Sustainable Organic Farming Crops in Nepal in Climate Change Conditions: Predictions and Preferences
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Research Concept
2.3. The Questionnaire Survey
2.4. Climate Data
- Current condition—long-term average for the period from 1970 to 2022; data source: WorldCim 2.1/CMIP6 (http://www.worldclim.org/version2 (accessed on 20 May 2022))
- Future condition—prediction for the period 2041–2060; climate model MPI-ESM1-2—HR/CMIP 6, RCP (SSPS) 858
2.5. Modeling of Change in Suitability of Growth Conditions for the Selected Crops
- Current and future precipitation (minimum, lowest value of optimum range, highest value of optimum range, and maximum)
- Current and future air temperatures (minimum, lowest value of optimum range, highest value of optimum range, and maximum)
- Length of growing period (minimum length, maximum length, mean length)
2.6. Comparison with the Results of the Questionnaire Survey
2.7. Statistical Analysis
3. Results
3.1. The Questionnaire Survey About Crops Grown in the Study Area
3.2. Climate Modeling
3.3. Bioclimatic Modeling
3.4. Comparison of Model Results with Survey of Local People/Farmers Preferences
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malla, G. Climate Change and Its Impact on Nepalese Agriculture. J. Agric. Environ. 2008, 9, 62–71. [Google Scholar] [CrossRef]
- Eriksson, M. The Changing Himalayas: Impact of Climate Change on Water Resources and Livelihoods in the Greater Himalayas; International Centre for Integrated Mountain Development (ICIMOD): Kathmandu, Nepal, 2009; ISBN 978-92-9115-111-0. [Google Scholar]
- Sharma, M.; Dahal, S. Assessment of Climate Change Impacts Local Adaptation Measures in the Livelihoods of Indigenous Community in the Hills of Sankhuwasabha District, Nepal. In Understanding Climate Change Impact in Nepal: Some Case Studies; Nepal Climate Change Knowledge Management Center, Nepal Academy of Science and Technology: Khumaltar/Lalitpur, Nepal, 2011. [Google Scholar]
- Ahmed, M. Assessing the Costs of Climate Change and Adaptation in South Asia; Asian Development Bank: Mandaluyong, Philippines, 2014. [Google Scholar]
- Guo, X.; Tian, L. Spatial Patterns and Possible Mechanisms of Precipitation Changes in Recent Decades over and around the Tibetan Plateau in the Context of Intense Warming and Weakening Winds. Clim. Dyn. 2022, 59, 2081–2102. [Google Scholar] [CrossRef]
- Garnaut, R. Removing Climate Change as a Barrier to Economic Progress. Econ. Analysis Policy 2013, 43, 31–47. [Google Scholar] [CrossRef]
- Nelson, G.C.; Shively, G.E. Modeling Climate Change and Agriculture: An Introduction to the Special Issue. Agric. Econ. 2014, 45, 1–2. [Google Scholar] [CrossRef]
- Pokhrel, D.M.; Thapa, G.B. Are Marketing Intermediaries Exploiting Mountain Farmers in Nepal? A Study Based on Market Price, Marketing Margin and Income Distribution Analyses. Agric. Syst. 2007, 94, 151–164. [Google Scholar] [CrossRef]
- Bandara, J.S.; Cai, Y. The Impact of Climate Change on Food Crop Productivity, Food Prices and Food Security in South Asia. Econ. Anal. Policy 2014, 44, 451–465. [Google Scholar] [CrossRef]
