Natural Hazard Characterisation in the Arribes del Duero Natural Park (Spain)
Abstract
:1. Introduction
2. Geological and Geomorphological Context
2.1. Geological Context
2.2. Morphostructural Context
3. Materials and Methods
- Lithological mapping: to make this map we have based ourselves on the grouping of areas that have similar characteristics in terms of composition and geomechanical behaviour. As for the characterization of the substratum, the existing geological maps have been used as a basis, grouping the materials according to composition and properties to create homogeneous areas. In the study area, there are three zones that have been classified, according to the age of the rocks that form them, as follows: Area I made up of plutonic outcrops (granites and gneisses); Area II corresponds to the Lower Paleozoic (metamorphic rocks); and Area III made up of Quaternary deposits (conglomerates, pebbles, sand and silty clays).
- Hydrogeological mapping: this map has been made considering the characterization of the materials from the point of view of lithology and hydraulic parameters. For this purpose, the three previous areas have been reclassified according to the degree of alteration (high, medium and low) and type of permeability (by porosity, fracturing, dissolution and alteration).
- Geomorphological mapping: the main morphological features that indicate their possible repercussions on the behaviour of the terrain have been taken into account, as well as the 1 m digital terrain model and the interpretation of aerial photographs and existing maps. Once this cartography has been carried out, a synthesised map is made with the fundamental aspects of the relief, in order to indicate only the most relevant physiographic characteristics, which can influence the geotechnical characterization and grouping of similar morphologies.
- Actual Erosion Mapping: this is carried out on the basis of potential erosion mapping, which is obtained by multiplying three of the factors that make up the universal soil loss equation (RUSLE): R factor (erosivity), K factor (erodibility) and LS factor (slope). For the R factor, the average annual and monthly rainfall is taken into account, for the R factor, the granulometric characteristics of the soil and, for the LS factor, the length and steepness of the slope. Once this mapping has been obtained, the actual erosion mapping is carried out, taking into account the two remaining factors of the RUSLE: factor C (vegetation cover) and factor P (conservation practices). This mapping, together with the land uses, is useful to determine the conservation practices needed to mitigate erosion losses.
4. Results
4.1. Geotechnical Cartography
4.2. Natural Hazard Cartography
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Silva, M.; Kawasaki, A. Socioeconomic vulnerability to disaster risk: A case study of flood and drought impact in a rural Sri Lankan community. Ecol. Econ. 2018, 152, 131–140. [Google Scholar] [CrossRef]
- Skilodimou, H.D.; Bathrellos, G.D.; Chousianitis, K.; Youssef, A.M.; Pradhan, B. Multi-hazard assessment modeling via multi-criteria analysis and GIS: A case study. Environ. Earth Sci. 2019, 78, 47. [Google Scholar] [CrossRef]
- Skilodimou, H.D.; Bathrellos, G.D.; Maroukian, H.; Gaki-Papanastassiou, K. Late Quaternary evolution of the lower reaches of Ziliana stream in south Mt. Olympus (Greece). Quat. Phys. Geogr. Dyn. 2014, 37, 43–50. [Google Scholar]
- Bathrellos, G.D.; Skilodimou, H.D.; Maroukian, H. The spatial distribution of Middle and Late Pleistocene cirques in Greece. Geogr. Ann. Ser. A Phys. Geogr. 2014, 96, 323–338. [Google Scholar] [CrossRef]
- Bathrellos, G.D.; Skilodimou, H.D.; Chousianitis, K.; Youssef, A.M.; Pradhan, B. Suitability estimation for urban development using multi-hazard assessment map. Sci. Total Environ. 2017, 575, 119–134. [Google Scholar] [CrossRef] [PubMed]
- Bathrellos, G.D.; Skilodimou, H.D.; Maroukian, H. The Importance of Tectonism in the Greek Glaciations. Geol. Soc. London Spec. Publ. 2017, 433, 237–250. [Google Scholar] [CrossRef]
- Bathrellos, G.D.; Skilodimou, H.D.; Maroukian, H.; Gaki-Papanastassiou, K.; Kouli, K.; Tsourou, T.; Tsaparas, N. Pleistocene glacial and lacustrine activity in the southern part of Mount Olympus (central Greece). Area 2017, 49, 137–147. [Google Scholar] [CrossRef]
- Abdulwahid, W.M.; Pradhan, B. Landslide vulnerability and risk assessment for multi-hazard scenarios using airborne laser scanning data (LiDAR). Landslides 2017, 14, 1057–1076. [Google Scholar] [CrossRef]
- Althuwaynee OF, Pradhan B Semi quantitative landslide risk assessment at Kuala Lumpur Metropolitan City using GIS and exposure-based analysis. Geomat. Nat. Hazards Risk 2016, 8, 706–732.
