What Should Be Learned from the Dynamic Evolution of Cropping Patterns in the Black Soil Region of Northeast China? A Case Study of Wangkui County, Heilongjiang Province
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Crop Classification Method
2.3.2. Geo-Information Tupu
2.3.3. Temporal Dynamics of Cropping Patterns
2.3.4. Transition Matrix of Cropping Patterns
3. Results
3.1. Types of Cropping Patterns
3.2. Changes in Total Cropping Patterns
3.3. Spatial Dynamics of Cropping Patterns
3.3.1. Transition of Cropping Patterns
3.3.2. Evolutionary Pattern of Plot Cropping Patterns
4. Discussion
4.1. Natural Factors Effects on the Evolution of Cropping Patterns
4.2. The Evolution of Cropping Patterns and Policy Implementation
4.3. Measurement of the Evolution of Cropping Patterns
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, B.; Liu, Z.; Huang, F.; Yang, X.; Liu, Z.; Wan, W.; Wang, J.; Xu, Y.; Li, Z.; Ren, T. Security by Strengthening High-Productivity Black Soil Granary in Northeast China. Bull. Chin. Acad. Sci. 2021, 36, 1184–1193. [Google Scholar]
- Black Soil Protection Law of China (2022)—China Justice Observer. Available online: https://www.chinajusticeobserver.com/a/black-soil-protection-law-of-china-2022 (accessed on 19 July 2023).
- Montanarella, L.; Panagos, P.; Scarpa, S. The Relevance of Black Soils for Sustainable Development. In Regenerative Agriculture; Springer: Berlin/Heidelberg, Germany, 2021; pp. 69–79. [Google Scholar]
- Hao, C.; Xiao, W.; Zhou, Y.; Wang, Y. Phosphorus Balance in Typical Rainfield of Black Soil Region in Northeast China. Geosci. J. 2019, 23, 637–648. [Google Scholar] [CrossRef]
- Tang, L.; Chen, W. Development Trend and Prospect of Geng Rice in Northeast China. China Rice 2021, 27, 1–4. [Google Scholar]
- Liu, Y.; Wang, J. Revealing Annual Crop Type Distribution and Spatiotemporal Changes in Northeast China Based on Google Earth Engine. Remote Sens. 2022, 14, 4056. [Google Scholar] [CrossRef]
- Bogužas, V.; Skinulienė, L.; Butkevičienė, L.M.; Steponavičienė, V.; Petrauskas, E.; Maršalkienė, N. The Effect of Monoculture, Crop Rotation Combinations, and Continuous Bare Fallow on Soil CO2 Emissions, Earthworms, and Productivity of Winter Rye after a 50-Year Period. Plants 2022, 11, 431. [Google Scholar] [CrossRef]
- AbdelRahman, M.A.E. An Overview of Land Degradation, Desertification and Sustainable Land Management Using GIS and Remote Sensing Applications. Rend. Lincei 2023, 1–42. [Google Scholar] [CrossRef]
- Jankauskas, B.; Jankauskiene, G.; Fullen, M.A. Erosion-Preventive Crop Rotations and Water Erosion Rates on Undulating Slopes in Lithuania. Can. J. Soil Sci. 2011, 84, 177–186. [Google Scholar] [CrossRef]
- Faye, B.; Du, G.; Mbaye, E.; Liang, C.; Sané, T.; Xue, R. Assessing the Spatial Agricultural Land Use Transition in Thiès Region, Senegal, and Its Potential Driving Factors. Land 2023, 12, 779. [Google Scholar] [CrossRef]
- Faye, B.; Du, G.; Chigbu, E.; Chen, R.; Ye, C. Agricultural Land Transition in the “Groundnut Basin” of Senegal: 2009 to 2018. Land 2021, 10, 996. [Google Scholar] [CrossRef]
- Cai, H. The Necessity and Technical Measures of Black Land Conservation. Jilin Agric. 2019, 18, 72. [Google Scholar]
- Wang, S.; Yang, L.; Su, M.; Ma, X.; Sun, Y.; Yang, M.; Zhao, P.; Shen, J.; Zhang, F.; Goulding, K.; et al. Increasing the Agricultural, Environmental and Economic Benefits of Farming Based on Suitable Crop Rotations and Optimum Fertilizer Applications. Field Crops Res. 2019, 240, 78–85. [Google Scholar] [CrossRef]
- Liang, C.; Du, G.; Faye, B. The Influence of Cultivated Land Transfer and Internet Use on Crop Rotation. Front. Sustain. Food Syst. 2023, 7, 1172405. [Google Scholar] [CrossRef]
