Restoration of Grassland Improves Soil Infiltration Capacity in Water-Wind Erosion Crisscross Region of China’s Loess Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Measurements of Soil Properties
2.3. Measurements of Soil Aggregate Traits
2.4. Measurements of Soil Infiltration Traits
2.5. Statistical Analysis
3. Results
3.1. Soil Infiltration Rates under Different Land Use Patterns
3.1.1. Simulation Results of the Soil Infiltration Process
3.1.2. Changes in Soil-Saturated Hydraulic Conductivity
3.2. Soil Properties under Different Land Uses
3.2.1. Physical Properties of Three Soil Types
3.2.2. Aggregate Structures of Three Soil Types
3.3. Relationships between Root Traits, Soil Properties, and Soil Infiltration Capacity
3.4. Path Modeling of the Effects of Soil Properties on Soil Water Infiltration
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schwärzel, K.; Zhang, L.; Montanarella, L.; Wang, Y.; Sun, G. How afforestation affects the water cycle in drylands: A process-based comparative analysis. Glob. Chang. Biol. 2020, 26, 944–959. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Mu, X.; Wen, Z.; Wang, F.; Gao, P. Soil erosion, conservation, and eco-environment changes in the Loess Plateau of China. Land Degrad. Dev. 2013, 24, 499–510. [Google Scholar] [CrossRef]
- Zhu, P.; Zhang, G.; Wang, H.; Xing, S. Soil infiltration properties affected by typical plant communities on steep gully slopes on the Loess Plateau of China. J. Hydrol. 2020, 590, 125535. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Y.; Shao, M. Controlling gully- and revegetation-induced dried soil layers across a slope–gully system. Sci. Total. Environ. 2021, 755, 142444. [Google Scholar] [CrossRef]
- Zhu, P.; Zhang, G.; Wang, H.; Zhang, B.; Liu, Y. Soil moisture variations in response to precipitation properties and plant communities on steep gully slope on the Loess Plateau. Agric. Water Manag. 2021, 256, 107086. [Google Scholar] [CrossRef]
- Wang, X.-P.; Cui, Y.; Pan, Y.-X.; Li, X.-R.; Yu, Z.; Young, M. Effects of rainfall characteristics on infiltration and redistribution patterns in revegetation-stabilized desert ecosystems. J. Hydrol. 2008, 358, 134–143. [Google Scholar] [CrossRef]
- Eldridge, D.J.; Wang, L.; Ruiz-Colmenero, M. Shrub encroachment alters the spatial patterns of infiltration. Ecohydrology 2015, 8, 83–93. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Qin, T.; Yan, D.; Tian, F.; Wang, H. A meta-analysis on effects of root development on soil hydraulic properties. Geoderma 2021, 403, 115363. [Google Scholar] [CrossRef]
- Bodner, G.; Leitner, D.; Kaul, H.-P. Coarse and fine root plants affect pore size distributions differently. Plant Soil 2014, 380, 133–151. [Google Scholar] [CrossRef] [Green Version]
- Leung, A.K.; Garg, A.; Coo, J.L.; Ng, C.W.W.; Hau, B.C.H. Effects of the roots of Cynodon dactylon and Schefflera heptaphylla on water infiltration rate and soil hydraulic conductivity. Hydrol. Process. 2015, 29, 3342–3354. [Google Scholar] [CrossRef] [Green Version]
- Korkanç, S.Y. Effects of the land use/cover on the surface runoff and soil loss in the Niğde-Akkaya Dam Watershed, Turkey. Catena 2018, 163, 233–243. [Google Scholar] [CrossRef]
- Cui, Z.; Wu, G.-L.; Huang, Z.; Liu, Y. Fine roots determine soil infiltration potential than soil water content in semi-arid grassland soils. J. Hydrol. 2019, 578, 124023. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, L.; Huang, Z.; López-Vicente, M.; Wu, G.-L. Root morphological characteristics and soil water infiltration capacity in semi-arid artificial grassland soils. Agric. Water Manag. 2020, 235, 106153. [Google Scholar] [CrossRef]
- Wu, G.-L.; Cui, Z.; Huang, Z. Contribution of root decay process on soil infiltration capacity and soil water replenishment of planted forestland in semi-arid regions. Geoderma 2021, 404, 115289. [Google Scholar] [CrossRef]