- Bathrellos, G.D.; Kalivas, D.P.; Skilodimou, H.D. GIS-based landslide susceptibility mapping models applied to natural and urban planning in Trikala, Central Greece. Geol. Stud. 2009, 65, 49–65. [Google Scholar] [CrossRef]
- Rozos, D.; Skilodimou, H.D.; Loupasakis, C.; Bathrellos, G.D. Application of the revised universal soil loss equation model on landslide prevention. An example from N. Euboea (Evia) Island, Greece. Environ. Earth Sci. 2013, 70, 3255–3266. [Google Scholar] [CrossRef]
- Youssef, A.M.; Pradhan, B.; Al-Kathery, M.; Bathrellos, G.D.; Skilodimou, H.D. Assessment of rockfall hazard at Al-Noor Mountain, Makkah city (Saudi Arabia) using spatio-temporal remote sensing data and field investigation. J. Afr. Earth Sci. 2015, 101, 309–321. [Google Scholar] [CrossRef]
- Skilodimou, H.; Livaditis, G.; Bathrellos, G.; Verikiou-Papaspiridakou, E. Investigating the flooding events of the urban regions of Glyfada and Voula, Attica, Greece: A contribution to Urban Geomorphology. Geogr. Ann. Ser. A Phys. Geogr. 2003, 85, 197–204. [Google Scholar] [CrossRef]
- Chousianitis, K.; Del Gaudio, V.; Sabatakakis, N.; Kavoura, K.; Drakatos, G.; Bathrellos, G.D.; Skilodimou, H.D. From Arias intensity to spatial distribution of slope resistance demand. Bull. Seismol. Soc. Am. 2016, 106, 174–188. [Google Scholar] [CrossRef]
- Das, H.O.; Sonmez, H.; Gokceoglu, C.; Nefeslioglu, H.A. Influence of seismic acceleration on landslide susceptibility maps: A case study from NE Turkey (the Kelkit Valley). Landslides 2013, 10, 433–454. [Google Scholar] [CrossRef]
- Jebur, M.N.; Pradhan, B.; Shafri, H.Z.M.; Yusoff, Z.M.; Tehrany, M.S. An integrated user-friendly ArcMAP tool for bivariate statistical modelling in geoscience applications. Geosci. Model Dev. 2015, 8, 881–891. [Google Scholar] [CrossRef]
- Pham, B.T.; Pradhan, B.; Bui, D.T.; Prakash, I.; Dholakia, M.B. A comparative study of different machine learning methods for landslide susceptibility assessment: A case study of Uttarakhand area (India). Environ. Model. Softw. 2016, 84, 240–250. [Google Scholar] [CrossRef]
- Safani, J.; Matsuoka, T. Soft-geotechnical zone determination using surface-wave for geotechnical hazard mitigation. Procedia Environ. Sci. 2013, 7, 354–360. [Google Scholar] [CrossRef]
- Bender, S. Primer on Natural Hazard Management in Integrated Regional Development Planning; Organization of American States, Department of Regional Development and Environment. Executive Secretariat for Economic and Social Affairs: Washington, DC, USA, 1991. [Google Scholar]
- El Morjani, Z.E.A.; Ebener, S.; Boos, J.; Abdel Ghaffar, E.; Musani, A. Modelling the spatial distribution of five natural hazards in the context of the WHO/EMRO Atlas of Disaster Risk as a step towards the reduction of the health impact related to disasters. Int. J. Health Geogr. 2007, 6, 8. [Google Scholar] [CrossRef]