- Scott, D.A.; Eberle, C.; Gesch, R.W.; Schneider, S.; Weyers, S.; Johnson, J.M.F. Yield, Nitrogen, and Water Use Benefits of Diversifying Crop Rotations with Specialty Oilseeds. Agric. Ecosyst. Environ. 2021, 317, 107472. [Google Scholar] [CrossRef]
- Zani, C.F.; Barneze, A.S.; Soratto, R.P.; Francis, C.A. The Effect of Crop Rotations on Soil; Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Breza, L.C.; Mooshammer, M.; Bowles, T.M.; Jin, V.L.; Schmer, M.R.; Thompson, B.; Grandy, A.S. Complex Crop Rotations Improve Organic Nitrogen Cycling. Soil Biol. Biochem. 2023, 177, 108911. [Google Scholar] [CrossRef]
- Aggarwal, S.; Srinivas, R.; Puppala, H.; Magner, J. Integrated Decision Support for Promoting Crop Rotation Based Sustainable Agricultural Management Using Geoinformatics and Stochastic Optimization. Comput. Electron. Agric. 2022, 200, 107213. [Google Scholar] [CrossRef]
- Wang, G.; Yang, Y. Practice Exploration and Strategy Optimization of Cultivated Land Resources Protection in Rural China—Focus on Black Land Protection and Others. Hebei Acad. J. 2021, 41, 117–124. [Google Scholar]
- Zhao, Q.; Teng, Y.; Huang, G. Consideration about Exploring Pilot Program of Farmland Rotation and Fallow System in China. Ecol. Environ. Sci. 2017, 26, 1–5. [Google Scholar]
- Wu, L.; Chen, F.; Ouyang, Z. Evolution of Cropping Systems and Research Progress. Tillage Cultiv. 2002, 22, 1–5+14. [Google Scholar]
- Almudena Martín Montero, M.A.C.S. Mapping Multi-Year Cropping Patterns in Small Irrigation Districts from Time-Series Analysis of Landsat TM Images—Dialnet. Eur. J. Agron. 2005, 23, 159–169. [Google Scholar]
- Zhu, Z.; Sun, L. Estimation of Regional Cotton-Rice and Rice-Cotton Rotation Periods Based on Satellite Remote Sensing Methodology. Acta Agron. Sin. 2006, 01, 57–63. [Google Scholar]
- Du, G.; Zhang, R.; Yu, F. Analysis of Cropping Pattern in Black Soil Region of Northeast China Based on Geo-Information Tupu. Chin. J. Appl. Ecol. 2022, 33, 694–702. [Google Scholar]
- Du, G.; Zhang, R.; Liang, C.; Hu, M. Remote Sensing Extraction and Spatial Pattern Analysis of Cropping Patterns in Black Soil Region of Northeast China at County Level. Trans. Chin. Soc. Agric. Eng. 2021, 37, 133–141. [Google Scholar]
- Nguyen, H.T.T.; Van Nguyen, L.; De Bie, C.A.J.M.K.; Ciampitti, I.A.; Nguyen, D.A.; Van Nguyen, M.; Nieto, L.; Schwalbert, R.; Nguyen, L.V. Mapping Maize Cropping Patterns in Dak Lak, Vietnam Through MODIS EVI Time Series. Agronomy 2020, 10, 478. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Jiao, Q.; Zhang, B.; Chen, Z. Preliminary Study on Cropping Pattern Mapping Using MODIS_EVI Image Time Series. Trans. Chin. Soc. Agric. Eng. 2008, 5, 161–165. [Google Scholar]
- Li, Z.; Yang, P.; Zhou, Q.; Wang, Y.; Wu, W.; Zhang, L.; Zhang, X. Research on Spatiotemporal Pattern of Crop Phenological Characteristics and Cropping System in North China Based on NDVI Ti Me Series Data. Acta Ecol. Sin. 2009, 29, 6216–6226. [Google Scholar]
- Zhu, K.; Yang, Z.; Huang, L.; Chen, Y.; Zhang, S.; Xiong, H.; Wu, S.; Lei, B. Coupling ITO3dE Model and GIS for Spatiotemporal Evolution Analysis of Agricultural Non-Point Source Pollution Risks in Chongqing in China. Sci. Rep. 2021, 11, 4635. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Du, G.; Zhang, H.; Temporal, S.; Wang, J.; Wang, X.; Du, G.; Zhang, H. Temporal and Spatial Changes of Rural Settlements and Their Influencing Factors in Northeast China from 2000 to 2020. Land 2022, 11, 1640. [Google Scholar] [CrossRef]
- Song, W.; Chen, B.; Zhang, Y. Land-Use Change and Socio-Economic Driving Forces of Rural Settlement in China from 1996 to 2005. Chin. Geogr. Sci. 2014, 24, 511–524. [Google Scholar] [CrossRef] [Green Version]
