Spatiotemporal Variability in Soil Properties and Composition in Mangrove Forests in Baía de Todos os Santos (NE Brazil)
Abstract
:1. Introduction
2. Materials and Methods
- -
- F1, soluble fraction, exchangeable and associated with carbonates (ExCa): Briefly, 30 mL acetic acid (0.11 mol L−1; pH = 4.5) was added to each sample (2 g wet sample); samples were then shaken at 25 °C for 16 h. After shaking, samples were centrifuged to remove the supernatant (fraction 1), washed in ultrapure deoxygenated water with bubbling N2 for 10 min, and then centrifuged again, a procedure that was repeated before each subsequent stage.
- -
- F2, fraction associated with amorphous iron oxides (Am): Briefly, 20 mL of solution containing 20 g ascorbic acid +50 g sodium citrate +50 g bicarbonate +1 L ultrapure deoxygenated H2O and N2 at pH 8 was added to the residue of the previous fraction. Samples with the solution were shaken at 25 °C for 24 h and were subsequently centrifuged to collect the washed extract.
- -
- F3, fraction associated with crystalline iron oxyhydroxides (Cri): briefly, 20 mL of solution containing 73.925 g sodium citrate +9.24 g NaHCO3 in 1 L ultrapure H2O and 3 g sodium dithionite was added to each sample, then shaken for 30 min at 75 °C, and finally centrifuged to collect the washed extract.
- -
- F4, reduced forms associated with organic matter and oxidizable sulfides (Red): Briefly, 10 mL of H2O2 (8.8 M) was added to each sample and warmed in a bath at 85 °C until evaporation down to 3 mL, followed by a second addition of 10 mL of H2O2. Samples were kept warm (in a bath at 85 °C) until evaporation down to 1 mL, at which point 50 mL of AcNH4 solution was added and samples were shaken for 16 h at 25 °C.
3. Results
3.1. Physicochemical Characterization of Soils
3.2. Soil Composition: Total Organic Carbon (TOC), Total Nitrogen (TN), C/N Ratio, and Isotopic Ratios
3.3. Leaf Composition: Total C, TN, C/N, δ13C, and δ15N
3.4. Total Fe and Geochemical Partitioning in Soils
3.5. Pyrite Morphology
4. Discussion
4.1. Spatiotemporal Heterogeneity in Mangrove Soils
4.2. Variation in Organic Matter Composition in Mangrove Soils
4.3. Spatiotemporal Variability in Geochemical Forms of Fe in Mangrove Soils
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feller, I.; Lovelock, C.; Berger, U.; McKee, K.; Joye, S.; Ball, M. Biocomplexity in Mangrove Ecosystems. Annu. Rev. Mar. Sci. 2010, 2, 395–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alongi, D.M. Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuar. Coast. Shelf Sci. 2008, 76, 1–13. [Google Scholar] [CrossRef]
- Pérez, A.; Libardoni, B.G.; Sanders, C.J. Factors influencing organic carbon accumulation in mangrove ecosystems. Biol. Lett. 2018, 14, 20180237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nóbrega, G.N.; Otero, X.L.; Romero, D.J.; Queiroz, H.M.; Gorman, D.; Copertino, M.D.S.; Piccolo, M.D.C.; Ferreira, T.O. Masked diversity and contrasting soil processes in tropical seagrass meadows: The control of environmental settings. Egusphere 2022, 1–29. [Google Scholar] [CrossRef]
