Territorial and Consumption-Based Greenhouse Gas Emissions Assessments: Implications for Spatial Planning Policies
Abstract
:1. Introduction
2. Materials
2.1. Case Studies
- County of Meath
- City of Edinburgh
- Rathlin Island
- Kymenlaakso region
2.2. Data for Territorial GHG Baseline Analysis
- European data for territorial baseline analysis
- Local datasets for territorial baseline analysis
- County of Meath
- City of Edinburgh
- Rathlin Island
- Kymenlaakso region
2.3. Data for the Consumption-Based GHG Baseline Analysis
- (1)
- The 2020 version of Exiobase [53,54], a widely used EEIO, is applied to determine emission intensities. In total, Exiobase represents 49 countries/regions, including virtually all of Europe at country-level, and the rest of the world with lower resolution. In all cases, emission intensities are determined (in units of kgCO2/€) for a total of 200 ‘products’ representing the whole economy. This includes, amongst others, separate ‘products’ representing different forms of electricity generation, different fuels for space heating and private and public transport modalities.
- (2)
- The average expenditure is derived from Eurostat household Budget surveys (HBS). These surveys are collated every 5 years and illustrate both total value and expenditure purpose, based on the Classification of Individual Consumption by Purpose (COICOP) system.
- HBS_STR_T211—Household expenditure by consumption purpose (per mille);
- HBS_EXP_T136—Household expenditure by consumption purpose by urban area (per mille);
- HBS_EXP_T133—Mean household consumption expenditure by income quintile (per Euro).
2.4. Spatial Planning Policies
- County of Meath
- Retrofitting;
- Improving the provision of public transport (MOV POL 11);
- Enhancing walking and cycling;
- Increasing remote working (INF POL 54)
- City of Edinburgh
- Retrofitting;
- The Borders railway line;
- Enhancing walking and cycling;
- High speed rail.
- Rathlin Island
- Retrofitting;
- Improving the provision of public transport;
- Enhancing cycling and walking;
- Increasing remote working.
- Kymenlaakso
- Retrofitting;
- Improvements of Road 15 (Kouvola–Kotka);
- Developing a distribution network for biogas vehicles;
- Improvements of main rail connections.
3. Methods
3.1. Methods of Territorial GHG Baseline Analysis
- buildings;
- transport;
- land use.
- Buildings
- Transport
- Land use
3.2. Methods of Consumption-Based GHG Baseline Analysis
3.3. Policy Impact Assessment
4. Results
4.1. Results of Territorial GHG Baseline Analysis
- County of Meath
- City of Edinburgh
- Rathlin Island
- Kymenlaakso region
4.2. Results of Consumption-Based GHG Baseline Analysis
- County of Meath
- City of Edinburgh
- Rathlin Island
- Kymenlaakso region
4.3. GHG Impact Assessment for Spatial Planning Policies
4.3.1. Policy Quantification—County of Meath
Planning Policy | Territorial | CBA |
---|---|---|
Retrofitting | −0.44 * | −0.35 |
Improving the provision of public transport | −0.28 | −0.31 |
Enhancing cycling and walking | −0.32 | −0.32 |
Increasing remote working | −0.10 | −0.32 |
- Retrofitting
- Improving the provision of public transport
- Enhancing cycling and walking
- Increasing remote working
4.3.2. Policy Quantification—City of Edinburgh
- Retrofitting
- The Borders railway line
- Enhancing cycling and walking
- High speed rail
4.3.3. Policy Quantification—Rathlin Island
- Retrofitting
- Improving the provision of public transport
- Enhancing cycling and walking
- Increasing remote working
4.3.4. Policy Quantification—Kymenlaakso Region
- Retrofitting
- Improvement of Road 15 (Kouvola-Kotka)
- Biogas station network
- Improvement of main rail connection
5. Discussion
5.1. Utility of the Two Approaches
5.2. Implications for Spatial Planning
- County of Meath: 0.10–0.44 tCO2e/(capita, a);
- City of Edinburgh: 0.01–0.19 tCO2e/(capita, a);
- Rathlin Island: 0.01–0.30 tCO2e/(capita, a);
- Kymenlaakso region: −0.01–0.29 tCO2e/(capita, a).
