva, R.P.; Lacerda, W.A.; Coelho Netto, A.L. Relevant geological-geotechnical parameters to evaluate the terrain susceptibility for shallow landslides: Nova Friburgo, Rio de Janeiro, Brazil. Bull. Eng. Geol. Environ. 2022, 81, 57. [Google Scholar] [CrossRef]
- Cerri, L. Carta geotécnica: Contribuições para uma concepção voltada as necessidades brasileiras. In Congresso Brasileiro de Geologia e Engenharia; ABGE: Salvador, Brazil, 1990. [Google Scholar]
- Grant, K.; Finlayson, A.A. The PUCE System for terrain analysis, assessment and evaluation as used for urban and regional development. In Proceedings of the 5th Australian Conference on Urban and Regional Planning Information Systems (URPIS FIVE), Canberra, Australia, 9–11 November 1977. [Google Scholar]
- Duarte, A.C.; Mateos, L. How changes in cropping intensity affect water usage in an irrigated Mediterranean catchment. Agric. Water Manag. 2022, 260, 107274. [Google Scholar] [CrossRef]
- Bos, M.G.; Replogle, J.A.; Clemmens, A.J. Flow Measuring Flumes for Open Channel Systems; American Society of Agricultural Engineers: Joseph, MI, USA, 1984. [Google Scholar]
- INAG. National Programme for Dams with High Hydroelectric Potential Programa Nacional de Barragens com Elevado Potencial Hidroeléctrico (PNBEPH); General Directorate for Energy and Geology and National Transmission Operator: Lisbon, Portugal, 2007. [Google Scholar]
- Ecossistema Lda. IC31—Castelo Branco/Monfortinho. Estudo Prévio, III, Estudo de Impactes Ambientais, Peças Escritas, Relatório Tomo 2/3; Estradas de Portugal (EP): Castelo Branco, Portugal, 2010. [Google Scholar]
- Julivert, M.; Ribeiro, A. Memória Explicativa del Mapa Tectónico de la Peninsula Iberica y Baleares; Institute de Geología y Mineración de España: Madrid, Spain, 1974. [Google Scholar]
- Ferreira, N.; Iglesias, M.; Noronha, F.; Pereira, E.; Ribeiro, A.; Ribeiro, M.L. Granitóides da Zona Centro Ibérica e seu enquadramento geodinâmico. Geologia de los granitoides y rocas associadas del Macizo Hesperico; Livro Homenagem; Instituto Geológico y Minero de España: Madrid, Spain, 1987; pp. 37–51. [Google Scholar]
- Thadeu, D. Nota Explicativa da Carta Geológica de Portugal na Escala de 1:1.000.000; Serviço Geológico de Lisboa: Lisboa, Portugal, 1958. [Google Scholar]
- Ribeiro, O. Sur la morphologie da la Basse Beira. Bull. Assoc. Géographie Fr. 1939, 122, 113–122. [Google Scholar] [CrossRef]
- Ribeiro, O. Notas sobre a evolução morfológica da condilheira central. Bol. Geológico Porto 1942, 1. [Google Scholar]
- Ribeiro, O. Evolução da falha Ponsul. Comun. Dos Serviços Geol. Port. 1943, XXIV. [Google Scholar]
- Ribeiro, O. Três notas de geomorfologia da Beira Baixa. Comun. Dos Serviços Geol. Port. 1951, XXXII, 271–294. [Google Scholar]
- Daveau, S. Structure et relief de la Serra da Estrela. Finisterra 1969, 4, 159–197. [Google Scholar]
- Young, T.P. The lithostratigraphy of the Upper Odovician of Central Portugal. J. Geol. Soc. 1988, 145, 377–392. [Google Scholar] [CrossRef]