- Shrestha, D.P.; Zinck, J.A.; Van Ranst, E. Modelling Land Degradation in the Nepalese Himalaya. Catena 2004, 57, 135–156. [Google Scholar] [CrossRef]
- Dahal, K.R. Climate Change and Organic Agriculture in Nepal: A Review. Nepal. J. Agric. Sci. 2012, 10, 138–152. [Google Scholar]
- Chalise, D.; Kumar, L.; Kristiansen, P. Land Degradation by Soil Erosion in Nepal: A Review. Soil Syst. 2019, 3, 12. [Google Scholar] [CrossRef]
- Thapa, P. Spatial Estimation of Soil Erosion Using RUSLE Modeling: A Case Study of Dolakha District, Nepal. Environ. Syst. Res. 2020, 9, 15. [Google Scholar] [CrossRef]
- Magar, D.B.T.; Bal, K.J. Factors Influencing Cultivation and Promotion of Traditional Crops in the Mountains: A Case of Jumla District, Nepal. Tradit. Crop Biodivers. Mt. Food Nutr. Secur. Nepal 2020, 125-137, 125–137. [Google Scholar]
- Atreya, K.; Subedi, B.P.; Ghimire, P.L.; Khanal, S.C.; Pandit, S. A Review on History of Organic Farming in the Current Changing Context in Nepal. Arch. Agric. Environ. Sci. 2020, 5, 406–418. [Google Scholar] [CrossRef]
- Gafsi, M.; Favreau, J.L. Appropriate Method to Assess the Sustainability of Organic Farming Systems. In Proceedings of the 9th European IFSA Symposium, Vienna, Austria, 4–7 July 2010. [Google Scholar]
- Niggli, U.; Schmid, H.; Fliessbach, A. Organic Farming and Climate Change; International Trade Centre (ITC): Geneva, Switzerland, 2008. [Google Scholar]
- Moudry, J.; Moudry, J. Environmental Aspects Of Organic Farming. In Organic Agriculture Towards Sustainability; Pilipavicius, V., Ed.; InTech: London, UK, 2014; ISBN 978-953-51-1340-9. [Google Scholar]
- Manna, M.C.; Rahman, M.M.; Naidu, R.; Bari, A.S.M.F.; Singh, A.B.; Thakur, J.K.; Ghosh, A.; Patra, A.K.; Chaudhari, S.K.; Subbarao, A. Organic Farming: A Prospect for Food, Environment and Livelihood Security in Indian Agriculture. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2021; Volume 170, pp. 101–153. ISBN 978-0-12-824591-0. [Google Scholar]
- Mäder, P.; Berner, A. Development of Reduced Tillage Systems in Organic Farming in Europe. Renew. Agric. Food Syst. 2012, 27, 7–11. [Google Scholar] [CrossRef]
- Stolze, M.; Piorr, A.; Häring, A.M.; Dabbert, S. (Eds.) The Environmental Impacts of Organic Farming in Europe; Organic Farming in Europe Economics and Policy; Universität Hohenheim, Institut für Landwirtschaftl Betriebslehre: Stuttgart/Hohenheim, Germany, 2000; ISBN 978-3-933403-05-6. [Google Scholar]
- Van Mansvelt, J.D.; Stobbelaar, D.J.; Hendriks, K. Comparison of Landscape Features in Organic and Conventional Farming Systems. Landsc. Urban Plan. 1998, 41, 209–227. [Google Scholar] [CrossRef]
- Seufert, V.; Ramankutty, N.; Foley, J.A. Comparing the Yields of Organic and Conventional Agriculture. Nature 2012, 485, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Ho, M.; Ching, L.L. Mitigating Climate Change through Organic Agriculture and Localized Food Systems, ISIS Report 31/1/08 2008. Available online: http://www.i-sis.org.uk/mitigatingClimateChange.php (accessed on 5 August 2023).