- County of Meath: 0.31–0.35 tCO2e/(capita, a);
- City of Edinburgh: 0.16–0.27 tCO2e/(capita, a);
- Rathlin Island: 0.18–0.58 tCO2e/(capita, a);
- Kymenlaakso region: −0.30–0.22 tCO2e/(capita, a).
- Supporting the prioritization of policies;
- Enabling comparison of alternative planning solutions.
- The final policy impact depends on the success of implementation, and therefore any result should be considered as the expected maximum impact for a single policy.
- Spatial planning has long-term impacts, and the future perspective should be taken into consideration in impact assessment by applying scenarios. The grid electricity is expected to have a declining carbon intensity in all three countries included in this study; without scenarios, inter alia, the impacts of the transport electrification policies are overestimated.
- Several policies drive the use of electricity or low carbon fuels in transport; the comparison of alternative sources of power may be misleading if well-to-tank emissions are excluded from the study.
5.3. Needs to Improve Spatial Planning Practises
5.4. Future Research Needs
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | Estimation is based on a study by Kertsmik et al. [68] providing, inter alia, the LCA module A1-3 and A5 GHG emissions for a number of alternative retrofit solutions. |
References
- Steffen, W.; Broadgate, W.; Deutsch, L.; Gaffney, O.; Ludwig, C. The trajectory of the Anthropocene: The Great Acceleration. Anth. Rev. 2015, 2, 81–98. [Google Scholar] [CrossRef]
- IPCC. AR6 Synthesis Report. Climate Change 2023. Available online: https://www.ipcc.ch/report/ar6/syr/ (accessed on 3 May 2023).
- Mi, Z.; Guan, D.; Liu, Z.; Liu, J.; Viguié, V.; Fromer, N.; Wang, Y. Cities: The core of climate change mitigation. J. Clean Prod. 2019, 207, 582–589. [Google Scholar] [CrossRef]
- Halleux, V. Cities: Front Line of Climate Action. Briefing. February 2018. European Union, 2018. Available online: https://www.europarl.europa.eu/RegData/etudes/BRIE/2018/614701/EPRS_BRI(2018)614701_EN.pdf (accessed on 1 May 2023).
- Watts, M. Cities spearhead climate action. Nature Clim. Chang. 2017, 7, 537–538. [Google Scholar] [CrossRef]
- Ravetz, J.; Neuvonen, A.; Mäntysalo, R. The new normative: Synergistic scenario planning for carbon-neutral cities and regions. Reg. Stud. 2021, 55, 150–163. [Google Scholar] [CrossRef]
- Nadin, V.; Fernández Maldonado, A.M.; Zonneveld, W.; Stead, D.; Dąbrowski, M.; Piskorek, K.; Sarkar, A.; Schmitt, P.; Smas, L.; Cotella, G.; et al. COMPASS—Comparative Analysis of Territorial Governance and Spatial Planning Systems in Europe; ESPON EGTC: Luxembourg, 2018. [Google Scholar]
- European Commission. Directive 2001/42/EC of the European Parliament and of the Council of 27 June 2001 on the Assessment of the Effects of Certain Plans and Programmes on the Environment. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32001L0042 (accessed on 5 March 2023).