- Kristensen, E.; Bouillon, S.; Dittmar, T.; Marchand, C. Organic carbon dynamics in mangrove ecosystems: A review. Aquat. Bot. 2008, 89, 201–219. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, T.O.; Otero, X.L.; Vidal-Torrado, P.; Macías, F. Redox Processes in Mangrove Soils under Rhizophora mangle in Relation to Different Environmental Conditions. Soil Sci. Soc. Am. J. 2007, 71, 484–491. [Google Scholar] [CrossRef]
- Machado, W.; Borrelli, N.; Ferreira, T.; Marques, A.; Osterrieth, M.; Guizan, C. Trace metal pyritization variability in response to mangrove soil aerobic and anaerobic oxidation processes. Mar. Pollut. Bull. 2014, 79, 365–370. [Google Scholar] [CrossRef]
- Otero, X.L.; Ferreira, T.O.; Huerta-Díaz, M.A.; Partiti, C.S.M.; Souza, V., Jr.; Vidal-Torrado, P.; Macías, F. Geochemistry of iron and manganese in soils and sediments of a mangrove system, Island of Pai Matos (Cananéia—SP, Brazil). Geoderma 2009, 148, 318–335. [Google Scholar] [CrossRef]
- Berrêdo, J.F.; Costa, M.L.; Vilhena, M.S.P.; Matos, C.R.L. Modificações nas propriedades físico-químicas de sedimentos de manguezais submetidos ao clima amazônico. Bol. Mus. Para. Emílio Goeldi. Cienc. Nat. 2016, 11, 313–328. [Google Scholar]
- Ferreira, T.O.; Otero, X.L.; Souza-Júnior, V.S.; Vidal-Torrado, P.; Macías, F.; Firme, L.P. Spatial patterns of soil attributes and componentes in a mangrove system in Southeast Brazil (São Paulo). J. Soils Sediments 2010, 10, 995–1006. [Google Scholar] [CrossRef]
- Nóbrega, G.N.; Ferreira, T.O.; Romero, R.E.; Marques, A.G.B.; Otero, X.L. Iron and sulfur geochemistry in semi-arid mangrove soils (Ceará, Brazil) in relation to seasonal changes and shrimp farming effluents. Environ. Monit. Assess. 2013, 185, 7393–7407. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Li, Y.; Li, H.; Wang, L.; Liao, X.; Wang, J.; Kong, C. Effects of topography and soil properties on soil selenium distribution and bioavailability (phosphate extraction): A case study in Yongjia County, China. Sci. Total. Environ. 2018, 633, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, T.O.; Queiroz, H.M.; Nóbrega, G.N.; Souza Júnior, V.S.; Barcellos, D.; Ferreira, A.D.; Otero, X.L. Litho-climatic characteristics and its control over mangrove soil geochemistry: A macro-scale approach. Sci. Total Environ. 2022, 811, 152152. [Google Scholar] [CrossRef]
- Schaeffer-Novelli, Y. Mangue e manguezal. In ICMBIO—Instituto Chico Mendes de Conservação da Biodiversidade. Atlas dos Manguezais do Brasil; Instituto Chico Mendes de Conservação da Biodiversidade: Brasília, Brazil, 2018; Chapter 1; pp. 15–20. [Google Scholar]
- Hadlich, G.M.; Ucha, J.M.; Celino, J.J. Apicuns na Baía de Todos os Santos: Distribuição espacial, descrição e caracterização física e química. In Avaliação de Ambientes na Baía de Todos os Santos: Aspectos Geoquímicos, Geofísicos e Biológicos; Queiroz, A.F.S., Celino, J.J., Eds.; UFBA: Salvador, Brazil, 2008; pp. 59–72. [Google Scholar]
- Pinheiro, L.S.; Coriolano, L.N.; Costa, M.F.; Dias, J.A. O nordeste brasileiro e a gestão costeira. J. Integr. Coast. Zone Manag. 2008, 8, 5–10. [Google Scholar] [CrossRef]
- Mota, T.A.; Pinheiro, M.A.A.; Evangelista-Barreto, N.S.; Rocha, S.S. Density and extractive potential of “uçá”-crab, Ucides cordatus (Linnaeus, 1763), in mangroves of the “Todos os Santos” Bay, Bahia, Brazil. Fish. Res. 2023, 265, 106733. [Google Scholar] [CrossRef]