- Pokhrel, D.M.; Pant, K.P. Perspectives of Organic Agriculture and Policy Concerns in Nepal. J. Agric. Environ. 2009, 10, 103–115. [Google Scholar] [CrossRef]
- Acharya, A.; Ghimire, P.; Wagle, A. An Overview of Organic Farming in Nepal. Sustain. Food Agric. 2020, 1, 109–112. [Google Scholar] [CrossRef]
- Atreya, K. Probabilistic Assessment of Acute Health Symptoms Related to Pesticide Use under Intensified Nepalese Agriculture. Int. J. Environ. Health Res. 2008, 18, 187–208. [Google Scholar] [CrossRef]
- Parajuli, S.; Shrestha, J.; Ghimire, S. Organic Farming in Nepal: A Viable Option for Food Security and Agricultural Sustainability. Arch. Agric. Environ. Sci. 2020, 5, 223–230. [Google Scholar] [CrossRef]
- Atreya, K.; Subedi, B.P.; Ghimire, P.L.; Khanal, S.C.; Charmakar, S.; Adhikari, R. Agroforestry for Mountain Development: Prospects, Challenges and Ways Forward in Nepal. Arch. Agric. Environ. Sci. 2021, 6, 87–99. [Google Scholar] [CrossRef]
- The Tenth Plan, National Planning Commission (NPC), Government of Nepal 2003. Available online: https://npc.gov.np/images/category/10th_eng.pdf (accessed on 9 September 2024).
- Willer, H.; Lernoud, J. (Eds.) The World of Organic Agriculture; Research Institute of Organic Agriculture (FiBL): Frick, Switzerland; IFOMA-Organics International: Bonn, Germany, 2019. [Google Scholar]
- Burlakoti, R.R.; Lynch, D.; Halde, C.; Beach, T.; Dahal, S.; Debnath, S.C. Organic Agriculture Project in Nepal: An International Twinning Partnership Program Initiative. Can. J. Plant Sci. 2012, 92, 997–1003. [Google Scholar] [CrossRef]
- Borron, S. Building Resilience for an Unpredictable Future: How Organic Agriculture Can Help Farmers Adapt to Climate Change; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006. [Google Scholar]
- Gauchan, D.; Palikhey, E.; Sthapit, S.; Joshi, B.K.; Manandhar, H.K.; Jarvis, D.I. Organic Farming and Marketing of Traditional Crops in Nepal Mountains: Gaps, Issues and Opportunities for Improvement. In Traditional Crop Biodiversity for Mountain Food and Nutrition Security in Nepal; 2020; NAGRC: Entebbe, Uganda; pp. 163–173. [Google Scholar]
- Halder, B.; Bandyopadhyay, J.; Banik, P. Assessment of Hospital Sites’ Suitability by Spatial Information Technologies Using AHP and GIS-Based Multi-Criteria Approach of Rajpur–Sonarpur Municipality. Model. Earth Syst. Environ. 2020, 6, 2581–2596. [Google Scholar] [CrossRef]
- Aksha, S.K.; Resler, L.M.; Juran, L.; Carstensen, L.W. A Geospatial Analysis of Multi-Hazard Risk in Dharan, Nepal. Geomat. Nat. Hazards Risk 2020, 11, 88–111. [Google Scholar] [CrossRef]
- Anaya Romero, M.; Pino Mejías, R.; Moreira Madueno, J.M.; Munoz Rojas, M.; de la Rosa, D. Analysis of Soil Capability versus Land Use Change by Using CORINE Land Cover and MicroLEIS. Int. Agrophysics 2011, 25, 395–398. [Google Scholar]
- Daccache, A.; Keay, C.; Jones, R.J.A.; Weatherhead, E.K.; Stalham, M.A.; Knox, J.W. Climate Change and Land Suitability for Potato Production in England and Wales: Impacts and Adaptation. J. Agric. Sci. 2012, 150, 161–177. [Google Scholar] [CrossRef]
