Spatial-Temporal Dynamics of Water Conservation in Gannan in the Upper Yellow River Basin of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing Methods
2.3. Methodology for Evaluating the Water Conservation Function
2.3.1. InVEST Model—Water Conservation Calculation
2.3.2. Change Trend Analysis
2.3.3. Spatial Delineation of Water Conservation Importance
3. Results
3.1. Inter-Annual Trends in Water Conservation
3.2. Spatial Distribution of Water Yield and Water Conservation
3.2.1. Spatial Distribution Characteristics of Water Yield
3.2.2. Spatial Distribution Pattern of Water Conservation
3.3. Responses of Water Conservation to Key Factors
3.3.1. Responses of Water Conservation to Climatic Factors
3.3.2. Responses of Water Conservation to Land Use Patterns
3.4. Spatial Classification of the Importance of Water Conservation
4. Discussion
4.1. Spatial and Temporal Patterns of Water Yield and Water Conservation in Gannan
4.2. Driving Factors Affecting the Regional Water Conservation Function
4.3. Ecological Priority and Regional Management
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Portillo-Quintero, C.; Sanchez-Azofeifa, A.; Calvo-Alvarado, J.; Quesada, M.; Santo, M.M.D.E. The role of tropical dry forests for biodiversity, carbon and WATER CONSERVATION in the neotropics: Lessons learned and opportunities for its sustainable management. Reg. Environ. Chang. 2015, 15, 1039–1049. [Google Scholar] [CrossRef]
- Biao, Z.; Wenhua, L.; Gaodi, X.; Yu, X. Water conservation of forest ecosystem in Beijing and its value. Ecol. Econ. 2010, 69, 1416–1426. [Google Scholar] [CrossRef]
- Feng, D.; Wu, W.; Liang, L.; Li, L.; Zhao, G. Payments for watershed ecosystem services: Mechanism, progress and challenges. Ecosyst. Health Sustain. 2018, 4, 1434318. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Xiang, H.; Huang, Z.; Xiang, X.; Yu, Y.; Wang, M.; Li, Z. Analysis of leaf-architecture characteristics and ecological adaptability of tree species in the upper reaches of the Chishui River. Ecol. Indic. 2022, 135, 108563. [Google Scholar] [CrossRef]
- Villa, F.; Bagstad, K.J.; Voigt, B.; Johnson, G.W.; Portela, R.; Honzák, M.; Batker, D. A Methodology for Adaptable and Robust Ecosystem Services Assessment. PLoS ONE 2014, 9, e91001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammed, A.K.R. Modelling the impact of climate change on flow and E. coli concentration in the catchment of an ungauged drinking water source in Norway. J. Hydrol. 2019, 573, 676–687. [Google Scholar] [CrossRef]
- Qiu, L.J.; Zheng, F.L.; Yin, R.S. SWAT-based runoff and sediment simulation in a small watershed, the loessial hilly-gullied region of China: Capabilities and challenges. Int. J. Sediment Res. 2012, 27, 9. [Google Scholar] [CrossRef]
- Leh, M.D.K.; Matlock, M.D.; Cummings, E.C.; Nalley, L.L. Quantifying and mapping multiple ecosystem services change in West Africa. Agric. Ecosyst. Environ. 2013, 165, 6–18. [Google Scholar] [CrossRef]
- Jiang, X.; Xu, S.; Liu, Y.; Wang, X. River ecosystem assessment and application in ecological restorations: A mathematical approach based on evaluating its structure and function. Ecol. Eng. 2015, 76, 151–157. [Google Scholar] [CrossRef]
- Vigerstol, K.L.; Aukema, J.E. A comparison of tools for modeling freshwater ecosystem services. J. Environ. Manag. 2011, 92, 2403–2409. [Google Scholar] [CrossRef]
- Gao, J.; Li, F.; Gao, H.; Zhou, C.; Zhang, X. The impact of land-use change on water-related ecosystem services: A study of the Guishui River Basin, Beijing, China. J. Clean. Prod. 2017, 163, S148–S155. [Google Scholar] [CrossRef]
- Yang, D.; Liu, W.; Tang, L.; Chen, L.; Li, X.; Xu, X. Estimation of water provision service for monsoon catchments of South China: Applicability of the InVEST model. Landsc. Urban Plan. 2019, 182, 133–143. [Google Scholar] [CrossRef]