- Ge, N.; Wei, X.; Wang, X.; Liu, X.; Shao, M.; Jia, X.; Li, X.; Zhang, Q. Soil texture determines the distribution of aggregate-associated carbon, nitrogen and phosphorous under two contrasting land use types in the Loess Plateau. Catena 2019, 172, 148–157. [Google Scholar] [CrossRef]
- Schweizer, S.A.; Bucka, F.B.; Graf-Rosenfellner, M.; Kögel-Knabner, I. Soil microaggregate size composition and organic matter distribution as affected by clay content. Geoderma 2019, 355, 113901. [Google Scholar] [CrossRef]
- Wang, Z.; Peng, R.; Wang, L.; Liu, L. Studies on Soil Properties of Aeolian Sandy Land Improvement and Utilization in South Edge of Musu Desert. J. Soil Water Conserv. 2006, 20, 14–21. [Google Scholar] [CrossRef]
- Bi, C.; Wang, F.; Li, G.; Qing, B.; Qiao, W.; Li, G. Experiment on sediment retention by plant “flexible dam” in gully in soft rock region. J. Sediment Res. 2003, 2, 14–25. [Google Scholar] [CrossRef]
- Han, J.; Liu, Y.; Luo, L. Research on the core technology of remixing soil by soft rock and sand in the Maowusu sand land region. China Land Sci. 2012, 26, 87–94. [Google Scholar] [CrossRef]
- Huang, Z.; Tian, F.; Wu, G.; Liu, Y.; Dang, Z. Legume Grasslands Promote Precipitation Infiltration better than Gramineous Grasslands in arid Regions. Land Degrad. Dev. 2017, 28, 309–316. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, Q.; Werner, A.D.; Li, Y.; Jiang, S.; Tan, Z. Root-induced changes of soil hydraulic properties—A review. J. Hydrol. 2020, 589, 125203. [Google Scholar] [CrossRef]
- Elliott, J.A.; Efetha, A.A. Influence of tillage and cropping system on soil organic matter, structure and infiltration in a rolling landscape. Can. J. Soil Sci. 1999, 79, 457–463. [Google Scholar] [CrossRef]
- Abu-Hamdeh, N.H.; Abo-Qudais, S.A.; Othman, A.M. Effect of soil aggregate size on infiltration and erosion characteristics. Eur. J. Soil Sci. 2006, 57, 609–616. [Google Scholar] [CrossRef]
- Alaoui, A. Modelling susceptibility of grassland soil to macropore flow. J. Hydrol. 2015, 525, 536–546. [Google Scholar] [CrossRef]
- Liu, Y.-F.; Zhang, Z.; Liu, Y.; Cui, Z.; Leite, P.A.; Shi, J.; Wang, Y.; Wu, G.-L. Shrub encroachment enhances the infiltration capacity of alpine meadows by changing the community composition and soil conditions. Catena 2022, 213, 106222. [Google Scholar] [CrossRef]
- Hao, H.-X.; Wei, Y.-J.; Cao, D.-N.; Guo, Z.-L.; Shi, Z.-H. Vegetation restoration and fine roots promote soil infiltrability in heavy-textured soils. Soil Tillage Res. 2020, 198, 104542. [Google Scholar] [CrossRef]
- Fayos, C.B. The roles of texture and structure in the water retention capacity of burnt Mediterranean soils with varying rainfall. Catena 1997, 31, 219–236. [Google Scholar] [CrossRef]
- Nyamangara, J.; Gotosa, J.; Mpofu, S. Cattle manure effects on structural stability and water retention capacity of a granitic sandy soil in Zimbabwe. Soil Tillage Res. 2001, 62, 157–162. [Google Scholar] [CrossRef]
- Wang, P.; Su, X.; Zhou, Z.; Wang, N.; Liu, J.; Zhu, B. Differential effects of soil texture and root traits on the spatial variability of soil infiltrability under natural revegetation in the Loess Plateau of China. Catena 2023, 220, 106693. [Google Scholar] [CrossRef]
- Xiang, L.; Zeng, L.; Yuan, Y. Key Laboratory of eco-environments in three gorges reservoir region (Ministry of Education). Lab. Nat. Prod. POJ 2012, 5, 503–507. [Google Scholar]
- Liu, K.; Wang, L.; Song, N.P.; Yang, X.Y.; Chen, L. Soil infiltration characteristics of Caragana korshinkii plantation with different ages in south edge of Mu Us Sandy Land. J. Arid. Land Resour. Environ. 2013, 27, 89–94. [Google Scholar] [CrossRef]
- Yang, Z.Q.; Qin, F.C.; Li, M.Y.; Li, L.; Qian, Q.Y.; Li, Y. Soil infiltration capacity and its influencing factors of different land use types in feldspathic sandstone region. Ecol. Environ. Sci. 2020, 29, 733–739. [Google Scholar] [CrossRef]
- Zhao, G.; Mu, X.; Wen, Z.; Wang, F.; Gao, P. Impacts of precipitation and human activities on streamflow and sediment load in the Huangfuchuan Watershed. Sci. Soil Water Conserv. 2013, 11, 1–8. [Google Scholar] [CrossRef]