- Loiseau, E.; Junqua, G.; Roux, P.; Bellon-Maurel, V. Environmental assessment of a territory: An overview of existing tools and methods. J. Environ. Manag. 2012, 112, 213–225. [Google Scholar] [CrossRef]
- Dahal, K.; Niemelä, J. Cities’ Greenhouse Gas Accounting Methods: A Study of Helsinki, Stockholm, and Copenhagen. Climate 2017, 5, 31. [Google Scholar] [CrossRef]
- Chen, G.; Shan, Y.; Hu, Y.; Tong, K.; Wiedmann, T.; Ramaswami, A.; Guan, D.; Shi, L.; Wang, Y. Review on City-Level Carbon Accounting. Environ. Sci. Technol. 2019, 53, 5545–5558. [Google Scholar] [CrossRef]
- Balouktsi, M. Carbon metrics for cities: Production and consumption implications for policies. Build. Cities 2020, 1, 233–259. [Google Scholar] [CrossRef]
- Fong, W.K.; Sotos, M.; Doust, M.; Schultz, S.; Marques, A.; Deng-Beck, C.; Kovac, A.; Bhatia, P.; Russell, B.; Morris, E.; et al. Global Protocol for Community-Scale Greenhouse Gas Emissions. An Accounting and Reporting Standard for Cities; WRI, C40 Cities, ICLEI: Bonn, Germany, 2014. [Google Scholar]
- Athanassiadis, A.; Christis, M.; Bouillard, P.; Vercalsteren, A.; Crawford, R.H.; Khan, A.Z. Comparing a territorial-based and a consumption-based approach to assess the local and global environmental performance of cities. J. Clean. Prod. 2018, 173, 112–123. [Google Scholar] [CrossRef]
- Heinonen, J.; Ottelin, J.; Ala-Mantila, S.; Wiedmann, T.; Clarke, J.; Junnila, S. Spatial consumption-based carbon footprint assessments—A review of recent developments in the field. J. Clean. Prod. 2020, 256, 120335. [Google Scholar] [CrossRef]
- C40. Consumption-Based GHG Emissions of C40 Cities; C40 Cities Climate Leadership Group: 2018. Available online: https://apo.org.au/node/185046 (accessed on 1 May 2023).
- Kuntien ja Alueiden Kulutusperäiset Kasvihuonekaasupäästöt. Suomen ympäristökeskus, Helsinki. Available online: https://kulutus.hiilineutraalisuomi.fi/ (accessed on 11 March 2023).
- Ottelin, J.; Ala-Mantila, S.; Heinonen, J.; Wiedmann, T.; Clarke, J.; Junnila, S. What can we learn from consumption-based carbon footprints at different spatial scales? Review of policy implications. Environ. Res. Lett. 2019, 14, 093001. [Google Scholar] [CrossRef]
- Afionis, S.; Sakai, M.; Scott, K.; Barret, J.; Gouldson, A. Consumption-based carbon accounting: Does it have a future? Wiley Interdiscip. Rev. Clim. Chang. 2017, 8, e438. [Google Scholar] [CrossRef]
- Säynäjoki, E.-S. The Untapped Potential of Urban Planning: Achieving Greater Success in Environmental Sustainability. Ph.D. Thesis, Aalto University, Espoo, Finland, 2015. [Google Scholar]
- Heinonen, J.; Kyro, R.; Junnila, S. Dense downtown living more carbon intense due to higher consumption: A case study of Helsinki 2011. Environ. Res. Lett. 2011, 6, 034034. [Google Scholar] [CrossRef]
- Seto, K.C.; Dhakal, S.; Bigio, A.; Blanco, H.; Delgado, G.C.; Dewar, D.; Huang, L.; Inaba, A.; Kansal, A.; Lwasa, S.; et al. Human Settlements, Infrastructure and Spatial Planning. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 923–1000. [Google Scholar]
- Lenk, C.; Arendt, R.; Bach, V.; Finkbeiner, M. Territorial-Based vs. Consumption-Based Carbon Footprint of an Urban District—A Case Study of Berlin-Wedding. Sustainability 2021, 13, 7262. [Google Scholar] [CrossRef]
- Heinonen, J.; Ottelin, J.; Guddisardottir, A.K.; Junnila, S. Spatial consumption-based carbon footprints: Two definitions, two different outcomes. Environ. Res. Commun. 2022, 4, 025006. [Google Scholar] [CrossRef]
- Espon.eu/QGasSP. Available online: https://www.espon.eu/QGasSP (accessed on 5 April 2023).