- Cunha, P.P. O Terciário da Beira Baixa: Registo estratigráfico e interpretação paleogeográficas. Geonovas 2001, 15, 19–31. [Google Scholar]
- Pereira, A.J.S.C.; Pereira, L.C.G.; Macedo, C.A.R. Os plutonitos da Zebreira: Idade e enquadramento estrutural. Memórias e Notícias. Publicação Laboratório Miner. 1986, 101, 21–31. [Google Scholar]
- Corretge, L. Aspectos petrológicos y estruturales de las rocas filonianas en el Complejo Esquisto Grauváquico del área Zarza-la-Mayor. In Proceedings of the I Congreso Español de Geología, Segovia, Spain, 9–14 April 1984. [Google Scholar]
- Sequeira, A. O grupo das Beiras (Complexo Xisto Grauváquico) entre Zebreira e Penamacor e a sua relação com o Ordovícico. In Proceedings of the III Congresso Nacional de Geologia, Lisboa, Portugal, 21–23 October 1991. [Google Scholar]
- Bosch, D.; Theurer, F.; Bingner, R.; Felton, G.; Chaubey, I. Evaluation of the AnnAGNPS water quality model. In Agricultural Non-Point Source Water Quality Models: Their Use and Application; ASAE: Orlando, FL, USA, 1998; pp. 45–54. [Google Scholar]
- Yuan, Y.; Bingner, R.L.; Theurer, F.D.; Rebich, R.A.; Moore, P.A. Phosphorus component in AnnAGNPS. Trans. ASAE 2005, 48, 2145–2154. [Google Scholar] [CrossRef]
- Williams, J.R.; Arnold, J.G.; Kiniry, J.R.; Gassman, P.W.; Green, C.H. History of model development at Temple, Texas. Hydrol. Sci. J. 2008, 53, 948–960. [Google Scholar] [CrossRef]
- Aksoy, H.; Kavvas, M.L. A review of hillslope and watershed scale erosion and sediment transport models. Catena 2005, 64, 247–271. [Google Scholar] [CrossRef]
- Albuquerque, A.W.; Lombardi Neto, F.; Srinivasan, V.S.; Santos, J.R. Manejo da cobertura do solo e de práticas conservacionistas nas perdas de solo e água em Sumé, PB. Rev. Bras. Eng. Agrícola Ambient. 2002, 6, 136–141. [Google Scholar] [CrossRef]
- van Griensven, A.V.; Meixner, T.; Grunwald, S.; Bishop, T.; Diluzio, M.; Srinivasan, R. A global sensitivity analysis tool for the parameters of multi-variable catchment models. J. Hydrol. 2006, 324, 10–23. [Google Scholar] [CrossRef]
- Adriolo, M.V.; Santos, I.D.; Gibertoni, R.C.; Camargo, A.D. Calibração do modelo SWAT para a produção e transporte de sedimentos. Simpósio Bras. Sobre Pequenas E Médias Centrais Hidrelétricas 2008, 6, 1–18. [Google Scholar]
- Agroconsultores. Carta de Aptidão e Uso da Terra, Zona Interior Centro (ZIC); IDRHa—Instituto de Desenvolvimento Rural e Hidráulica: Lisboa, Portugal, 2003. [Google Scholar]
- Williams, J. Chapter 25: The EPIC model. In Computed Models of Watershed Hydrology; Singh, V.P., Ed.; Water Resource Publication: Baton Rouge, LO, USA, 1995; pp. 909–1000. [Google Scholar]
- Chaves, H.M.L. Modelagem Matemática da Erosão Hídrica: Passado, Presente e Futuro—O Solo nos Grandes Domínios Morfoclimáticos do Brasil e o Desenvolvimento Sustentado. Ph.D. Thesis, University of Viçosa, Minas Gerais, Brazil, 1996. [Google Scholar]
- Moore, I.D.; Burch, G.J. Physical basis of the length-slope factor in the universal soil loss equation. Soil Sci. Soc. Am. J. 1986, 50, 1294–1298. [Google Scholar] [CrossRef]