- Hatje, V.; Barros, F. Overview of the 20th century impact of trace metal contamination in the estuaries of Todos os Santos Bay: Past, present and future scenarios. Mar. Pollut. Bull. 2012, 64, 2603–2614. [Google Scholar] [CrossRef]
- Reis-Filho, J.A.; Nunes, J.; Ferreira, A. Estuarine ichthyofauna of the Paraguaçu river, Todos os Santos bay, Bahia, Brazil. Biota Neotrop. 2010, 10, 301–311. [Google Scholar] [CrossRef] [Green Version]
- Santos, L.; Miranda, D.; Hatje, V.; Albergaria-Barbosa, A.; Leonel, J. PCBs occurrence in marine bivalves and fish from Todos os Santos Bay, Bahia, Brazil. Mar. Pollut. Bull. 2020, 154, 111070. [Google Scholar] [CrossRef]
- Hatje, V.; Barros, F.; Figueiredo, D.G.; Santos, V.L.C.S.; Peso-Aguiar, M.C. Trace metal contamination and benthic assemblages in Subaé estuarine system, Brazil. Mar. Pollut. Bull. 2006, 52, 969–987. [Google Scholar] [CrossRef] [Green Version]
- Milazzo, A.D.D.; Van Gestel, C.A.M.; Cruz, M.J.M. Spatio-temporal variation of metal concentrations in estuarine zones of the todos os santos Bay, Bahia, Brazil. Geociências 2020, 39, 153–169. [Google Scholar] [CrossRef]
- Bomfim, M.R.; Santos, J.A.G.; Costa, O.V.; da Conceiçao, J.N.; da Silva, A.A.; Souza, C.d.S.; Maria da Conceiçao de, A. Morphology, physical and chemical characteristics of mangrove soil under riverine and marine influence: A case study on Subaé river basin, Bahia, Brazil. In Mangrove Ecosystem Ecology and Function; Sharma, S., Ed.; Intech Open: London, UK, 2018. [Google Scholar] [CrossRef]
- Bomfim, M.R.; Santos, J.A.G.; Costa, O.V.; Otero, X.L.; Boas, G.S.V.; Capelão, V.S.; Santos, E.S.; Nacif, P.G.S. Genesis, Characterization, and Classification of Mangrove Soils in the Subaé River Basin, Bahia, Brazil. R. Bras. Ci. Solo 2015, 39, 1247–1260. [Google Scholar] [CrossRef]
- Lessa, G.C.; Dominguez, J.M.L.; Bittencourt, A.C.; Brichta, A. The tides and tidal circulation of Todos os Santos Bay, Northeast Brazil: A general characterization. An. Acad. Bras. Cienc. 2001, 73, 245–261. [Google Scholar] [CrossRef]
- Lessa, G.C.; Cirano, M.; Genz, F.; Tanajura, C.A.S.; Silva, R.R. Oceanografia física. In Baia de Todos os Santos: Aspectos Oceanográficos; Hatje, V., Andrade, J.B., Eds.; EDUFBA: Salvador, Brazil, 2009. [Google Scholar]
- Lessa, G.C.; Bittencourt, A.C.; Brichta, A.; Dominguez, J.M.L. A reevaluation of the late quaternary sedimentation in todos os Santos Bay (BA). An. Acad. Bras. Ci. Brazil. 2000, 72, 573–590. [Google Scholar] [CrossRef] [Green Version]
- Almeida, B.G.D.; Donagemma, G.K.; Ruiz, H.A.; Braida, J.A.; Viana, J.H.M.; Reichert, J.M.M.; Oliveira, L.B.; Ceddia, M.B.; Wadt, P.S.; Fernandes, R.B.A.; et al. Padronização de Métodos para Análise Granulométrica no Brasil. EMBPARA 2012, 1–11. [Google Scholar]
- Zhang, L.; Zhang, R. Effect of Soil Moisture and Particle Size on Soil Total Phosphorus Estimation by Near-Infrared Spectroscopy. Pol. J. Environ. Stud. 2017, 26, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, B.A. Methods for the Determination of Total Organic Carbon (TOC) in Soils and Sediments; Ecological Risk Assessment Support Center, U.S. EPA: Washington, DC, USA, 2002.