- Song, G.; Zhang, H. Spatial Reconstruction of Farmland Rotation and Fallow in the Typical Black Soil Region of Northeast China. J. Nat. Resour. 2022, 37, 2231–2246. [Google Scholar] [CrossRef]
- Dong, S.; Wang, X.; Chen, Y. Plant Production; Higher Education Press: Beijing, China, 2003. [Google Scholar]
- Ji, F.; Liu, J.; Wang, L. Summary of Remote Sensing Algorithm in Crop Type Identification and Its Application Based on GAOFEN SATELLITES. Chin. J. Agric. Resour. Reg. Plan. 2021, 42, 254–268. [Google Scholar]
- Li, Q.; Liu, W.; Du, G.; Faye, B.; Wang, H.; Li, Y.; Wang, L.; Qu, S. Spatiotemporal Evolution of Crop Planting Structure in the Black Soil Region of Northeast China: A Case Study in Hailun County. Land 2022, 11, 785. [Google Scholar] [CrossRef]
- Torrion, J.; Setiyono, T.D.; Cassman, K.; Specht, J. Soybean Phenology Simulation in the North-Central United States. Agron. J. 2011, 103, 1661–1667. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y. Filling Algorithm for Missing Pixels in Landsat-7 SLC-off Images Using No Reference Images. Sci. Geogr. Sin. 2021, 41, 1276–1284. [Google Scholar]
- Wang, Q.; Chen, Y.; Yi, X.; Yuan, M.; Tan, C. Rotation between Grain and Soybean in the Cold Area of Northeast China. Agric. Outlook 2018, 14, 48–52. [Google Scholar]
- Zewdie, W.; Csaplovics, E. Identifying Categorical Land Use Transition and Land Degradation in Northwestern Drylands of Ethiopia. Remote Sens. 2016, 8, 408. [Google Scholar] [CrossRef] [Green Version]
- Wei, S.; Lu, R.; Zhang, L.; Lin, X.; Lu, Y. Transition of Production-Living-Ecological Space and Carban Storage Effect in Guangxi Border Area under Carbon Neutrality Goal. Bull. Soil. Water Conserv. 2023, 43, 399–408. [Google Scholar]
- Yu, Y.; Li, Z.; Lin, J.; Liu, J.; Wang, S. TUPU Characteristics of Spatiotemporal Variation for Land Use in the Yihe River Basin. J. Nat. Resour. 2019, 34, 975–988. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Liu, Z.; Chen, Z. Impacts of Climatic Warming on Cropping System Borders of China and Potential Adaptation Strategies for Regional Agriculture Development. Sci. Total Environ. 2021, 755, 142415. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Wu, W.; Sun, J.; Li, Z.; Sun, X.; Chen, H.; Chen, S.; Fan, L.; You, L.; Yang, P. Climate-Mediated Dynamics of the Northern Limit of Paddy Rice in China. Environ. Res. Lett. 2021, 16, 064008. [Google Scholar] [CrossRef]
- Chen, N.; Fan, J.; Liu, S.; Lu, W.; Lian, T.; Mou, Y. Effects of Green Manure-Corn-Soybean Rotation System on the Crop Yield and Quality. Soybean Sci. 2020, 39, 555–563. [Google Scholar] [CrossRef]
- Wang, X.; Li, D.; Wu, S.; Xie, X.; Lu, J. Research on Comprehensive Suitability Evaluation Method of Rice Planting Environment. J. Geo-Inf. Sci. 2021, 23, 1484–1496. [Google Scholar]
- Nóia Júnior, R.d.S.; Sentelhas, P.C. Soybean-Maize off-Season Double Crop System in Brazil as Affected by El Niño Southern Oscillation Phases. Agric. Syst. 2019, 173, 254–267. [Google Scholar] [CrossRef]
- The Ministry of Agriculture and Rural Affairs of the People’s Republic of China Guidance of the Ministry of Agriculture on the Structural Adjustment of Maize in the “Sickle Bend” Area. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLASN2015&filename=GNZB201511002&uniplatform=NZKPT&v=RZYYHKjODzW5ajkn7Y_4wO858rn15J8JsSRlb_ZgLPo9K1ASGnMs5tkakFeshQIH (accessed on 27 June 2022).
- Law of the People’s Republic of China on the Protection of Black Soil. Agric. Compr. Dev. China 2022, 299, 4–7.
- Exploring the Implementation of a Pilot Program for Arable Land Rotation Fallow System. Available online: https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C45iO2vZ0jWu7b6KLB8DnSLpC6l_RBZ4ZmDhx_G_KjYCZcqLZBntmM_rKo5oWfQ4SyhKg9lzJi1htq_pZlLkUptOIqaALnbgLkw%3D&uniplatform=NZKPT (accessed on 12 June 2023).