- County of Meath. Meath Climate Action Strategy 2019–2024. Meath County Council: Meath, Ireland 2019. Available online: https://www.meath.ie/system/files/media/file-uploads/2019-09/Meath%20CC%20Report_v4_0.pdf (accessed on 1 May 2023).
- Savikko, H.; Hokkanen, J.; Koutonen, H.; Haanpää, E. Hiilineutraali Kymenlaakso 2040. Kasvihuonekaasupäästöt, Hiilinielut ja Tiekartta Vuoteen 2040; Kymenlaakson Liitto: Kotka, Finland, 2019. [Google Scholar]
- EU Buildings Database. Available online: https://ec.europa.eu/energy/eu-buildings-database_en (accessed on 28 February 2023).
- Koffi, B.; Cerutti, A.K.; Duerr, M.; Iancu, A.; Kona, A.; Janssens-Maenhout, G. Covenant of Mayors for Climate and Energy: Default Emission Factors for Local Emission Inventories—Version 2017; European Commission: Luxembourg, 2017. [Google Scholar]
- Urban Atlas: Street Tree Layer (STL 2018). Available online: https://land.copernicus.eu/local/urban-atlas/street-tree-layer-stl-2018?msclkid=a885ee26be1211ecbdd810a395525cb5 (accessed on 17 April 2022).
- Eggelston, H.S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. (Eds.) 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IGES: Hayama, Japan, 2006; Available online: https://www.ipcc.ch/report/2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/ (accessed on 1 May 2023).
- Hiraishi, T.; Krug, T.; Tanabe, K.; Srivastava, N.; Baasansuren, J.; Fukuda, M.; Troxler, T.G. (Eds.) 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands; IPCC: Geneva, Switzerland, 2014; Available online: https://www.ipcc.ch/site/assets/uploads/2018/03/Wetlands_Supplement_Entire_Report.pdf (accessed on 1 May 2023).
- Calvo Buendia, E.; Guendehou, S.; Limmeechokchai, B.; Pipatti, R.; Rojas, Y.; Sturgiss, R.; Tanabe, K.; Wirth, T.; Romano, D.; Witi, J.; et al. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Geneva, Switzerland, 2019; Available online: https://www.ipcc.ch/site/assets/uploads/2019/05/01_2019rf_OverviewChapter.pdf (accessed on 1 May 2023).
- National Inventory Submissions 2021 | UNFCCC. Available online: https://unfccc.int/ghg-inventories-annex-i-parties/2021 (accessed on 1 May 2023).
- European Soil Database Maps. Available online: https://esdac.jrc.ec.europa.eu/resource-type/european-soil-database-maps (accessed on 2 April 2023).
- FAO. World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; Update 2015. World Soil Resources Reports 106; FAO: Rome, Italy, 2014. [Google Scholar]
- Ireland. 2021 Common Reporting Format (CRF) Table. UNCC 2021. Available online: https://unfccc.int/documents/271516 (accessed on 17 April 2022).
- Finland. 2021 Common Reporting Format (CRF) Table. UNCC 2021. Available online: https://unfccc.int/documents/271520 (accessed on 17 April 2022).
- UK Department for Business, Energy & Industrial Strategy. UK Greenhouse Gas Inventory 1990 to 2019: Annual Report for Submission under the Framework Convention on Climate Change; UK Department for Business, Energy & Industrial Strategy: Harwell, UK, 2021.
- Capros, P.; De Vita, A.; Tasios, N.; Siskos, P.; Kannavou, M.; Petropoulos, A.; Evangelopoulou, S.; Zampara, M.M.; Papadopoulos, D.; Nakos, C.; et al. EU Reference Scenario 2016. Energy, Transport and GHG emissions. Trends to 2050; European Commission: Brussels, Belgium, 2016. [Google Scholar]
- Energiateollisuus ry. Kaukolämpötilasto 2019; Energiateollisuus ry: Helsinki, Finland, 2020. [Google Scholar]
- Census 2016 Reports. Available online: https://www.cso.ie/en/census/census2016reports/ (accessed on 2 April 2023).