- Dennedy-Frank, P.J.; Muenich, R.L.; Chaubey, I.; Ziv, G. Comparing two tools for ecosystem service assessments regarding water resources decisions. J. Environ. Manag. 2016, 177, 331–340. [Google Scholar] [CrossRef] [Green Version]
- Hamel, P.; Guswa, A.J. Uncertainty analysis of a spatially explicit annual water-balance model: Case study of the Cape Fear basin, North Carolina. Hydrol. Earth Syst. Sci. 2015, 19, 839–853. [Google Scholar] [CrossRef] [Green Version]
- Redhead, J.W.; Stratford, C.; Sharps, K.; Jones, L.; Ziv, G.; Clarke, D.; Oliver, T.H.; Bullock, J.M. Empirical validation of the InVEST water yield ecosystem service model at a national scale. Sci. Total Environ. 2016, 569, 1418–1426. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.W.; Jung, Y.Y. Application of the InVEST Model to Quantify the WATER YIELD of North Korean Forests. Forests 2020, 11, 804. [Google Scholar] [CrossRef]
- Yang, J.; Xie, B.P.; Zhang, D.G. Spatio-temporal variation of WATER YIELD and its response to precipitation and land use change in the Yellow River Basin based on InVEST model. Ying Yong Sheng Tai Xue Bao/J. Appl. Ecol. 2020, 31, 2731–2739. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, Q.; Fu, Q.; Jiang, X.; Mo, K. Eco-environmental effects of water resources development and utilization in the Sanjiang Plain, Northeast China. Water Sci. Technol. Water Supply 2018, 18, 1051–1061. [Google Scholar] [CrossRef] [Green Version]
- Xue, Z.Z.; Li, W.L.; Xu, D.D.; Xun, W.; Yang, Z.S. Research on eco-economic functional regionalization of important water supply region of the Yellow River in Gannan area. Chin. J. Eco-Agric. 2010, 18, 1093–1098. [Google Scholar] [CrossRef]
- Yue, M.; Wei, F.Z. Based on Energy Evaluation for Agricultural Ecological System of Gannan Tibetan Autonomous Prefecture. Res. Agric. Mod. 2009, 30, 95–97. [Google Scholar] [CrossRef]
- Yang, X.; Chen, R.; Meadows, M.E.; Ji, G.; Xu, J. Modelling WATER YIELD with the InVEST model in a data scarce region of northwest China. Water Supply 2020, 20, 1035–1045. [Google Scholar] [CrossRef]
- Yao, Y.; Deng, Z.; Yin, D.; Zhang, X.; An, H. Climatic changes and eco-environmental effects in the Yellow River important water source supply area of Gannan Plateau. Geogr. Res. 2007, 26, 844–852. [Google Scholar] [CrossRef]
- Sharp, R.; Chaplin-Kramer, R.; Wood, S.; Guerry, A.; Douglass, J. InVEST User’s Guide; The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund: Stanford, CA, USA, 2018. [Google Scholar] [CrossRef]
- Xu, F.; Zhao, L.; Jia, Y.; Niu, C.; Liu, X.; Liu, H. Evaluation of WATER CONSERVATION function of Beijiang River Basin in Nanling Mountains, China, based on WEP-L model. Ecol. Indic. 2022, 134, 108383. [Google Scholar] [CrossRef]
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. InVEST User’s Guide; The Natural Capital Project: Stanford, CA, USA, 2014. [Google Scholar]
- Wang, X.; Wu, J.; Liu, Y.; Hai, X.; Shanguan, Z.; Deng, L. Driving factors of ecosystem services and their spatiotemporal change assessment based on land use types in the Loess Plateau. J. Environ. Manag. 2022, 311, 114835. [Google Scholar] [CrossRef]
- Cruz-Blanco, M.; Santos, C.; Gavilán, P.; Lorite, I.J. Uncertainty in estimating reference evapotranspiration using remotely sensed and forecasted weather data under the climatic conditions of Southern Spain. Int. J. Climatol. 2015, 35, 3371–3384. [Google Scholar] [CrossRef]
- Li, M.; Liang, D.; Xia, J.; Song, J.; Cheng, D.; Wu, J.; Cao, Y.; Sun, H.; Li, Q. Evaluation of WATER CONSERVATION function of Danjiang River Basin in Qinling Mountains, China based on InVEST model. J. Environ. Manag. 2021, 286, 112212. [Google Scholar] [CrossRef]