- Yan, F.C.; Jiao, J.Y.; Cao, B.T.; Yu, W.J.; Wei, Y.; Kou, M.; Hu, S. Soil anti-erodibility of abandoned lands during different succession stages of plant community in hilly-gullied region of the Loess Plateau: Take Fangta small watershed as an example. Yingyong Shengtai Xuebao 2016, 27, 64–72. [Google Scholar] [CrossRef]
- Shahid, S.A.; Abdelfattah, M.A.; Wilson, M.A.; Kelley, J.A.; Chiaretti, J.V. United Arab Emirates Keys to Soil Taxonomy; Springer: New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis: Part 3. Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Eds.; Soil Science Society of America and American Society of Agronomy: Madison, WI, USA, 1996; pp. 963–1010. [Google Scholar] [CrossRef]
- Himmelbauer, M.L.; Loiskandl, A.W.; Kastanek, A.F. Estimating length, average diameter and surface area of roots using two different Image analyses systems. Plant Soil 2004, 260, 111–120. [Google Scholar] [CrossRef]
- Ye, C.; Guo, Z.; Li, Z.; Cai, C. The effect of Bahiagrass roots on soil erosion resistance of Aquults in subtropical China. Geomorphology 2017, 285, 82–93. [Google Scholar] [CrossRef]
- Wu, X.; Cai, C.; Wang, J.; Wei, Y.; Wang, S. Spatial variations of aggregate stability in relation to sesquioxides for zonal soils, South-central China. Soil Tillage Res. 2016, 157, 11–22. [Google Scholar] [CrossRef]
- Zhou, M.; Liu, C.; Wang, J.; Meng, Q.; Yuan, Y.; Ma, X.; Liu, X.; Zhu, Y.; Ding, G.; Zhang, J.; et al. Soil aggregates stability and storage of soil organic carbon respond to cropping systems on Black Soils of Northeast China. Sci. Rep. 2020, 10, 265. [Google Scholar] [CrossRef] [Green Version]
- Dirksen, C. Determination of Soil Water Diffusivity by Sorptivity Measurements. Soil Sci. Soc. Am. J. 1975, 39, 22–27. [Google Scholar] [CrossRef]
- Dixon, R.M. Design and Use of Closed-top Infiltrometers. Soil Sci. Soc. Am. J. 1975, 39, 755–763. [Google Scholar] [CrossRef]
- Topp, G.; Zebchuk, W. A closed adjustable head infiltrometer. Can. Agric. Eng. 1985, 27, 99–104. Available online: https://eurekamag.com/research/001/283/001283673.php (accessed on 21 July 2023).
- Zhu, L.J.; Zhang, G.H.; Ren, Z.P. Comparing four methods for soil infiltration measurement. Bull. Soil Water Conserv. 2012, 32, 163–167. [Google Scholar] [CrossRef]
- Wooding, R.A. Steady Infiltration from a Shallow Circular Pond. Water Resour. Res. 1968, 4, 1259–1273. [Google Scholar] [CrossRef]
- Watson, K.W.; Luxmoore, R.J. Estimating Macroporosity in a Forest Watershed by use of a Tension Infiltrometer. Soil Sci. Soc. Am. J. 1986, 50, 578–582. [Google Scholar] [CrossRef]
- Bodhinayake, W.; Si, B.C.; Xiao, C. New Method for Determining Water-Conducting Macro- and Mesoporosity from Tension Infiltrometer. Soil Sci. Soc. Am. J. 2004, 68, 760–769. [Google Scholar] [CrossRef]
- Zhu, P.; Zhang, G.; Zhang, B. Soil saturated hydraulic conductivity of typical revegetated plants on steep gully slopes of Chinese Loess Plateau. Geoderma 2022, 412, 115717. [Google Scholar] [CrossRef]
- Kanwar, R.S.; Rizvi, H.A.; Ahmed, M.; Horton, R.; Marley, S.J. Measurement of Field-Saturated Hydraulic Conductivity by Using Guelph and Velocity Permeameters. Trans. ASAE 1990, 32, 1885–1890. [Google Scholar] [CrossRef]
- Henseler, J.; Dijkstra, T.K.; Sarstedt, M.; Ringle, C.M.; Diamantopoulos, A.; Straub, D.W.; Ketchen, D.J., Jr.; Hair, J.F.; Hult, G.T.M.; Calantone, R.J. Common Beliefs and Reality About PLS: Comments on Rönkkö and Evermann (2013). Organ. Res. Methods 2014, 17, 182–209. [Google Scholar] [CrossRef] [Green Version]
- Kostiakov, A.N. On the dynamics of the coefficient of water-percolation in soils and on the necessity of studying it from a dynamic point of view for purposes of amelioration, Trans. 6th Cong. International. Soil Sci. Russ. Part A 1932, 14, 17–21. Available online: https://cir.nii.ac.jp/crid/1570572699970385664 (accessed on 21 July 2023).