- BER Research Tool. Available online: https://data.gov.ie/en_GB/dataset/ber-research-tool (accessed on 2 April 2023).
- Department of Transport. Transport Trends 2020. An Overview of Ireland’s Transport Sector; Department of Transport: Dublin, Ireland, 2021.
- TII Transport Infrastructure Ireland. Available online: https://www.tii.ie/ (accessed on 2 April 2023).
- National Transport Authority. Available online: https://www.nationaltransport.ie/publications/ (accessed on 2 April 2023).
- LIPASTO Unit Emissions. Available online: http://www.lipasto.vtt.fi/yksikkopaastot/indexe.htm (accessed on 23 October 2021).
- DEFRA. 2019 Government Greenhouse Gas Conversion Factors for Company Reporting. Methodology Paper for Emission Factors. Final Report; Department for Business, Energy & Industrial Strategy: London, UK, 2019.
- National Records of Scotland. Available online: https://www.gov.uk/national-records-of-scotland (accessed on 2 April 2023).
- McElrone, M. Development of a sustainable energy strategy for Rathlin Island. Master’s Thesis, Queen’s University Belfast, Belfast, UK, 13 September 2019. [Google Scholar]
- SEAI. Energy in Ireland. 2020 Report; Sustainable Energy Authority of Ireland: Dublin, Ireland, 2020.
- McLaughlin, N. Developing a Sustainable Transport Strategy for Rathlin Island; Final Project Report MEE4040; Queen’s University Belfast: Belfast, UK, 2019. [Google Scholar]
- Stadler, K.; Wood, R.; Bulavskaya, T.; Södersten, C.-J.; Simas, M.; Schmidt, S.; Usubiaga, A.; Acosta-Fernández, J.; Kuenen, J.; Bruckner, M.; et al. EXIOBASE 3: Developing a Time Series of Detailed Environmentally Extended Multi-Regional Input-Output Tables. J. Ind. Ecol. 2018, 22, 502–515. [Google Scholar] [CrossRef]
- EXIOBASE. Available online: https://www.exiobase.eu (accessed on 23 October 2021).
- Ivanova, D.; Wood, R. The unequal distribution of household carbon footprints in Europe and its link to sustainability. Glob. Sustain. 2020, 3, e18. [Google Scholar] [CrossRef]
- Meath County Development Plan 2021–27. Available online: https://consult.meath.ie/en/consultation/meath-adopted-county-development-plan (accessed on 28 February 2023).
- Scottish Government. Scotland’s Third National Planning Framework: Ambition—Opportunity—Place. The Scottish Government, UK 2014. Available online: https://www.gov.scot/publications/national-planning-framework-3/pages/2/ (accessed on 1 May 2023).
- National Planning Framework 3 Action Programme. Available online: https://npfactionprogramme.com/ (accessed on 2 April 2023).
- Scottish Planning Policy. Available online: https://www.gov.scot/publications/scottish-planning-policy/ (accessed on 2 April 2023).
- NI Department of Regional Development. Rathlin Island Policy; Department for Regional Development: Belfast, UK, 2010; ISBN 978-1-904807-32-2.
- Northern Area Plan 2016. Available online: https://www.infrastructure-ni.gov.uk/topics/planning/northern-area-plan-2016 (accessed on 23 October 2021).
- NI Department for Regional Development. Regional Development Strategy RDS 2035. Building a Better Future; Department for Regional Development: Belfast, UK, 2010.
- Transport System Planning. Available online: https://vayla.fi/en/transport-network/transport-system/transport-system-planning (accessed on 23 October 2021).