- Rauret, G.; López-Sánchez, J.F.; Sahuquillo, A.; Rubio, R.; Davidson, C.; Ure, A.; Quevauviller, P. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J. Environ. Monit. 1998, 1, 57–61. [Google Scholar] [CrossRef]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Otero, X.; Guevara, P.; Sánchez, M.; López, I.; Queiroz, H.; Ferreira, A.; Ferreira, T.; Nóbrega, G.; Carballo, R. Pyrites in a salt marsh-ria system: Quantification, morphology, and mobilization. Mar. Geol. 2023, 455, 106954. [Google Scholar] [CrossRef]
- Reimann, C.; Filzmoser, P.; Garrett, R.G.; Dutter, R. Statistical Data Analysis Explained, Statistical Data Analysis Explained: Applied Environmental Statistics with R; John Wiley & Sons, Ltd.: Chichester, UK, 2008. [Google Scholar]
- Ferreira, T.; Otero, X.; Vidal-Torrado, P.; Macías, F. Effects of bioturbation by root and crab activity on iron and sulfur biogeochemistry in mangrove substrate. Geoderma 2007, 142, 36–46. [Google Scholar] [CrossRef]
- Silva, M.; Bernini, E.; Carmo, T. Características estruturais de bosques de mangue do estuário do rio São Mateus, ES, Brasil. Acta Bot. Bras. 2005, 19, 465–471. [Google Scholar] [CrossRef] [Green Version]
- Souza-Júnior, V.S.D.; Vidal-Torrado, P.; Tessler, M.G.; Pessenda, L.C.R.; Ferreira, T.O.; Otero, X.L.; Macías, F. Evolução quaternária, distribuição de partículas nos solos e ambientes de sedimentação em manguezais do Estado de São Paulo. Rev. Bras. De Ciência Do Solo 2007, 31, 753–769. [Google Scholar] [CrossRef] [Green Version]
- Twilley, R.R.; Rovai, A.S.; Riul, P. Coastal morphology explains global blue carbon distributions. Front. Ecol. Environ. 2018, 16, 503–508. [Google Scholar] [CrossRef] [Green Version]
- Bouillon, S.; Dahdouh-Guebas, F.; Rao, A.; Koedam, N.; Dehairs, F. Sources of organic carbon in mangrove sediments: Variability and possible ecological implications. Hydrobiologia 2003, 495, 33–39. [Google Scholar] [CrossRef]
- Hassink, J. The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil 1997, 191, 77–87. [Google Scholar] [CrossRef]
- Marchand, C.; Fernandez, J.-M.; Moreton, B.; Landi, L.; Lallier-Vergès, E.; Baltzer, F. The partitioning of transitional metals (Fe, Mn, Ni, Cr) in mangrove sediments downstream of a ferralitized ultramafic watershed (New Caledonia). Chem. Geol. 2012, 300–301, 70–80. [Google Scholar] [CrossRef] [Green Version]
- Sasmito, S.D.; Kuzyakov, Y.; Lubis, A.A.; Murdiyarso, D.; Hutley, L.B.; Bachri, S.; Friess, D.A.; Martius, C.; Borchard, N. Organic carbon burial and sources in soils of coastal mudflat and mangrove ecosystems. Catena 2020, 187, 104414. [Google Scholar] [CrossRef]