- Yang, B.; Zheng, H.; Ouyang, Z.; Zhuang, C.; Bo, J. Modeling hydrological ecosystem services and tradeoffs: A case study in Baiyangdian watershed, China. Environ. Earth Sci. 2012, 70, 709–718. [Google Scholar] [CrossRef]
- Kalma, J.D.; Mcvicar, T.R.; Mccabe, M.F. Estimating Land Surface Evaporation: A Review of Methods Using Remotely Sensed Surface Temperature Data. Surv. Geophys. 2008, 29, 421–469. [Google Scholar] [CrossRef]
- Yang, J.; Xie, B.; Zhang, D.; Tao, W. Climate and land use change impacts on water yield ecosystem service in the Yellow River Basin. China Environ. Earth Sci. 2021, 80, 72. [Google Scholar] [CrossRef]
- Wenmin, H.; Guo, L.; Gao, Z.; Jia, G.; Yi, L. Assessment of the impact of the Poplar Ecological Retreat Project on WATER CONSERVATION in the Dongting Lake wetland region using the InVEST model. Sci. Total Environ. 2020, 733, 139423. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, A.; Peng, D.; Miao, C.; Di, Z.; Gong, W. Spatiotemporal variations in WATER CONSERVATION function of the Tibetan Plateau under climate change based on InVEST model. J. Hydrol. Reg. Stud. 2022, 41, 101064. [Google Scholar] [CrossRef]
- Shi, N.N.; Xiao, N.W.; Wang, Q.; Han, Y.; Gao, X.Q.; Feng, J.; Quan, Z.J. Spatio-temporal dynamics of normalized differential vegetation index and its driving factors in Xilin Gol, China. Chin. J. Plant Ecol. 2019, 43, 331–341. [Google Scholar] [CrossRef]
- Song, B.; Jing, L.; Li, H.; Feng, W. The Demarcation of Ecological Protection Red Line Based on Water Conversation Function. Ecol. Environ. Sci. 2017, 26, 1665–1670. [Google Scholar] [CrossRef]
- Xu, D.; Zou, C.; Xu, M.; You, G.; Dan, W. Ecological security pattern construction based on ecological protection redlines. Biodivers. Sci. 2015, 23, 740. [Google Scholar] [CrossRef]
- Li, W.; Ma, L.; Zang, Z.; Gao, J.; Li, J. Construction of ecological security patterns based on ecological red line in Erhai Lake Basin of southwestern China. J. Beijing For. Univ. 2018, 40, 85–95. [Google Scholar] [CrossRef]
- Bao, Y.; Ting, L.I.; Liu, H.; Tao, M.A.; Wang, H.; Liu, K.; Shen, X.; Liu, X.; Branch, N. Spatial and temporal changes of water conservation of Loess Plateau in northern Shaanxi province by InVEST model. Geogr. Res. 2016, 35, 664–676. [Google Scholar]
- Edwards, D.P.; Tobias, J.A.; Sheil, D.; Meijaard, E.; Laurance, W.F. Maintaining ecosystem function and services in logged tropical forests. Trends Ecol. Evol. 2014, 29, 511–520. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.B.; Wang, R.Y.; Deng, Z.Y.; Yin, D.; Chen, C.P. Climate Evolution and Its Impact on Water Resource Change in Main Runoff Generating Area of Upper Yellow River: A case study on Gannan Plateau. J. Desert Res. 2007, 27, 903–909. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Zhu, A. Effectiveness Assessment of Soil Erosion Critical Source Areas for Soil and WATER CONSERVATION. J. Resour. Ecol. 2012, 3, 138–143. [Google Scholar] [CrossRef]
- Hao, L.; Chang, S.; Tingting, Z.; Peng, L. Trade-off and synergy relationships of ecosystem services and driving force analysis based on land cover change in Altay Prefecture. J. Resour. Ecol. 2021, 12, 777–790. [Google Scholar] [CrossRef]
- Berghuijs, W.R.; Larsen, J.R.; Emmerik, T.H.M.V.; Woods, R.A. A Global Assessment of Runoff Sensitivity to Changes in Precipitation, Potential Evaporation, and Other Factors. Water Resour. Res. 2017, 53, 8475–8486. [Google Scholar] [CrossRef] [Green Version]
- Jia, X.; Fu, B.; Feng, X.; Hou, G.; Yu, L.; Wang, X. The tradeoff and synergy between ecosystem services in the Grain-for-Green areas in Northern Shaanxi, China. Ecol. Indic. 2014, 43, 103–113. [Google Scholar] [CrossRef]
- Maurya, S.; Srivastava, P.K.; Gupta, M.; Islam, T.; Han, D. Integrating Soil Hydraulic Parameter and Microwave Precipitation with Morphometric Analysis for Watershed Prioritization. Water Resour. Manag. 2016, 30, 5385–5405. [Google Scholar] [CrossRef]