- Karna, B.K.; Shobha, S.; Hriday, L.K. Land Suitability Analysis for Potential Agriculture Land Use in Sambhunath Municipality, Saptari, Nepal. Geogr. Base 2021, 8, 13–30. [Google Scholar] [CrossRef]
- Kumar, A.; Pramanik, M.; Chaudhary, S.; Negi, M.S. Land Evaluation for Sustainable Development of Himalayan Agriculture Using RS-GIS in Conjunction with Analytic Hierarchy Process and Frequency Ratio. J. Saudi Soc. Agric. Sci. 2021, 20, 1–17. [Google Scholar] [CrossRef]
- Joshi, B.K.; Gorkhali, N.A.; Pradhan, N.; Ghimire, K.H.; Gotame, T.P.; Kc, P.; Mainali, R.P.; Karkee, A.; Paneru, R.B. Agrobiodiversity and Its Conservation in Nepal. J. Nepal Agric. Res. Counc. 2020, 6, 14–33. [Google Scholar] [CrossRef]
- Hawkes, J.G.; Damania, A.B.; Valkoun, J.; Willcox, G.; Qualset, C.O. Back to Vavilov: Why Were Plants Domesticated in Some Areas and Not in Others? International Center for Agricultural Research in the Dry Areas: Aleppo, Syria, 1998. [Google Scholar]
- UNEP; GEF. Integrating Traditional Crop Genetic Diversity into Technology: Using a Biodiversity Portfolio Approach to Buffer against Unpredictable Environmental Change in Nepal Himalayas; United Nation Environment Program (UNEP): Nairobi, Kenya; Global Environment Facility (GEF): Washington, DC, USA; Bioversity International: Kathmandu, Nepal, 2013. [Google Scholar]
- Jarvis, D.I.; Hodgkin, T.; Brown, A.H.; Tuxil, J.D.; Noriega, I.; Smale, M.; Sthapit, B. Crop Genetic Diversity in the Field and on the Farm: Principles and Applications in Research Practices; Yale University Press: New Haven, CT, USA, 2016. [Google Scholar]
- CBS. Statistical Pocket Book of Nepal. Available online: https://cbs.gov.np/wp-content/upLoads/2022/01/Nepal-Statistical-Pocket-Book-2020.pdf (accessed on 18 May 2024).
- NPC. Nepal Human Development Report (2014); Beyond Geography, Unlocking Human Potential; Government of Nepal: Kathmandu, Nepal, 2014. [Google Scholar]
- Hijmans, R.J.; Guarino, L.; Cruz, M.; Rojas, E. Computer Tools for Spatial Analysis of Plant Genetic Resources Data: 1. DIVA-GIS. Plant Genet. Resour. Newsl. 2001, 1, 15–19. [Google Scholar]
- Pham, P.; Vinck, P. KOBO Toolbox. Available online: https://www.kobotoolbox.org/ (accessed on 22 September 2024).
- Ramirez-Villegas, J.; Jarvis, A.; Läderach, P. Empirical Approaches for Assessing Impacts of Climate Change on Agriculture: The EcoCrop Model and a Case Study with Grain Sorghum. Agric. For. Meteorol. 2013, 170, 67–78. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Jarvis, A.; Guarino, L. Diva-GIS Exercise 2-Modeling the Distribution of Wild Peanuts (Arachis Spp.). Manual. 2005. Available online: https://herbarium.millersville.edu/471/DIVA-GIS5_manual.pdf (accessed on 22 September 2024).
- Esri. ArcGIS Pro Help 2024; Esri: Redlands, CA, USA, 2024; Available online: https://pro.arcgis.com/en/pro-app/latest/help/main/welcome-to-the-arcgis-pro-app-help.htm (accessed on 22 September 2024).