- Kappes, M.S.; Papathoma-Koehle, M.; Keiler, M. Assessing physical vulnerability for multi-hazards using an indicator-based methodology. Appl. Geogr. 2012, 32, 577–590. [Google Scholar] [CrossRef]
- Schmidt, J.; Matcham, I.; Reese, S.; King, A.; Bell, R.; Henderson, R.; Heron, D. Quantitative multi-risk analysis for natural hazards: A framework for multi-risk modelling. Nat. Hazards 2011, 58, 1169–1192. [Google Scholar] [CrossRef]
- Martínez-Graña, A.M.; Goy, J.L.; Zazo, C. Peligrosidad Natural en el Espacio Protegido de las Batuecas-S Francia, Quilamas y su entorno (Salamanca). Análisis integrado de los factores potenciales de riesgo. Geogaceta 2004, 36, 71–74. [Google Scholar]
- Martínez-Graña, A.M.; Silva, P.G.; Goy, J.L.; Elez, J.; Valdés, V.; Zazo, C. Geomorphology applied to landscape analysis for planning and management of natural spaces. Case study: Las Batuecas-S. de Francia and Quilamas natural parks, (Salamanca, Spain). Sci. Total Environ. 2017, 584, 175–188. [Google Scholar] [CrossRef] [PubMed]
- López Santiago, F. Mapa Geotécnico y de Peligrosidad Natural de la Ciudad de León y Su Aglomeración Urbana; ITGE: Madrid, Spain, 1991; p. 64. [Google Scholar]
- Martínez-Graña, A. Estudio Geológico-Ambiental Para la Ordenación de los Espacios Naturales de “Las Batuecas-Sierra de Frabncia y Quilamas”. Aplicaciones Geomorfológicas al Paisaje, Riesgos e Impactos Ambientales. Ph.D. Thesis, Universidad de Salamanca, Salamanca, Spain, 2010. Volume 2. pp. 371+684. [Google Scholar]
- Martinez-Graña, A.M.; Goy, J.L.; Cimarra, C. 2D to 3D geologic mapping transformation using virtual globes and flight simulators and their applications in the analysis of geodiversity in natural areas. Environ. Earth Sci. 2015, 73, 8023–8034. [Google Scholar] [CrossRef]
- Criado, M.; Martinez-Graña, A.; Santos-Frances, F.; Veleda, S. Integration of GIS technology in the urban planning to extend the city of Zamora, Spain. Environ. Eng. Manag. J. 2019, 18, 1399–1409. [Google Scholar]
- Marino Alfonso, J.L.; Poblete Piedrabuena, M.Á.; Beato Bergua, S. Paisajes de interés natural (PIN) en los Arribes del Duero (Zamora, España). Investig. Geográficas 2020, 73, 95–119. [Google Scholar] [CrossRef]
- Martínez, F.J. Estudio del Área Metamórfica y Granítica de los Arribes del Duero (Provincias de Salamanca y Zamora). Ph.D. Thesis, Universidad de Salamanca, Salamanca, Spain, 1974; p. 286. [Google Scholar]
- López Plaza, M. Contribución al Conocimiento de la Dinámica de los Cuerpos Granítlcos en la Penillanura Salmantino- Zamorana. Ph.D. Thesis, Universidad de Salamanca, Salamanca, Spain, 1982; p. 333. [Google Scholar]
- Martínez, F.J.; Julivert, M.; Sebastian, A.; Arboleda, M.L.; Gil-Ibarguchi, J.I. Structural and termal evolution of higt-grade áreas in the northwestern parts of the iberian massif. Am. J. Sci. 1988, 288, 969–996. [Google Scholar] [CrossRef]