- Clothier, B.E.; White, I. Measurement of Sorptivity and Soil Water Diffusivity in the Field. Soil Sci. Soc. Am. J. 1981, 45, 241–245. [Google Scholar] [CrossRef]
- Mao, N.; Huang, L.; Shao, M. Profile distribution of soil saturated hydraulic conductivity and controlling factors under different vegetations on slope in loess region. Soils 2019, 51, 381–389. [Google Scholar] [CrossRef]
- Franzluebbers, A. Water infiltration and soil structure related to organic matter and its stratification with depth. Soil Tillage Res. 2002, 66, 197–205. [Google Scholar] [CrossRef]
- Murty, D.; Kirschbaum, M.U.F.; Mcmurtrie, R.E.; Mcgilvray, H. Does conversion of forest to agricultural land change soil carbon and nitrogen? a review of the literature. Glob. Chang. Biol. 2002, 8, 105–123. [Google Scholar] [CrossRef]
- Neves, C.; Feller, C.; Guimarães, M.; Medina, C.; Filho, J.T.; Fortier, M. Soil bulk density and porosity of homogeneous morphological units identified by the Cropping Profile Method in clayey Oxisols in Brazil. Soil Tillage Res. 2003, 71, 109–119. [Google Scholar] [CrossRef]
- Basche, A.; DeLonge, M. The Impact of Continuous Living Cover on Soil Hydrologic Properties: A Meta-Analysis. Soil Sci. Soc. Am. J. 2017, 81, 1179–1190. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.; Yang, H.; Guan, D.; Yang, M.; Wu, J.; Yuan, F.; Jin, C.; Wang, A.; Zhang, Y. The effects of land use change on soil infiltration capacity in China: A meta-analysis. Sci. Total Environ. 2018, 626, 1394–1401. [Google Scholar] [CrossRef]
- Lozano-Baez, S.E.; Cooper, M.; Meli, P.; Ferraz, S.F.; Rodrigues, R.R.; Sauer, T.J. Land restoration by tree planting in the tropics and subtropics improves soil infiltration, but some critical gaps still hinder conclusive results. For. Ecol. Manag. 2019, 444, 89–95. [Google Scholar] [CrossRef]
- Jørgensen, P.R.; Hoffmann, M.; Kistrup, J.P.; Bryde, C.; Bossi, R.; Villholth, K.G. Preferential flow and pesticide transport in a clay-rich till: Field, laboratory, and modeling analysis. Water Resour. Res. 2002, 38, 28–1-28-15. [Google Scholar] [CrossRef]
- Gould, I.J.; Quinton, J.N.; Weigelt, A.; De Deyn, G.B.; Bardgett, R.D. Plant diversity and root traits benefit physical properties key to soil function in grasslands. Ecol. Lett. 2016, 19, 1140–1149. [Google Scholar] [CrossRef] [Green Version]
- Ding, W.-F.; Zhang, X.-C. An evaluation on using soil aggregate stability as the indicator of interrill erodibility. J. Mt. Sci. 2016, 13, 831–843. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, Z.; Su, X. Review of the mechanism of root systems on the formation of soil aggregate. J. Soil Water Conserv. 2020, 34, 267–273. [Google Scholar]
- Su, J.; Zhao, S. Influence of vegetation restoration on distribution of aggregate and organic carbon and nitrogen in Loess Plateau. Res. Soil Water Conserv. 2005, 12, 44–47. [Google Scholar] [CrossRef]