- Faure, M.G.; Peeters, M. (Eds.) Climate Change Liability; New Horizons in Environmental and Energy Law; Edward Elgar: Cheltenham, UK, 2011; ISBN 978-1-84980-286-4. [Google Scholar]
- Sujakhu, N.M.; Ranjitkar, S.; He, J.; Schmidt-Vogt, D.; Su, Y.; Xu, J. Assessing the Livelihood Vulnerability of Rural Indigenous Households to Climate Changes in Central Nepal, Himalaya. Sustainability 2019, 11, 2977. [Google Scholar] [CrossRef]
- Acharya, T.D.; Yang, I.T. Vineyard Suitability Analysis of Nepal. Int. J. Environ. Sci. 2015, 6, 13–19. [Google Scholar]
- Zolekar, R.B.; Bhagat, V.S. Multi-Criteria Land Suitability Analysis for Agriculture in Hilly Zone: Remote Sensing and GIS Approach. Comput. Electron. Agric. 2015, 118, 300–321. [Google Scholar] [CrossRef]
- Douglas, H.C.; Harrington, L.J.; Joshi, M.; Hawkins, E.; Revell, L.E.; Frame, D.J. Changes to Population-Based Emergence of Climate Change from CMIP5 to CMIP6. Environ. Res. Lett. 2023, 18, 014013. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental Design and Organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1km Spatial Resolution Climate Surfaces for Global Land Areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Jones, C.A.; Kiniry, J.R.; Dyke, P. CERES-A Simulation Model of Growth and Development; Texas A & M University Press: College Station, TX, USA, 1986. [Google Scholar]
- Wilkerson, G.G.; Jones, J.W.; Boote, K.J.; Ingram, K.T.; Mishoe, J.W. Modeling Soybean Growth for Crop Management. Trans. ASAE 1983, 26, 0063–0073. [Google Scholar] [CrossRef]
- FAO. The State of Food Insecurity in the World 2010; Addressing Food Insecurity in Protracted Crises; FAO: Rome, Italy, 2010. [Google Scholar]
Category of Land Use/Land Cover | Area (%) | Area (km2) |
---|---|---|
Farmland | 12.51 | 21.79 |
Forest | 52.66 | 91.7 |
Grasslands and Meadows | 1.21 | 2.1 |
Orchard | 0 | 0.004 |
Quarry | 0.15 | 0.26 |
Residential/buildings | 3.19 | 5.56 |
Scrub | 2.99 | 5.2 |
Other/not classified (a mix of scattered greenery and bare soil) | 27.29 | 47.53 |
Sum | 100 | 174.144 |
Scientific Name Used in EcoCrop | Crop Name | Crop Type |
---|---|---|
Brassica nigra | Mustard | Oil seeds |
Zea mays L. s. Mays | Maize | Cereals |
Hordeum vulgare L. | Barley | Cereals |
Eleusine coracana (L.) Gaertn | Millets (finger millet) (kodo) | Cereals |
Fagopyrum esculentum Moench | Buckwheat | Cereals |
Triticum aestivum | Wheat | Cereals |
Brassica oleracea L.v capi. | Cabbage | Vegetables |
Brassica oleracea L.v botr. | Cauliflower | Vegetables |
Spinacia oleracea L. | Spinach (broadleaf) | Vegetables |
Allium cepa | Onion | Vegetables |
Raphanus sativus L. (C.R.) | Local radish (rato mula) | Vegetables |
Cyphomandra betacea (Cav.) | Tree tomato | Vegetables |
Solanum tuberosum | Potato | Tubers |
Dioscorea bulbifera | Yam | Tubers |