- Barreto, M.B.; Mónaco, S.L.; Díaz, R.; Barreto-Pittol, E.; López, L.; Peralba, M.D.C.R. Soil organic carbon of mangrove forests (Rhizophora and Avicennia) of the Venezuelan Caribbean coast. Org. Geochem. 2016, 100, 51–61. [Google Scholar] [CrossRef]
- Rovai, A.S.; Twilley, R.R.; Castañeda-Moya, E.; Riul, P.; Cifuentes-Jara, M.; Manrow-Villalobos, M.; Horta, P.A.; Simonassi, J.C.; Fonseca, A.L.; Pagliosa, P.R. Global controls on carbon storage in mangrove soils. Nat. Clim. Chang. 2018, 8, 534–538. [Google Scholar] [CrossRef]
- Mckee, L. Determinants of Mangrove Species Distribution in Neotropical Forests: Biotic and Abiotic Factors Affecting Seedling Survival and Growth. Ph.D. dissertation, Louisiana State University, Baton Rouge, LO, USA, 1993. [Google Scholar]
- Alongi, D.M.; Tirendi, F.; Clough, B.F. Below-ground decomposition of organic matter in forests of the mangroves Rhizophora stylosa and Avicennia marina along the arid coast of Western Australia. Aquat. Bot. 2000, 68, 97–122. [Google Scholar] [CrossRef]
- Mihale, M.J.; Tungaraza, C.; Baeyens, W.; Brion, N. Distribution and Sources of Carbon, Nitrogen and Their Isotopic Compositions in Tropical Estuarine Sediments of Mtoni, Tanzania. Ocean. Sci. J. 2021, 56, 241–255. [Google Scholar] [CrossRef]
- Blair, N.; Leu, A.; Muñoz, E.; Olsen, J.; Kwong, E.; Des Marais, D. Carbon isotopic fractionation in heterotrophic microbial metabolism. Appl. Environ. Microbiol. 1985, 50, 996–1001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Natelhoffer, K.J.; Fry, B. Controls on Natural Nitrogen-15 and Carbon-13 Abundances in Forest Soil Organic Matter. Soil Sci. Soc. Am. J. 1988, 52, 1633–1640. [Google Scholar] [CrossRef]
- Bouillon, S.; Connolly, R.; Lee, S. Organic matter exchange and cycling in mangrove ecosystems: Recent insights from stable isotope studies. J. Sea Res. 2008, 59, 44–58. [Google Scholar] [CrossRef] [Green Version]
- Leng, M.J.; Lewis, J.P. C/N ratios and carbon isotope composition of organic matter in estuarine environments. Appl. Paleoenviron. Tech. Estuar. Stud. 2017, 213–237. [Google Scholar]
- Ray, R.; Rixen, T.; Baum, A.; Malik, A.; Gleixner, G.; Jana, T. Distribution, sources and biogeochemistry of organic matter in a mangrove dominated estuarine system (Indian Sundarbans) during the pre-monsoon. Estuar. Coast. Shelf Sci. 2015, 167, 404–413. [Google Scholar] [CrossRef]