- Yerli, C.; Sahin, U. An assessment of the urban water footprint and blue water scarcity: A case study for Van (Turkey). Braz. J. Biol. 2021, 82, e249745. [Google Scholar] [CrossRef]
- Muratoglu, A. Water footprint assessment within a catchment: A case study for Upper Tigris River Basin. Ecol. Indic. 2019, 106, 105467. [Google Scholar] [CrossRef]
- Xu, L.; Li, Y.; Wang, L. Study on the Comprehensive Tourism Development Patternin Periphery Minority Area: A Case Study of Gannan Tibetan Autonomous Prefecture of Gansu Province, China. Popul. Resour. Environ. China 2007, 5, 43–50. [Google Scholar] [CrossRef]
- Lan, Y.; Wen, J.; Chang, J.; Xu, Y.; Lu, J. Possible change on the runoff in the upper Yellow River basin under global climate change. Sci. Cold Arid. Reg. 2009, 1, 157–164. [Google Scholar] [CrossRef]
- Lin, L.; Shen, H.; Sheng, D.; Xiao, J.; Shi, X. Response of runoff to climate change and its future tendency in the source region of Yellow River. J. Geogr. Sci. 2012, 22, 431–440. [Google Scholar] [CrossRef]
- Liu, Q.; Yan, C.; Zhao, C.; Yang, J.; Zhen, W. Changes of daily potential evapotranspiration and analysis of its sensitivitycoefficients to key climatic variables in Yellow River Basin. Trans. Chin. Soc. Agric. Eng. 2014, 30, 157–166. [Google Scholar] [CrossRef]
- Drexler, J.Z.; Snyder, R.L.; Spano, D.; Kyaw, T. A review of models and micrometeorological methods used to estimate wetland evapotranspiration. Hydrol. Process. 2010, 18, 2071–2101. [Google Scholar] [CrossRef]
- Lewis, C.S.; Allen, L.N. Potential crop evapotranspiration and surface evaporation estimates via a gridded weather forcing dataset. J. Hydrol. 2017, 546, 450–463. [Google Scholar] [CrossRef] [Green Version]
- Negash, W. Catchment dynamics and its impact on runoff generation: Coupling watershed modelling and statistical analysis to detect catchment responses. Int. J. Water Resour. Environ. Eng. 2014, 6, 2. [Google Scholar] [CrossRef] [Green Version]
- Or, D.; Lehmann, P. Surface Evaporative Capacitance: How Soil Type and Rainfall Characteristics Affect Global-Scale Surface Evaporation. Water Resour. Res. 2019, 55, 519–539. [Google Scholar] [CrossRef] [Green Version]
- Julian, J.P.; Gardner, R.H. Land cover effects on runoff patterns in eastern Piedmont (USA) watersheds. Hydrol. Process. 2014, 28, 1525–1538. [Google Scholar] [CrossRef]
- Sterling, S.M.; Agnès, D.; Polcher, J. The impact of global land-cover change on the terrestrial water cycle. Nat. Clim. Chang. 2013, 3, 385–390. [Google Scholar] [CrossRef]
- Zhao, X.; Wu, P.; Gao, X.; Lei, T.; Li, H. Changes of soil hydraulic properties under early-stage natural vegetation recovering on the Loess Plateau of China. Catena 2014, 113, 386–391. [Google Scholar] [CrossRef]
- Thakkar, A.K.; Dhiman, S.D. Morphometric analysis and prioritization of miniwatersheds in Mohr watershed, Gujarat using remote sensing and GIS techniques. J. Indian Soc. Remote Sens. 2007, 35, 313–321. [Google Scholar] [CrossRef]
- Gong, S.; Xiao, Y.; Xiao, Y.; Zhang, L.; Ouyang, Z. Driving Forces and Their Effects on WATER CONSERVATION Services in Forest Ecosystems in China. Chin. Geogr. Sci. 2017, 27, 216–228. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Shi, W.; Guo, B.; Tao, F. Large spatial variations in the distributions of and factors affecting forest water retention capacity in China. Ecol. Indic. 2020, 113, 106152. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, C.; Xu, J. Areas Benefiting from WATER CONSERVATION in Key Ecological Function Areas in China. J. Resour. Ecol. 2015, 6, 375–385. [Google Scholar] [CrossRef]
Data | Data Sources and Processing Methods |
---|---|
Precipitation | Data obtained from the National Earth System Science Data Center (http://www.geodata.cn, accessed on 11 January 2023). |