Colocasia affinis | Colocasia | Tubers |
Capsicum frutescens | Chilies | Spices |
Allium sativum | Garlic | Spices |
Zingiber officinalis | Ginger | Spices |
Phaseolus vulgaris L. | Beans | Leguminous crops |
Glycine max (L.) Merrill | Soyabean | Leguminous crops |
Bioclimatic Variables | Actual Climate Normal | Prediction for 2050 |
---|---|---|
BIO1 = Annual Mean Temperature | 15.7 | 16.6 |
BIO2 = Mean Monthly Range | 11 | 10.5 |
BIO3 = Isothermality (BIO2/BIO7) (×100) | 47.7 | 50 |
BIO4 = Temperature Seasonality (standard deviation × 100) | 429 | 413.9 |
BIO5 = Max Temperature of Warmest Month | 24 | 25 |
BIO6 = Min Temperature of Coldest Month | 2 | 4 |
BIO7 = Temperature Annual Range (BIO5-BIO6) | 22 | 21 |
BIO8 = Mean Temperature of Wettest Quarter | 19.6 | 20.5 |
BIO9 = Mean Temperature of Driest Quarter | 10 | 11.5 |
BIO10 = Mean Temperature of Warmest Quarter | 19.8 | 20.7 |
BIO11 = Mean Temperature of Coldest Quarter | 9.3 | 10.8 |
BIO12 = Annual Precipitation | 2050 | 2031 |
BIO13 = Precipitation of Wettest Month | 553 | 553 |
BIO14 = Precipitation of Driest Month | 10 | 9 |
BIO15 = Precipitation Seasonality (Coefficient of Variation) | 115.2 | 114.6 |
BIO16 = Precipitation of Wettest Quarter | 1380 | 1337 |
BIO17 = Precipitation of Driest Quarter | 36 | 33 |
BIO18 = Precipitation of Warmest Quarter | 1380 | 1329 |
BIO19 = Precipitation of Coldest Quarter | 43 | 39 |
Name | Scientific Name | Area of the Ward (km2) Belonging into the Individual Category of Suitability | Area of the Ward (km2) Belonging into the Individual CATEGORY of Suitability | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Actual Climatic Conditions | Predicted Climatic Conditions for 2050 | ||||||||||||
Oil Seeds | <Not Suited> | Very Marginal | Marginal | Suitable | Very Suitable | Excellent | <Not Suited> | Very Marginal | Marginal | Suitable | Very Suitable | Excellent | |
Mustard | Brassica nigra | - | - | - | 22.592 | 1.559 | - | - | - | - | 20.169 | 3.918 | 0.063 |
Cereals crops | |||||||||||||
Maize | Zea mays subsp. Mays | 23.570 | 0.273 | 0.308 | - | - | - | 22.987 | 0.856 | 0.308 | - | - | - |
Finger millet | Eleusine coracana | - | - | - | - | 23.843 | 0.308 | - | - | - | - | 23.570 | 0.580 |
Buckwheat | Fagopyrum esculentum | 24.151 | - | - | - | - | - | 24.151 | - | - | - | - | - |
Wheat | Triticum Aestivum | 24.151 | - | - | - | - | - | 24.151 | - | - | - | - | - |
Barley | Hordeum vulgare | 12.786 | 10.784 | 0.581 | - | - | - | 3.169 | 19.818 | 1.164 | - | - | - |
Spices | |||||||||||||
Chilies | Capsicum frutescens | 12.010 | 8.159 | 3.401 | 0.273 | 0.308 | - | 3.169 | 15.804 | 3.619 | 1.251 | 0.308 | - |
Garlic | Allium Sativum | - | - | - | 3.169 | 20.401 | 0.581 | - | - | - | - | 21.871 | 2.280 |
Ginger | Zingiber officinalis | 23.019975 | - | - | 1.131 | - | - | 12.52816 | - | - | 11.315 | 0.308 | - |