- Irvem, A.; Topaloglu, F.; Uygur, V. Estimating spatial distribution of soil loss over Seyhan River Basin in Turkey. J. Hydrol. 2007, 336, 30–37. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- ASCE. Hydrologic Handbook, 2 ed.; ASCE Manual and Report on Engineering Practice, 28; American Society of Civil Engineers: Reston, VA, USA, 1996. [Google Scholar]
- Silva, P.; Mello, C.; Silva, A.; Coelho, G. Modelagem da Hidrógrafa de Cheia em uma Bacia Hidrográfica da Região Alto Rio Grande. Rev. Eng. Agrícola Ambient. 2008, 12, 258–265. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.; Panagos, P.; Lugato, E.; Yang, J.; Alewell, C.; Wuepper, D.; Montanarella, L.; Ballabio, C. Land use and climate change impacts on global soil erosion by water (2015–2070). Proc. Natl. Acad. Sci. USA 2020, 117, 21994–22001. [Google Scholar] [CrossRef] [PubMed]
- Garrido, F.; Granda, P. Risk Analysis of Soil Erosion Using Remote Sensing, GIS, and Machine Learning Models in Imbabura Province, Ecuador. SN Comput. Sci. 2024, 5, 16. [Google Scholar] [CrossRef]
- Panagos, P.; Ballabio, C.; Borrelli, P.; Meusburger, K.; Klik, A.; Rousseva, S.; Tadic, M.; Michaelides, S.; Hrabalíková, M.; Aalto, O.P.J.; et al. Rainfall erosivity in Europe. Sci. Total Environ. 2015, 511, 801–814. [Google Scholar] [CrossRef]
- Komissarov, M.; Fomicheva, D.; Zhidkin, A.; Yudina, A. Variations in soil erodibility (K-factor) for the Chernozems depending on the method of texture determination. MethodsX 2024, 13, 102876. [Google Scholar] [CrossRef]
- Ganasri, B.; Ramesh, H. Assessment of soil erosion by RUSLE model using remote sensing and GIS—A case study of Nethravathi Basin. Geosci. Front. 2016, 7, 953–961. [Google Scholar] [CrossRef]
- Ghavami, M.; Ayobi, S.; Khaleghpanah, N.; Mosaddeghi, M.; Gohari, A. Soil loss estimation using RUSLE model: Comparison of conventional and digital soil data at watershed scale in central Iran. Soil Tillage Res. 2024, 244, 106238. [Google Scholar] [CrossRef]
- Matos Fernandes, M. Mecânica dos Solos, 2nd ed.; FEUP: Porto, Portugal, 1995. [Google Scholar]
- Seed, H.; Booker, J. Stabilization of potentially liquefiable sand deposits using gravel drains. J. Geotech. Eng. Div. 1977, 103, 757–768. [Google Scholar] [CrossRef]
- Umar, H.; Zeng, X.; Lan, X.; Zhu, H.; Li, Y.; Liu, H. A Review on Cement Asphalt Emulsion Mortar Composites, Structural Development, and Performance. Materials 2021, 14, 3422. [Google Scholar] [CrossRef] [PubMed]
- Laurance, W. Bad Roads, Good Roads. In Handbook of Road Ecology; Wiley: Hoboken, NJ, USA, 2015; Chapter 2. [Google Scholar]
- Stajano, F.; Hoult, N.; Wassel, I.; Bennet, P.; Middleton, C.; Soga, K. Smart bridges, smart tunnels: Transforming wireless sensor networks from research prototypes into robust engineering infrastructure. Ad Hoc Netw. 2010, 8, 872–888. [Google Scholar] [CrossRef]
- Marcus, C.F.C. People Places: Design Guidelines for Urban Open Space, 2nd ed.; John Wiley & Sons, INC.: Toronto, ON, Canada, 1997. [Google Scholar]
- Addie, J.-P. Flying high (in the competitive sky): Conceptualizing the role of airports in global city-regions through “aero-regionalism. Geoforum 2014, 55, 87–99. [Google Scholar] [CrossRef]