Potential evapotranspiration | Calculated from the modified Hargreaves equation: , where Tav is the average of the month-by-month mean daily maximum and month-by-month mean minimum temperatures, TD is the difference between the month-by-month mean daily maximum and month-by-month mean minimum temperatures, RA is the extraterrestrial radiation and P is the month-by-month precipitation [25,27]. |
Land use/cover | Data obtained from the Resource and Environmental Science Data Center (RESDC), Chinese Academy of Sciences (http://www.resdc.cn, accessed on 11 January 2023). |
Soil data | Includes soil type, soil texture (% clay, % sand, % chalk, % organic carbon) and soil depth from the World Soil Database (https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/, accessed on 11 January 2023). |
Plant available water content (PAWC) | Calculation based on soil texture: , where OM% indicates the soil organic matter content [28]. |
Digital elevation model | Geospatial Data Cloud Platform of Chinese Academy of Sciences (http://www.gscloud.cn, accessed on 11 January 2023). |
Topographic index | Calculations were based on the number of watersheds rasters, soil depths and percentage slopes of the study area, combined with the use of ArcGIS spatial analysis tools. |
Velocity coefficient | According to relevant studies and the InVEST model handbook [25,29]. |
Soil saturated hydraulic conductivity | Calculations were performed by SPAW software based on soil texture data. |
Percentage slope | Based on the DEM, the calculation was performed using the slope tool in ArcGIS. |
Watershed division map | Based on DEM, processed by ArcGIS hydrological analysis tool. |
The parameter Z | Obtained by repeated verification based on relevant information from Gannan. Z = 4.1. |
Lucode | LULC_Desc | LULC_Veg | Kc | Root_Depth (mm) |
---|---|---|---|---|
1 | Farmland | 1 | 0.65 | 2000 |
2 | Woodland | 1 | 1.00 | 5200 |
3 | Grassland | 1 | 0.65 | 2300 |
4 | Water | 0 | 1.00 | 100 |
5 | Residential area | 0 | 0.30 | 100 |
6 | Unused land | 0 | 1.00 | 300 |
Year | WC Of Each Land Use Type | Total Amount of WC (108 m3) | |||||
---|---|---|---|---|---|---|---|
Farmland (108 m3) | Woodland (108 m3) | Grassland (108 m3) | Water (106 m3) | Residential Area (106 m3) | Unused Land (108 m3) | ||
2000 | 1.51 (1.81%) | 35.70 (42.82%) | 40.95 (49.12%) | 0.07 (0.08%) | 0.04 (0.05%) | 5.11 (6.13%) | 83.37 |
2005 | 1.77 (1.79%) | 42.75 (43.13%) | 48.59 (49.02%) | 0.08 (0.08%) | 0.06 (0.06%) | 5.87 (5.92%) | 99.12 |
2010 | 1.48 (1.78%) | 34.39 (41.44%) | 42.12 (50.76%) | 0.07 (0.08%) | 0.05 (0.06%) | 4.87 (5.87%) | 82.98 |
2015 | 1.28 (1.73%) | 30.85 (41.71%) | 37.25 (50.37%) | 0.06 (0.08%) | 0.05 (0.07%) | 4.47 (6.04%) | 73.96 |
2020 | 1.91 (1.72%) | 48.85 (44.10%) | 53.40 (48.21%) | 0.11 (0.10%) | 0.10 (0.09%) | 6.38 (5.76%) | 110.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Che, X.; Jiao, L.; Zhu, X.; Wu, J.; Li, Q. Spatial-Temporal Dynamics of Water Conservation in Gannan in the Upper Yellow River Basin of China. Land 2023, 12, 1394. https://doi.org/10.3390/land12071394
Che X, Jiao L, Zhu X, Wu J, Li Q. Spatial-Temporal Dynamics of Water Conservation in Gannan in the Upper Yellow River Basin of China. Land. 2023; 12(7):1394. https://doi.org/10.3390/land12071394
Chicago/Turabian StyleChe, Xichen, Liang Jiao, Xuli Zhu, Jingjing Wu, and Qian Li. 2023. "Spatial-Temporal Dynamics of Water Conservation in Gannan in the Upper Yellow River Basin of China" Land 12, no. 7: 1394. https://doi.org/10.3390/land12071394
APA StyleChe, X., Jiao, L., Zhu, X., Wu, J., & Li, Q. (2023). Spatial-Temporal Dynamics of Water Conservation in Gannan in the Upper Yellow River Basin of China. Land, 12(7), 1394. https://doi.org/10.3390/land12071394