Tubers/Blub Crops | |||||||||||||
Colocasia | Colocasia affinisesculenta v. Ant. | - | - | - | 0.000 | 13.287 | 10.863 | - | - | - | - | 1.523 | 22.628 |
Potato | Solanum tuberosum | 13.545 | 10.025 | 0.581 | - | - | - | 3.169 | 20.401 | 0.581 | - | - | - |
Yam | Dioscorea alata, Dioscorea bulbifera L. | 23.020 | - | - | - | 0.550 | 0.581 | 14.297 | - | - | - | 2.864 | 6.990 |
Vegetables | |||||||||||||
Local radish (rato mula) | Raphanus sativus L. | - | - | - | 8.614 | 14.957 | 0.581 | - | - | - | - | 23.570 | 0.581 |
Spinach—broad leaf | Spinacia oleracea | 23.843 | 0.308 | - | - | - | - | 23.843 | 0.308 | - | - | - | - |
Onion | Allium cepa L. v. Cepa | - | - | 20.169 | 3.982 | - | - | - | - | - | 14.305 | 9.265 | 0.581 |
Cabbage | Brassica oleracea var. Capitata | - | - | 20.169 | 3.982 | - | - | - | - | 19.964 | 4.187 | - | - |
Cauliflower | Brassica oleracea var. Botrytis | 20.169 | 3.674 | 0.308 | - | - | - | 19.163 | 4.407 | 0.580 | - | - | - |
Tree Tomato | Cyphomandra betacea (Cav.) | 20.892 | 2.679 | 0.581 | - | - | - | 4.678 | 8.860 | 7.354 | 2.951 | 0.308 | - |
Leguminous crops | |||||||||||||
Beans | Phaseolus vulgaris | - | - | - | - | - | 24.151 | - | - | - | - | - | 24.151 |
Soyabean | Glycine max | 23.570 | 0.273 | - | 0.308 | - | - | 22.592 | 0.979 | 0.272 | 0.245 | 0.063 | - |
Ward | Area of Agricultural Land (km2) | Actual Suitability | Suitability According Respondents | Prediction of Future Suitability | Suitability According Respondents | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Crop | Excellent | Very Suitable | Share of Respondents from Selected Ward Indicating This Crop as Suitable for Organic Farming (%) | Crop | Excellent | Very Suitable | Share of Respondents from Selected Ward Indicating This Crop as Suitable for Organic Farming (%) | ||||||
Area (km2) | % from Agricultural Land | Area (km2) | % from Agricultural Land | Area (km2) | % from Agricultural Land | Area (km2) | % from Agricultural Land | ||||||
Bhusaphedi | 24.15 | Beans | 24.15 | 100.00 | 0.00 | 0.00 | 18.10 | Beans | 24.15 | 100.00 | 0.00 | 0.00 | 18.10 |
Colocasia | 10.86 | 44.98 | 13.29 | 55.02 | 68.20 | Colocasia | 22.63 | 93.69 | 1.52 | 6.31 | 68.20 | ||
Finger millet | 0.31 | 1.28 | 23.84 | 98.72 | 72.73 | Garlic | 2.28 | 9.44 | 21.87 | 90.56 | 63.40 | ||
Bocha | 17.92 | Beans | 13.55 | 75.63 | 2.02 | 11.29 | 31.10 | Beans | 14.38 | 80.24 | 3.54 | 19.76 | 31.10 |
Local radish | 4.45 | 24.81 | 7.26 | 40.52 | 47.50 | Local radish | 5.21 | 29.05 | 8.00 | 44.63 | 47.50 | ||
Colocasia | 4.04 | 22.55 | 6.94 | 38.71 | 91.80 | Colocasia | 8.27 | 46.15 | 6.11 | 34.09 | 91.80 | ||
Dudhpokhari | 21.46 | Beans | 21.02 | 97.93 | 0.44 | 2.07 | 7.10 | Beans | 21.41 | 99.74 | 0.06 | 0.26 | 7.10 |