- Boryan, C.G.; Yang, Z.; Willis, P.; Di, L. Developing Crop Specific Area Frame Stratifications Based on Geospatial Crop Frequency and Cultivation Data Layers. J. Integr. Agric. 2017, 16, 312–323. [Google Scholar] [CrossRef]
- Zhang, Z.; Hua, L.; Zheng, X.; Li, J. Extraction of Cropping Patterns in Jianghan Plain Based on GEE and Sentinel-NDVI Time Series Data. Trans. Chin. Soc. Agric. Eng. 2022, 38, 196–202. [Google Scholar]
Landsat Images | Year | Acquisition Date | Resolution (m) | Cloud Proportion (%) |
---|---|---|---|---|
Landsat7 ETM+ | 2002 | 07-06 | 30 | 5.21 |
Landsat7 ETM+ | 2003 | 08-16 | 30 | 7.63 |
Landsat5 TM | 2004 | 07-21 | 30 | 4.33 |
Landsat5 TM | 2005 | 08-07 | 30 | 5.35 |
Landsat7 ETM+ | 2010 | 08-13 | 30 | 6.16 |
Landsat7 ETM+ | 2011 | 08-01 | 30 | 0.99 |
Landsat7 ETM+ | 2012 | 07-19 | 30 | 2.67 |
Landsat8 OLI | 2013 | 07-30 | 30 | 1.82 |
Landsat8 OLI | 2018 | 08-10 | 30 | 0.7 |
Landsat8 OLI | 2019 | 08-15 | 30 | 1.13 |
Landsat8 OLI | 2020 | 07-15 | 30 | 2.69 |
Landsat8 OLI | 2021 | 07-24 | 30 | 3.79 |
Type of Cropping Pattern | Period I | Period II | Period III | Temporal Dynamics of Cropping Patterns | |||||
---|---|---|---|---|---|---|---|---|---|
Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | Period I–II | Period II–III | Period I–III | |
SCC | 71.490 | 5.2 | 116.285 | 9.1 | 48.920 | 3.2 | 12.5 | −11.6 | −3.2 |
RCC | 18.213 | 1.3 | 49.794 | 3.9 | 114.883 | 7.4 | 34.7 | 26.1 | 53.1 |
MCP | 337.023 | 24.4 | 302.821 | 23.8 | 599.912 | 38.7 | −2.0 | 19.6 | 7.8 |
MCC | 551.253 | 39.9 | 374.012 | 29.3 | 380.307 | 24.6 | −6.4 | 0.3 | −3.1 |
RMR | 35.492 | 2.6 | 13.306 | 1.0 | 141.013 | 9.1 | −12.5 | 192.0 | 29.7 |
RSR | 11.421 | 0.8 | 4.912 | 0.4 | 27.912 | 1.8 | −11.4 | 93.6 | 14.4 |
MSR | 356.413 | 25.8 | 414.109 | 32.5 | 235.831 | 15.2 | 3.2 | −8.6 | −3.4 |
Total | 1381.305 | 100 | 1275.239 | 100 | 1548.778 | 100 | 2.7 | 6.0 | 5.8 |
Type of Change | Definition of Relevant Concepts | Description |
---|---|---|
Type of full-term stability | There was no change in periods I–III. | SCC-SCC-SCC |
The whole period variation | The I–III periods were changing throughout the whole period. | SCC-RCC-SCC |
Early variation pattern | Periods I–II were changing, and periods II–III were not changing. | SCC-RCC-RCC |
Late variation pattern | Periods I–II were not changing; periods II–III were changing. | SCC-SCC-RCC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, G.; Yao, L.; Han, L.; Bonoua, F. What Should Be Learned from the Dynamic Evolution of Cropping Patterns in the Black Soil Region of Northeast China? A Case Study of Wangkui County, Heilongjiang Province. Land 2023, 12, 1574. https://doi.org/10.3390/land12081574
Du G, Yao L, Han L, Bonoua F. What Should Be Learned from the Dynamic Evolution of Cropping Patterns in the Black Soil Region of Northeast China? A Case Study of Wangkui County, Heilongjiang Province. Land. 2023; 12(8):1574. https://doi.org/10.3390/land12081574
Chicago/Turabian StyleDu, Guoming, Longcheng Yao, Le Han, and Faye Bonoua. 2023. "What Should Be Learned from the Dynamic Evolution of Cropping Patterns in the Black Soil Region of Northeast China? A Case Study of Wangkui County, Heilongjiang Province" Land 12, no. 8: 1574. https://doi.org/10.3390/land12081574
APA StyleDu, G., Yao, L., Han, L., & Bonoua, F. (2023). What Should Be Learned from the Dynamic Evolution of Cropping Patterns in the Black Soil Region of Northeast China? A Case Study of Wangkui County, Heilongjiang Province. Land, 12(8), 1574. https://doi.org/10.3390/land12081574