- Kymenlaakson Liitto, Aluesuunnittelu ja Liikenne. Available online: https://www.kymenlaakso.fi/aluesuunnittelu-ja-liikenne/liikenne/liikennejarjestelmasuunnittelu (accessed on 23 October 2021).
- Suh, S.; Lenzen, M.; Treloar, G.J.; Hondo, H.; Horvath, A.; Huppes, G.; Jolliet, O.; Klann, U.; Krewitt, W.; Moriguchi, Y.; et al. System boundary selection in life-cycle inventories using hybrid approaches. Environ. Sci. Technol. 2004, 28, 657–664. [Google Scholar] [CrossRef] [PubMed]
- UK Centre for Ecology & Hydrology. Mapping Carbon Emissions & Removals for the Land Use, Land-Use Change & Forestry Sector. A Report of the National Atmospheric Emissions Inventory 2019; Department for Business, Energy & Industrial Strategy: London, UK, 2021.
- Kymenlaakson Jäte Oy. Investoimme Puhtaampaan Tulevaisuuteen. Vuosikertomus 2019; Kymenlaakson Jäte Oy: Keltakangas, Finland, 2020. [Google Scholar]
- Kertsmik, K.-A.; Kuusk, K.; Lylykangas, K.; Kalamees, T. Evaluation of renovation strategies: Cost-optimal, CO2e optimal, or total energy optimal? Energy Builds 2023, 287, 112995. [Google Scholar] [CrossRef]
- City of Edinburgh. 2030 Climate Strategy. Delivering a Net Zero, Climate Ready Edinburgh. Draft Version; The City of Edinburgh Council, City of Edinburgh: Edinburgh, UK, 2021.
- Department for the Economy. Energy Strategy for Northern Ireland. Consultation on Policy Options; Department for the Economy: London, UK, 2021.
- Tieliikenteen Liikennemäärät 2021. Finnish Transport Infrastructure Agency. Available online: https://paikkatieto.vaylapilvi.fi/arcgis/apps/webappviewer/index.html?id=9303658f44134d5bb82d7e7d55e11644 (accessed on 19 March 2023).
- Säynäjoki, E.-S.; Heinonen, J.; Junnila, S. Role of Urban Planning in Encouraging More Sustainable Lifestyles. J. Urban Plan. Dev. 2014, 141, 04014011. [Google Scholar] [CrossRef]
- Newman, P.; Thornley, A. Urban Planning In Europe. International Competition, National Systems and Planning Projects; Routledge: London, UK, 1996. [Google Scholar]
- Hurlimann, A.; Moosavi, S.; Browne, G.R. Urban planning policy must do more to integrate climate change adaptation and mitigation actions. Land Use Policy 2021, 101, 105188. [Google Scholar] [CrossRef]
Case Study | Buildings | Transport | Land Use |
---|---|---|---|
County of Meath (IE) | Census 2016, BER Research tool | ERM transport model, Transport Trends 2020, TII database, Iarnród Éireann statistics | Ireland NIR 2021 CRF tables |
City of Edinburgh (UK) | National Records of Scotland, Edinburgh EPC database, Edinburgh by Numbers | Scottish Transport Statistics, UK Department of Transport Statistics, Rail services decarbonisation action plan | UK NIR 2021 CRF tables, CORINE Urban Atlas STL 2018 |
Rathlin Island (UK) | Energy audit 2018, Information gathered by RDCA | Survey for Rathlin Sustainable Transport Strategy | UK NIR 2021 CRF tables |
Kymenlaakso region (FI) | Statistics Finland Kaukolämpötilasto 2019 * | LIISA model, Kymenlaakso Carbon Neutrality Roadmap | Finland NIR 2021 CRF tables |
Case Study | Demand Vector | Household Occupancy | Household Income Level | Population | Further Modifications/Notes |