Colocasia | 5.90 | 27.47 | 12.80 | 59.63 | 100.00 | Colocasia | 13.37 | 62.28 | 7.80 | 36.36 | 100.00 | ||
Local radish | 1.89 | 8.80 | 18.60 | 86.66 | 21.40 | Garlic | 5.56 | 25.89 | 15.91 | 74.11 | 96.40 | ||
Fasku | 24.27 | Beans | 24.15 | 99.49 | 0.00 | 0.00 | 34.60 | Beans | 24.15 | 99.49 | 0.00 | 0.00 | 34.60 |
Local radish | 0.12 | 0.51 | 24.15 | 99.49 | 53.80 | Garlic | 5.10 | 21.03 | 19.17 | 78.97 | 80.77 | ||
Garlic | 1.87 | 7.70 | 22.40 | 92.30 | 80.77 | Yam | 13.72 | 56.51 | 1.70 | 7.01 | 65.38 | ||
Katakuti | 21.77 | Beans | 21.77 | 100.00 | 0.00 | 0.00 | 97.60 | Beans | 21.77 | 100.00 | 0.00 | 0.00 | 97.60 |
Colocasia | 10.52 | 48.33 | 10.67 | 48.98 | 95.20 | Colocasia | 17.83 | 81.87 | 3.95 | 18.13 | 95.20 | ||
Garlic | 0.58 | 2.67 | 21.07 | 96.79 | 97.62 | Garlic | 3.75 | 17.22 | 18.02 | 82.78 | 97.62 | ||
LakuriDada | 27.69 | Beans | 22.80 | 82.34 | 3.50 | 12.64 | 33.30 | Beans | 24.74 | 89.35 | 2.95 | 10.65 | 33.30 |
Local radish | 6.26 | 22.61 | 12.71 | 45.89 | 71.43 | Colocasia | 13.80 | 49.85 | 10.93 | 39.49 | 47.62 | ||
Finger millet | 0.00 | 0.00 | 24.01 | 86.71 | 47.60 | Garlic | 4.48 | 16.19 | 23.20 | 83.81 | 95.24 | ||
Magapauwa | 15.66 | Beans | 15.66 | 100.00 | 0.00 | 0.00 | 52.90 | Beans | 15.66 | 100.00 | 0.00 | 0.00 | 52.90 |
Colocasia | 11.40 | 72.80 | 4.26 | 27.20 | 97.10 | Colocasia | 15.66 | 100.00 | 0.00 | 0.00 | 97.10 | ||
Finger millet | 0.00 | 0.00 | 15.66 | 100.00 | 71.40 | Yam | 9.51 | 60.69 | 0.00 | 0.01 | 35.29 | ||
Sailungeswor | 21.24 | Beans | 18.14 | 85.40 | 3.10 | 14.60 | 3.80 | Beans | 0.57 | 2.70 | 20.67 | 97.30 | 3.80 |
Local radish | 3.10 | 14.60 | 18.14 | 85.40 | 65.40 | Colocasia | 13.14 | 61.85 | 6.92 | 32.60 | 0.00 | ||
Colocasia | 6.22 | 29.26 | 10.90 | 51.34 | 0.00 | Garlic | 17.94 | 84.47 | 3.30 | 15.53 | 84.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pechanec, V.; Prokopová, M.; Cudlín, P.; Khadka, C.; Karki, R.; Jakubínský, J. Sustainable Organic Farming Crops in Nepal in Climate Change Conditions: Predictions and Preferences. Land 2024, 13, 1610. https://doi.org/10.3390/land13101610
Pechanec V, Prokopová M, Cudlín P, Khadka C, Karki R, Jakubínský J. Sustainable Organic Farming Crops in Nepal in Climate Change Conditions: Predictions and Preferences. Land. 2024; 13(10):1610. https://doi.org/10.3390/land13101610
Chicago/Turabian StylePechanec, Vilém, Marcela Prokopová, Pavel Cudlín, Chiranjeewee Khadka, Ratna Karki, and Jiří Jakubínský. 2024. "Sustainable Organic Farming Crops in Nepal in Climate Change Conditions: Predictions and Preferences" Land 13, no. 10: 1610. https://doi.org/10.3390/land13101610
APA StylePechanec, V., Prokopová, M., Cudlín, P., Khadka, C., Karki, R., & Jakubínský, J. (2024). Sustainable Organic Farming Crops in Nepal in Climate Change Conditions: Predictions and Preferences. Land, 13(10), 1610. https://doi.org/10.3390/land13101610