- Cheng, M.; Zhu, Q.; Liu, L.; An, S. Effects of vegetation on soil aggregate stability and organic carbon sequestration in the Ningxia Loess Hilly Region of northwest China. Acta Ecol. Sin. 2013, 33, 2835–2844. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Palixiati, G.M.; Wang, W.W.; Du, F.; Xu, X.X. Factors influencing water repellency of Heilu soil in Changwu County, Shaanxi Province. Bull. Soil Water Conserv. 2021, 41, 62–68. [Google Scholar] [CrossRef]
- Newton, P.C.D.; Carran, R.A.; Lawrence, E.J. Reduced water repellency of a grassland soil under elevated atmospheric CO2. Glob. Chang. Biol. 2004, 10, 1–4. [Google Scholar] [CrossRef]
- DeBano, L. The role of fire and soil heating on water repellency in wildland environments: A review. J. Hydrol. 2000, 231–232, 195–206. [Google Scholar] [CrossRef]
- DeBano, L. Water repellency in soils: A historical overview. J. Hydrol. 2000, 231–232, 4–32. [Google Scholar] [CrossRef]
- Yun, H.; Bi, H.; Wang, S.; Zhao, D.; Cui, Y.; Wang, N.; Lan, D. Soil Physical and Chemical Characteristics of Different Forest Types and Their Effects on Soil Infiltration Process, Journal of Soil and Water Conservation. J. Soil Water Conserv. 2021, 35, 183–189. [Google Scholar] [CrossRef]
- Ding, K.; Xu, X.; Chen, W.; Kalhoro, S.A. Soil aggregates and infiltration characteristics under different vegetations in Changwu tableland slope of northwestern China. J. Beijing For. Univ. 2017, 39, 44–51. [Google Scholar] [CrossRef]
- Golchin, A.; Oades, J.; Skjemstad, J.; Clarke, P. Soil structure and carbon cycling. Soil Res. 1994, 32, 1043–1068. [Google Scholar] [CrossRef]
- Jastrow, J. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. Soil Biol. Biochem. 1996, 28, 665–676. [Google Scholar] [CrossRef]
- Six, J.; Elliott, E.; Paustian, K.; Doran, J.W. Aggregation and Soil Organic Matter Accumulation in Cultivated and Native Grassland Soils. Soil Sci. Soc. Am. J. 1998, 62, 1367–1377. [Google Scholar] [CrossRef] [Green Version]
- Six, J.; Bossuyt, H.; Degryze, S.; Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
- Angers, D.A.; Caron, J. Plant-induced Changes in Soil Structure: Processes and Feedbacks. Biogeochemistry 1998, 42, 55–72. [Google Scholar] [CrossRef]
- Gale, W.; Cambardella, C.; Bailey, T. Root-Derived Carbon and the Formation and Stabilization of Aggregates. Soil Sci. Soc. Am. J. 2000, 64, 201–207. [Google Scholar] [CrossRef]
- Kong, A.Y.Y.; Six, J.; Bryant, D.C.; Denison, R.F.; van Kessel, C. The Relationship between Carbon Input, Aggregation, and Soil Organic Carbon Stabilization in Sustainable Cropping Systems. Soil Sci. Soc. Am. J. 2005, 69, 1078–1085. [Google Scholar] [CrossRef]
- Regelink, I.C.; Stoof, C.R.; Rousseva, S.; Weng, L.; Lair, G.J.; Kram, P.; Nikolaidis, N.P.; Kercheva, M.; Banwart, S.; Comans, R.N. Linkages between aggregate formation, porosity and soil chemical properties. Geoderma 2015, 247–248, 24–37. [Google Scholar] [CrossRef]
- Liu, Y.; Miao, H.; Chang, X.; Wu, G. Higher species diversity improves soil water infiltration capacity by increasing soil organic matter content in semiarid grasslands. Land Degrad. Dev. 2019, 30, 1599–1606. [Google Scholar] [CrossRef]