- Garcias-Bonet, N.; Delgado-Huertas, A.; Carrillo-De-Albornoz, P.; Anton, A.; Almahasheer, H.; Marbà, N.; Hendriks, I.E.; Krause-Jensen, D.; Duarte, C.M. Carbon and Nitrogen Concentrations, Stocks, and Isotopic Compositions in Red Sea Seagrass and Mangrove Sediments. Front. Mar. Sci. 2019, 6, 267. [Google Scholar] [CrossRef] [Green Version]
- Harbison, P. Mangrove muds—A sink and a source for trace metals. Mar. Pollut. Bull. 1986, 17, 246–250. [Google Scholar] [CrossRef]
- Soto-Jiménez, M.; Páez-Osuna, F. Distribution and Normalization of Heavy Metal Concentrations in Mangrove and Lagoonal Sediments from Mazatlán Harbor (SE Gulf of California). Estuar. Coast. Shelf Sci. 2001, 53, 259–274. [Google Scholar] [CrossRef]
- Cornell, R.M.; Giovanoli, R.; Schneider, W. Review of the hydrolysis of iron(III) and the crystallization of amorphous iron(III) hydroxide hydrate. J. Chem. Technol. Biotechnol. 2007, 46, 115–134. [Google Scholar] [CrossRef]
- Canfield, D.E. Reactive iron in marine sediments. Geochim. et Cosmochim. Acta 1989, 53, 619–632. [Google Scholar] [CrossRef] [Green Version]
- Canfield, D.E.; Raiswell, R.; Bottrell, S.H. The reactivity of sedimentary iron minerals toward sulfide. Am. J. Sci. 1992, 292, 659–683. [Google Scholar] [CrossRef]
- Otero, X.L.; Souza, M.L.; Macías, F. Iron and trace metal geochemistry in mangrove soils. In Biogeochemistry and Pedogenetic Process in Saltmarsh and Mangrove Systems; Pérez, X.L.O., Vázquez, F.M., Eds.; Nova Science Publishers Inc.: New York, NY, USA, 2010; pp. 1–24. [Google Scholar]
- Ding, H.; Yao, S.; Chen, J. Authigenic pyrite formation and re-oxidation as na indicator of an unsteady-state redox sedimentary environment: Evidence from the intertidal mangrove sediments of Hainan Island, China. Cont. Shelf Res. 2014, 78, 85–99. [Google Scholar] [CrossRef]
- Arrouvel, C.; Eon, J.-G. Understanding the Surfaces and Crystal Growth of Pyrite FeS2. Mater. Res. 2019, 22, e20171140. [Google Scholar] [CrossRef] [Green Version]
- Barnard, A.S.; Russo, S.P. Modelling nanoscale FeS2 formation in sulfur rich conditions. J. Mater. Chem. 2009, 19, 3389–3394. [Google Scholar] [CrossRef]
- Rickard, D. Sulfidic Sediments and Sedimentary Rocks. Developments in Sedimentology; Elsevier: Amsterdam, The Netherlands, 2012; Volume 65. [Google Scholar]
- Aragon, G.; Miguens, F. Microscopic analysis of pyrite in the sediments of two Brazilian mangrove ecosystems. Geo-Mar. Lett. 2001, 21, 157–161. [Google Scholar] [CrossRef]
- Wilkin, R.; Barnes, H.; Brantley, S. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions. Geochim. et Cosmochim. Acta 1996, 60, 3897–3912. [Google Scholar] [CrossRef]