---|---|---|---|---|---|
Meath (IE) | Irish average | 3.03 | Irish average | 194,942 | N/A |
Edinburgh (UK) | UK city | 2.14 | UK average | 524,930 | N/A |
Rathlin (UK) | UK rural | 1.74 | UK average | 160 | Irish electricity sector used |
Kymenlaakso (FI) | Finnish average | 2.02 | Finnish average | 174,167 | Two sectors replaced * |
Case Study | Buildings | Transport | Land Use |
---|---|---|---|
County of Meath (IE) | 3.45 | 2.58 | −0.27 |
City of Edinburgh (UK) | 3.24 | 1.07 | −0.0022 |
Rathlin Island (UK) | 7.51 | 0.17 | −10.08 |
Kymenlaakso region (FI) | 3.94 | 1.91 | −1.49 |
Case Study | Energy Use for Housing | Other Housing Related | Private Transport Fuel Use | Other Transport Related | Air Travel Related | Food Related | Tangible Goods Related | Services Related | Total per Capita |
---|---|---|---|---|---|---|---|---|---|
Meath | 4.1 | 0.2 | 1.5 | 0.3 | 0.0 | 0.6 | 0.3 | 0.3 | 7.3 |
Edinburgh | 3.9 | 0.5 | 1.6 | 0.3 | 0.3 | 0.6 | 0.5 | 0.3 | 8.0 |
Rathlin | 7.3 | 0.5 | 3.1 | 0.4 | 0.3 | 1.0 | 0.8 | 0.4 | 13.9 |
Kymenlaakso | 1.3 | 2.9 | 1.6 | 0.5 | 0.2 | 0.7 | 0.6 | 0.6 | 8.3 |
Planning Policy | Territorial | CBA |
---|---|---|
Retrofitting | −0.19 * | −0.16 |
The Borders railway line | −0.01 | −0.21 |
Enhancing cycling and walking | −0.07 | −0.27 |
High speed rail | −0.04 | −0.23 |
Planning Policy | Territorial | CBA |
---|---|---|
Retrofitting | −0.30 * | −0.18 |
Improving the provision of public transport | −0.01 | −0.55 |
Enhancing cycling and walking | −0.01 | −0.58 |
Increasing remote working | −0.01 | −0.23 |
Planning Policy | Territorial | CBA |
---|---|---|
Retrofitting | −0.29 | −0.05 |
Improvement of Road 15 (Kouvola-Kotka) | 0.01 | 0.30 |
Biogas station network | −0.04 | −0.22 |
Improvement of main rail connections | −0.03 | −0.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lylykangas, K.; Cachia, R.; Cerrone, D.; Kriiska, K.; Norbisrath, U.; Walke, P.R.; Joutsiniemi, A.; Heinonen, J. Territorial and Consumption-Based Greenhouse Gas Emissions Assessments: Implications for Spatial Planning Policies. Land 2023, 12, 1144. https://doi.org/10.3390/land12061144
Lylykangas K, Cachia R, Cerrone D, Kriiska K, Norbisrath U, Walke PR, Joutsiniemi A, Heinonen J. Territorial and Consumption-Based Greenhouse Gas Emissions Assessments: Implications for Spatial Planning Policies. Land. 2023; 12(6):1144. https://doi.org/10.3390/land12061144
Chicago/Turabian StyleLylykangas, Kimmo, Rebecca Cachia, Damiano Cerrone, Kaie Kriiska, Ulrich Norbisrath, Peter R. Walke, Anssi Joutsiniemi, and Jukka Heinonen. 2023. "Territorial and Consumption-Based Greenhouse Gas Emissions Assessments: Implications for Spatial Planning Policies" Land 12, no. 6: 1144. https://doi.org/10.3390/land12061144
APA StyleLylykangas, K., Cachia, R., Cerrone, D., Kriiska, K., Norbisrath, U., Walke, P. R., Joutsiniemi, A., & Heinonen, J. (2023). Territorial and Consumption-Based Greenhouse Gas Emissions Assessments: Implications for Spatial Planning Policies. Land, 12(6), 1144. https://doi.org/10.3390/land12061144