- Marquart, A.; Eldridge, D.J.; Geissler, K.; Lobas, C.; Blaum, N. Interconnected effects of shrubs, invertebrate-derived macropores and soil texture on water infiltration in a semi-arid savanna rangeland. Land Degrad. Dev. 2020, 31, 2307–2318. [Google Scholar] [CrossRef]
- Guo, L.; Liu, Y.; Wu, G.-L.; Huang, Z.; Cui, Z.; Cheng, Z.; Zhang, R.-Q.; Tian, F.-P.; He, H. Preferential water flow: Influence of alfalfa (Medicago sativa L.) decayed root channels on soil water infiltration. J. Hydrol. 2019, 578, 124019. [Google Scholar] [CrossRef]
- Lado, M.; Paz, A.; Ben-Hur, M. Organic Matter and Aggregate-Size Interactions in Saturated Hydraulic Conductivity. Soil Sci. Soc. Am. J. 2004, 68, 234–242. [Google Scholar] [CrossRef]
- Fu, T.; Chen, H.; Zhang, W.; Nie, Y.; Wang, K. Vertical distribution of soil saturated hydraulic conductivity and its influencing factors in a small karst catchment in Southwest China. Environ. Monit. Assess. 2015, 187, 92. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.-S.; Cao, M.-M.; Li, H.-E.; Wang, X.-H.; Bi, C.-F. Simulation of sediment retention effects of the single seabuckthorn flexible dam in the Pisha Sandstone area. Ecol. Eng. 2013, 52, 228–237. [Google Scholar] [CrossRef]
- Shi, Y.; Ye, H.; Hou, H.; Bi, Z. The Internal Cause of the Erosion in “Pisha” Sandstone Area, Southern Inner Mongolia. Acta Geosci. Sin. 2004, 25, 659–664. [Google Scholar] [CrossRef]
- Logsdon, S.D.; Allmaras, R.R. Maize and soybean root clustering as indicated by root mapping. Plant Soil 1991, 131, 169–176. [Google Scholar] [CrossRef]
- Wu, T.-N.; Wu, G.-L.; Wang, D.; Shi, Z.-H. Soil-hydrological properties response to grazing exclusion in a steppe grassland of the Loess Plateau. Environ. Earth Sci. 2013, 71, 745–752. [Google Scholar] [CrossRef]
- Liu, Y.; Cui, Z.; Huang, Z.; López-Vicente, M.; Wu, G.-L. Influence of soil moisture and plant roots on the soil infiltration capacity at different stages in arid grasslands of China. Catena 2019, 182, 104147. [Google Scholar] [CrossRef]
- Gamie, R.; De Smedt, F. Experimental and statistical study of saturated hydraulic conductivity and relations with other soil properties of a desert soil. Eur. J. Soil Sci. 2017, 69, 256–264. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Wang, Y.; An, Z.; Sun, H.; Zhang, P.; Zhao, Y.; Zhou, Z.; Xu, L.; Zhou, J.; Qi, L. Watershed spatial heterogeneity of soil saturated hydraulic conductivity as affected by landscape unit in the critical zone. Catena 2021, 203, 105322. [Google Scholar] [CrossRef]
Plots | Community Component | Slope (°) | Coverage (%) | Altitude (m) |
---|---|---|---|---|
Aeo.f | Zea mays L. | 0~5 | 75~90 | 1160 |
Aeo.g | Thymus mongolicus Ronn. Melilotus officinalis (L.) Lam. Artemisia sacrorum Ledeb. ex Hook.f. Oxytropis bicolor Bunge Caragana korshinskii Kom. | 0~5 | 52~62 | 1080 |
San.f | Zea mays L. | 0~5 | 5~12 | 1130 |