- Du, R.; Xian, H.; Wu, X.; Zhu, J.; Wei, J.; Xing, J.; Tan, W.; He, H. Morphology dominated rapid oxidation of framboidal pyrite. Geochem. Perspect. Lett. 2021, 16, 53–58. [Google Scholar] [CrossRef]
- Brookins, D.G. Eh–pH Diagrams for Geochemistry; Springer-Verlang: Berlin, Germany, 1985. [Google Scholar]
Depth | COT (%) | TN (%) | C/N | δ13C (‰) | δ15N (‰) | |
---|---|---|---|---|---|---|
Dry season (DS) | ||||||
IM | 0–5 cm | 6.0 ± 0.5 Aa | 0.32 ± 0.03 Aa | 19.1 ± 1.3 Ab | −26.98 ± 0.24 Aa | 2.76 ± 0.53 Aa |
15–30 cm | 4.8 ± 0.3 Ab | 0.21 ± 0.02 Ab | 22.8 ± 1.1 Aa | −26.58 ± 0.13 ABa | 2.20 ± 0.45 Aa | |
PT | 0–5 cm | 1.3 ± 0.4 Ba | 0.07 ± 0.04 Ba | 19.9 ± 3.7 Aa | −27.35 ± 0.21 Aa | 1.97 ± 0.52 Aa |
15–30 cm | 1.1 ± 0.3 Ba | 0.05 ± 0.01 Ba | 20.2 ± 3.2 Aa | −27.40 ± 0.54 Ba | 2.63 ± 0.51 Aa | |
CP | 0–5 cm | 2.5 ± 0.4 Ba | 0.10 ± 0.02 Ba | 24.7 ± 2.9 Aa | −27.18 ± 0.26 Aa | 2.13 ± 0.41 Aa |
15–30 cm | 3.2 ± 0.5 Ba | 0.12 ± 0.04 Ba | 26.7 ± 4.2 Aa | −26.77 ± 0.27 ABa | 2.18 ± 0.46 Aa | |
PG | 0–5 cm | 1.3 ± 0.7 Ba | 0.06 ± 0.04 Ba | 23.5 ± 3.2 Aa | −26.43 ± 0.49 Aa | 1.12 ± 0.93 Aa |
15–30 cm | 1.4 ± 0.0 Ba | 0.06 ± 0.00 Ba | 24.9 ± 0.7 Aa | −26.16 ± 0.16 Aa | 0.94 ± 0.39 Ba | |
Rainy season (WS) | ||||||
IM | 0–5 cm | 5.9 ± 0.9 Aa | 0.30 ± 0.06 Aa | 19.6 ± 1.3 Aa | −26.90 ± 0.16 ABb | 2.56 ± 0.29 Aa |
15–30 cm | 4.8 ± 0.3 Aa | 0.23 ± 0.01 Aa | 21.1 ± 1.7 Aa | −26.39 ± 0.21 Aa | 2.26 ± 0.69 Aa | |
PT | 0–5 cm | 1.5 ± 0.4 Ca | 0.06 ± 0.01 Ba | 23.2 ± 4.3 Aa | −27.83 ± 0.33 Ba | 3.10 ± 0.63 Aa |
15–30 cm | 2.1 ± 0.6 Ba | 0.08 ± 0.02 Ba | 25.7 ± 1.6 Aa | −28.00 ± 0.34 Ba | 2.37 ± 0.30 Aa | |
CP | 0–5 cm | 3.4 ± 0.8 Ba | 0.15 ± 0.04 Ba | 22.4 ± 2.4 Aa | −27.04 ± 0.33 ABa | 2.63 ± 0.04 Aa |
15–30 cm | 2.5 ± 0.4 Ba | 0.11 ± 0.03 Ba | 23.0 ± 1.7 Aa | −26.51 ± 0.18 Aa | 2.74 ± 0.24 Aa | |
PG | 0–5 cm | 1.0 ± 1.2 Ca | 0.05 ± 0.03 Ba | 21.0 ± 4.4 Aa | −26.09 ± 0.70 Aa | 1.20 ± 0.66 Ba |
15–30 cm | 1.9 ± 1.2 Ba | 0.07 ± 0.04 Ba | 26.9 ± 2.3 Aa | −26.50 ± 0.07 Aa | 1.12 ± 1.13 Aa |
C (%) | N (%) | C/N | δ13C (‰) | δ15N (‰) | |
---|---|---|---|---|---|
R. mangle | |||||
IM | 41.6± 0.8 a | 1.0 ± 0.2 a | 43.5 ± 7.2 a | −29.7 ± 0.4 bc | 2.7 ± 0.4 a |
CP | 40.4 ± 0.9 a | 1.0 ± 0.1 a | 38.7 ± 1.8 a | −30.3 ± 0.3 c | 2.2 ± 0.1 a |
PT | 41.5 ± 0.5 a | 1.3 ± 0.1 a | 32.8 ± 2.7 b | −28.7 ± 0.1 a | 0.9 ± 0.2 b |
PG | 41.1 ± 1.0 a | 1.0 ± 0.2 a | 40.6 ± 7.2 a | −29.4 ± 0.4 ab | 1.1 ± 0.6 b |
L. racemosa | |||||
PT | 40.5 ± 0.3 b | 1.0 ± 0.2 b | 41.0 ± 4.1 a | −29.3 ± 0.1 b | 2.9 ± 0.3 a |