- Hunter, P.; MacDonald, A.; Carter, R. Water supply and health. PLoS Med. 2010, 7, e1000361. [Google Scholar] [CrossRef]
- Marchiori, L.; Morais, M.V.; Studart, A.; Albuquerque, A.; Andrade Pais, L.; Ferreira Gomes, L.; Cavaleiro, V. Energy Harvesting Opportunities in Geoenvironmental Engineering. Energies 2024, 17, 215. [Google Scholar] [CrossRef]
- United Nations Parliament and Council. The 2030 Agenda for Sustainable Development; UN: Geneva, Switzerland, 2020. [Google Scholar]
Method * | Cell Dimension | Annual Soil Loss (A) (t.ha−1.year−1) | Area (%) by Erosion Risk Class (t/ha) | ||||||
---|---|---|---|---|---|---|---|---|---|
Average | Standard Deviation | Max | <5 | 5–12 | 12–50 | 100–200 | >200 | ||
1 | 5 m | 13.06 | 55.23 | 1512.50 | 76.99 | 10.42 | 7.23 | 1.50 | 2.37 |
10 m | 13.00 | 52.24 | 1120.60 | 76.88 | 10.41 | 7.27 | 1.49 | 2.37 | |
2 | 5 m | 18.89 | 77.78 | 1520.97 | 73.87 | 11.41 | 7.17 | 1.99 | 3.20 |
10 m | 18.85 | 75.31 | 1512.50 | 73.71 | 11.55 | 7.12 | 1.95 | 3.25 | |
3 | 5 m | 39.57 | 131.97 | 1921.53 | 49.89 | 20.18 | 20.44 | 2.16 | 1.61 |
10 m | 39.80 | 133.14 | 1847.85 | 49.99 | 20.13 | 20.38 | 2.19 | 1.61 | |
4 | 5 m | 1.42 | 6.24 | 222.71 | 93.43 | 4.91 | 1.37 | 0.19 | 0.09 |
10 m | 1.43 | 6.19 | 222.71 | 93.21 | 5.17 | 1.32 | 0.21 | 0.08 | |
5 | 5 m | 3.12 | 5.97 | 76.99 | 84.94 | 8.48 | 6.46 | 0.12 | 0.00 |
10 m | 3.14 | 6.00 | 76.99 | 84.93 | 8.45 | 6.50 | 0.12 | 0.00 | |
6 | 5 m | 3.54 | 6.00 | 76.99 | 81.80 | 11.26 | 6.82 | 0.12 | 0.00 |
10 m | 3.56 | 6.03 | 76.99 | 81.82 | 11.19 | 6.87 | 0.12 | 0.00 |
Years | 1981–2010 | 2004–2013 | 2009 | 2010 | 2011 | 2012 | 2013 |
---|---|---|---|---|---|---|---|
R (MJ. mm/h.ha.year) | 896.85 | 1130.91 | 689.68 | 1406.02 | 2091.57 | 1532.28 | 2739.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leite, A.P.; Duarte, A.C.; Marchiori, L.; Morais, M.V.; Studart, A.; Cavaleiro, V. The Application of Soil Erosion Models of an Agroforestry Basin under Mediterranean Conditions from a Geotechnical Point of View. Land 2024, 13, 1613. https://doi.org/10.3390/land13101613
Leite AP, Duarte AC, Marchiori L, Morais MV, Studart A, Cavaleiro V. The Application of Soil Erosion Models of an Agroforestry Basin under Mediterranean Conditions from a Geotechnical Point of View. Land. 2024; 13(10):1613. https://doi.org/10.3390/land13101613
Chicago/Turabian StyleLeite, Ana Paula, António Canatário Duarte, Leonardo Marchiori, Maria Vitoria Morais, André Studart, and Victor Cavaleiro. 2024. "The Application of Soil Erosion Models of an Agroforestry Basin under Mediterranean Conditions from a Geotechnical Point of View" Land 13, no. 10: 1613. https://doi.org/10.3390/land13101613
APA StyleLeite, A. P., Duarte, A. C., Marchiori, L., Morais, M. V., Studart, A., & Cavaleiro, V. (2024). The Application of Soil Erosion Models of an Agroforestry Basin under Mediterranean Conditions from a Geotechnical Point of View. Land, 13(10), 1613. https://doi.org/10.3390/land13101613