San.g | Thymus mongolicus Ronn. Caragana korshinskii Kom. Artemisia sacrorum Ledeb. ex Hook.f. Stipa capillata L. Lespedeza bicolor Turcz. | 0~5 | 32~43 | 1100 |
Loe.f | Medicago sativa L. | 0~5 | 65~74 | 1103 |
Loe.g | Elymus dahuricus Turcz. Medicago sativa L. Artemisia sacrorum Ledeb. ex Hook.f. Scutellaria baicalensis Georgi | 0~5 | 40~51 | 1050 |
Fitting Parameters | Aeo.f | Aeo.g | San.f | San.g | Loe.f | Loe.g | |
---|---|---|---|---|---|---|---|
Kostiakov: f(t) = at−b | a | 3.9857 | 5.1254 | 4.3413 | 9.1090 | 2.2813 | 3.2108 |
b | −0.2433 | −0.3342 | −0.2946 | −0.2416 | −0.3135 | −0.3678 | |
R2 | 0.8245 | 0.8517 | 0.7674 | 0.8064 | 0.7753 | 0.9141 |
Plots | Depth (cm) | BD (g/cm3) | SOM (g·kg−1) | WSA (%) | SMC (%) | TP (%) | RLD (m/m3) | RAI (m2/m3) |
---|---|---|---|---|---|---|---|---|
Aeo.f | 0–10 | 1.33 ± 0.09 b | 6.09 ± 0.51 Ad | 34.19 ± 1.70 Ae | 37.72 ± 1.96 Ab | 49.99 ± 3.41 a | 30.47 ± 3.4 Ad | 125.65 ± 10.30 Ad |
10–20 | 1.36 ± 0.03 c | 3.13 ± 0.37 Bd | 29.15 ± 1.38 Bd | 36.04 ± 1.86 Aab | 48.69 ± 3.43 a | 25.52 ± 1.98 Bd | 59.75 ± 7.56 Bd | |
20–30 | 1.43 ± 0.03 cd | 2.88 ± 0.15 Cd | 32.35 ± 0.92 Ad | 32.13 ± 1.40 Ba | 45.97 ± 1.09 a | 21.75 ± 2.71 Cc | 36.03 ± 4.65 Cd | |
Aeo.g | 0–10 | 1.50 ± 0.09 Ca | 7.10 ± 0.15 Ac | 26.72 ± 0.79 BCf | 28.98 ± 1.93 Ac | 43.44 ± 1.52 Ab | 31.71 ± 5.93 Bd | 67.57 ± 7.56 Ce |
10–20 | 1.58 ± 0.02 BCb | 4.86 ± 0.30 Bd | 25.06 ± 0.71 Ce | 25.69 ± 0.77 Bc | 40.50 ± 0.72 Bb | 39.68 ± 4.11 Ac | 128.15 ± 10.09 Ab | |
20–30 | 1.61 ± 0.02 Ab | 2.65 ± 0.12 Cc | 27.69 ± 1.14 Ae | 24.33 ± 0.79 Bbc | 39.19 ± 0.77 Bc | 31.95 ± 2.47 Ba | 78.18 ± 8.03 Ba | |
San.f | 0–10 | 1.32 ± 0.05 Bb | 7.15 ± 0.24 Ac | 39.20 ± 1.16 Bd | 38.23 ± 2.62 Ab | 50.29 ± 1.73 Aa | 8.81 ± 1.63 Ae | 17.11 ± 2.01 Af |
10–20 | 1.71 ± 0.07 Aa | 3.98 ± 0.30 Bd | 52.50 ± 1.29 Ac | 21.53 ± 0.15 Bd | 35.56 ± 0.98 Bc | 1.88 ± 0.24 Bf | 4.15 ± 1.04 Bf | |
20–30 | 1.72 ± 0.08 Aa | 3.62 ± 0.39 Bc | 48.91 ± 3.31 Ac | 20.39 ± 2.86 Bcd | 30.41 ± 1.55 Cd | 1.71 ± 0.17 Be | 4.08 ± 1.01 Bf | |
San.g | 0–10 | 1.59 ± 0.08 Ca | 8.41 ± 0.38 Ab | 59.58 ± 0.44 Ba | 26.08 ± 1.50 Ac | 40.13 ± 1.84 Ab | 54.50 ± 6.06 Ac | 145.54 ± 15.92 Ac |
10–20 | 1.75 ± 0.07 Aa | 4.28 ± 0.24 Bc | 67.26 ± 0.77 Aa | 20.45 ± 0.60 Bd | 34.51 ± 0.52 Bc | 10.71 ± 3.32 Be | 10.16 ± 2.31 Be | |
20–30 | 1.71 ± 0.05 BCa | 4.17 ± 0.30 Cb | 64.94 ± 2.37 Aa | 17.63 ± 0.87 Cd | 31.84 ± 0.91 Cd | 4.13 ± 0.91 Cd | 8.74 ± 1.05 Be | |
Loe.f | 0–10 | 1.32 ± 0.05 b | 9.59 ± 0.25 Aa | 56.50 ± 1.48 b | 38.34 ± 0.62 Ab | 50.31 ± 1.68 a | 74.75 ± 5.06 Ab | 146.54 ± 12.91 Ab |
10–20 | 1.39 ± 0.04 c | 5.91 ± 0.30 Bb | 58.69 ± 2.69 b | 34.56 ± 2.23 BCb | 47.77 ± 1.59 a | 46.81 ± 5.53 Bb | 86.95 ± 18.31 Bc | |
20–30 | 1.41 ± 0.06 d | 5.86 ± 0.26 Cb | 59.61 ± 2.54 b | 32.20 ± 4.20 Ca | 45.91 ± 3.25 a | 20.13 ± 2.23 Cc | 41.24 ± 11.24 Cc | |
Loe.g | 0–10 | 1.24 ± 0.04 Cb | 10.06 ± 0.17 Aa | 53.84 ± 1.89 Ac | 43.19 ± 0.93 Aa | 53.28 ± 1.62 Aa | 89.65 ± 13.05 Aa | 202.18 ± 28.32 Aa |