PG | 38.5 ± 1.6 a | 1.0 ± 0.2 a | 48.2 ± 7.2 a | −29.2 ± 0.2 a | 1.8 ± 0.1 b |
Depth | FeExCa | FeAm | FeCri | FeRed | ||||
---|---|---|---|---|---|---|---|---|
DS | WS | DS | WS | DS | WS | DS | WS | |
Ilha de Maré (IM) | ||||||||
S | 77.9 Aa (21.3) | 68.0 Aa (22.9) | 355 Aa (163) | 356 Aa (90.2) | 1828 Aa (181) | 2154 Aa (816) | 5074 Aa (3329) | 5855 Aa (1580) |
P | 63.3 Aa (17.5) | 69.5 Aa (8.9) | 196 Aa (68.1) | 107 ABb (53.2) | 1155 Ab (76.8) | 1243 Aa (65.5) | 7200 Aa (2662) | 6819 Aa (1437) |
Pitinga (PT) | ||||||||
S | 39.6 Aa (18.0) | 40.3 Aa (11.3) | 613 Aa (335) | 136 Aa (167) | 568 Ba (368) | 346 Ba (170) | 140 Aa (7.9) | 313 Bb (184) |
P | 22.1 Aa (5.8) | 14.9 Aa (2.4) | 340 Aa (241) | 12.3 Ba (5.7) | 279 Ba (138) | 196 Ca (50.1) | 160 Ba (106) | 1722 Ca (853) |
Cacha Prego (CP) | ||||||||
S | 55.2 Aa (10.3) | 85.1 Aa (41.9) | 223 Aa (30.4) | 513 Aa (381) | 577 Ba (73.1) | 1255 ABa (773) | 2488 Aa (1044) | 3621 Aa (689) |
P | 73.8 Aa* (4.1) | 55.2 Aa* (5.1) | 224 Aa (108) | 325 Aa (152) | 575 Ba (63.3) | 630 Ba (126) | 3782 ABa (1828) | 4321 Ba (851) |
Ponta Grossa (PG) | ||||||||
S | 32.8 Aa (27.5) | 33.8 Aa (8.9) | 112 Aa (46.5) | 54.5 Aa (38.8) | 562 Ba (633) | 629 ABa (573) | 1163 Aa (1348) | 467 Ba (471) |
P | 35.0 Aa (25.2) | 30.9 Aa (15.1) | 46.5 Aa (65.5) | 29.1 Ba (26.5) | 395 Ba (206) | 317 Ca (43.3) | 881 Ba (246) | 1082 Ca (417) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasconcelos Ramos, M.A.; Pérez-Alberti, A.; Nuto Nóbrega, G.; Otero, X.L. Spatiotemporal Variability in Soil Properties and Composition in Mangrove Forests in Baía de Todos os Santos (NE Brazil). Land 2023, 12, 1392. https://doi.org/10.3390/land12071392
Vasconcelos Ramos MA, Pérez-Alberti A, Nuto Nóbrega G, Otero XL. Spatiotemporal Variability in Soil Properties and Composition in Mangrove Forests in Baía de Todos os Santos (NE Brazil). Land. 2023; 12(7):1392. https://doi.org/10.3390/land12071392
Chicago/Turabian StyleVasconcelos Ramos, Monica Arlinda, Augusto Pérez-Alberti, Gabriel Nuto Nóbrega, and Xosé Luis Otero. 2023. "Spatiotemporal Variability in Soil Properties and Composition in Mangrove Forests in Baía de Todos os Santos (NE Brazil)" Land 12, no. 7: 1392. https://doi.org/10.3390/land12071392
APA StyleVasconcelos Ramos, M. A., Pérez-Alberti, A., Nuto Nóbrega, G., & Otero, X. L. (2023). Spatiotemporal Variability in Soil Properties and Composition in Mangrove Forests in Baía de Todos os Santos (NE Brazil). Land, 12(7), 1392. https://doi.org/10.3390/land12071392