10–20 | 1.32 ± 0.01 Bc | 7.81 ± 0.36 Ba | 23.16 ± 1.27 Ce | 38.27 ± 0.23 Ba | 50.35 ± 0.15 Ba | 56.14 ± 8.87 Ba | 135.34 ± 22.13 Ba | |
20–30 | 1.51 ± 0.04 Ac | 5.37 ± 0.47 Ca | 28.76 ± 3.18 Bde | 28.20 ± 1.68 Cab | 42.50 ± 1.85 Cb | 27.66 ± 7.98 Cb | 63.29 ± 11.40 Cab |
BD | WSA | SOM | SMC | TP | Clay | Silt | Sand | D | GMD | MWD | PAD | RLD | RAI | SHC | AIR | SIR | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BD | 1 | 0.283 | −0.558 * | −0.989 ** | −0.984 ** | −0.214 | −0.205 | 0.297 | 0.314 | −0.407 | −0.551 * | −0.065 | −0.621 ** | −0.586 * | −0.673 ** | −0.362 | −0.539 * |
WSA | 1 | 0.254 | −0.253 | −0.303 | 0.522 * | 0.608 ** | −0.488 * | −0.449 | 0.665 ** | 0.519 * | −0.891 ** | −0.036 | −0.159 | −0.164 | 0.140 | 0.038 | |
SOM | 1 | 0.596 ** | 0.567 * | 0.118 | 0.248 | −0.241 | −0.480 * | 0.602 ** | 0.594 ** | −0.157 | 0.759 ** | 0.694 ** | 0.754 ** | 0.030 | 0.172 | ||
SMC | 1 | 0.983 ** | 0.176 | 0.178 | −0.270 | −0.373 | 0.420 | 0.560 * | 0.044 | 0.648 ** | 0.611 ** | 0.386 | 0.349 | 0.504 * | |||
TP | 1 | 0.158 | 0.149 | −0.245 | −0.300 | 0.388 | 0.540 * | 0.083 | 0.643 ** | 0.612 ** | 0.707 ** | 0.309 | 0.484 * | ||||
Clay | 1 | 0.959 ** | −0.975 ** | −0.261 | 0.571 * | 0.559 * | −0.610 ** | −0.026 | −0.199 | −0.042 | 0.521 * | 0.484 * | |||||
Slit | 1 | −0.974 ** | −0.355 | 0.688 ** | 0.648 ** | −0.615 ** | 0.078 | −0.123 | 0.032 | 0.605 ** | 0.563 * | ||||||
Sand | 1 | 0.283 | −0.646 ** | −0.644 ** | 0.536 * | −0.100 | 0.085 | −0.086 | −0.589 * | −0.557 * | |||||||
D | 1 | −0.565 * | −0.526 * | 0.453 | −0.427 | −0.372 | −0.198 | 0.267 | 0.238 | ||||||||
GMD | 1 | 0.975 ** | −0.690 ** | 0.541 * | 0.381 | 0.466 | 0.505 * | 0.569 * | |||||||||
MWD | 1 | −0.603 ** | 0.580 * | 0.429 | 0.536 * | 0.517 * | 605 ** | ||||||||||
PAD | 1 | 0.000 | 0.116 | 0.096 | −0.230 | −0.188 | |||||||||||
RLD | 1 | 0.945 ** | 0.928 ** | 0.208 | 0.358 | ||||||||||||
RAI | 1 | 0.862 ** | 0.093 | 0.233 | |||||||||||||
SHC | 1 | −0.104 | −0.332 | ||||||||||||||
AIR | 1 | 0.918 ** | |||||||||||||||
SIR | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, X.; Chai, X.; Qu, Y.; Xu, Y.; Khan, F.U.; Wang, J.; Geming, P.; Wang, W.; Zhang, Q.; Wu, Q.; et al. Restoration of Grassland Improves Soil Infiltration Capacity in Water-Wind Erosion Crisscross Region of China’s Loess Plateau. Land 2023, 12, 1485. https://doi.org/10.3390/land12081485
Ren X, Chai X, Qu Y, Xu Y, Khan FU, Wang J, Geming P, Wang W, Zhang Q, Wu Q, et al. Restoration of Grassland Improves Soil Infiltration Capacity in Water-Wind Erosion Crisscross Region of China’s Loess Plateau. Land. 2023; 12(8):1485. https://doi.org/10.3390/land12081485
Chicago/Turabian StyleRen, Xiuzi, Xiaohong Chai, Yuanyuan Qu, Yuanhui Xu, Farhat Ullah Khan, Junfeng Wang, Palixiati Geming, Weiwei Wang, Qi Zhang, Qinxuan Wu, and et al. 2023. "Restoration of Grassland Improves Soil Infiltration Capacity in Water-Wind Erosion Crisscross Region of China’s Loess Plateau" Land 12, no. 8: 1485. https://doi.org/10.3390/land12081485