- Díez Balda, M.A.; Vegas, R.; González Loderiro, F. Structure of Central Iberian Zone. In Pre-Mesozoic Geology in Iberia; Dallmeyer, R.D., Martínez García, E., Eds.; Springer: Berlin/Heidelberg, Germany, 1990; pp. 172–188. [Google Scholar]
- Alonso-Castro, E.; López Plaza, M. Estudio petrológico y estructural del área antiformal del oeste de Pereruela (Provincia de Zamora). Stud. Geol. 1994, 29, 65–100. [Google Scholar]
- Escudero Viruete, J.; Indares, A.; Arenas, R. P-T path determinations in the tormes dome, NW Iberian Massif, Spain. J. Metamorph. Geol. 1997, 15, 645–663. [Google Scholar] [CrossRef]
- López Moro, J.; López Plaza, M. Monzonitic series from the Variscan Tormes Dome (Central Iberian Zone): Petrogenetic evolution from monzogabbro to granite magmas. Lithos 2003, 72, 19–44. [Google Scholar] [CrossRef]
- López Plaza, M.; López Moro, J.; Gonzalo Corral, J.C.; Gómez-Rodulfo, A.C. Asociaciones de rocas básicas e intermedias de afinidad calcoalcalina y shoshonítica y granitoides relacionados en el Domo Hercínico del Tormes (Salamanca y Zamora). Bol. Soc. Esp. Mineral. 1999, 22, 211–234. [Google Scholar]
- Merchán, L.; Martínez-Graña, A.M.; Egido, J.A.; Criado, M. Geomorphoedaphic Itinerary of Arribes Del Duero (Spain). Sustainability 2022, 14, 7066. [Google Scholar] [CrossRef]
- Sanz Santos, M.A.; Rubio Pascual, F.J. “Geomorfología”, en L. R. Rodríguez Fernández, Memoria Explicativa de la Hoja 423 del Mapa Geológico de España; Instituto Tecnológico Geominero de España: Madrid, Spain, 2000; pp. 109–118. [Google Scholar]
- González de Vallejo, L.I.; Ferrer Gijón, M.; Ayala Carcedo, F.J.; Beltrán de Heredia Artadi, F. Catálogo Nacional de Riesgos Geológicos; Instituto Geológico y Minero de España: Madrid, Spain, 1988; pp. 1–263. [Google Scholar]
- Ferrer Gijón, M.; Ayala Carcedo, F.J.; Andreu Posse, F.J.; Fe Marques, M. Manual de Ingeniería de Taludes; Instituto Geológico y Minero de España: Madrid, Spain, 2006; pp. 1–456. [Google Scholar]
- González de Vallejo, L.I.; Ferrer Gijón, M. Manual de Campo Para la Descripción De Macizos Rocosos en Afloramientos; Instituto Geológico y Minero de España: Madrid, Spain, 2007; pp. 1–83. [Google Scholar]
- Merchán, L.; Martínez-Graña, A.M.; Alonso Rojo, P.; Criado, M. Water Erosion Risk Analysis in the Arribes del Duero Natural Park (Spain) Using RUSLE and GIS Techniques. Sustainability 2023, 15, 1627. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merchán, L.; Martínez-Graña, A.M.; Nieto, C.E.; Criado, M. Natural Hazard Characterisation in the Arribes del Duero Natural Park (Spain). Land 2023, 12, 995. https://doi.org/10.3390/land12050995
Merchán L, Martínez-Graña AM, Nieto CE, Criado M. Natural Hazard Characterisation in the Arribes del Duero Natural Park (Spain). Land. 2023; 12(5):995. https://doi.org/10.3390/land12050995
Chicago/Turabian StyleMerchán, Leticia, Antonio Miguel Martínez-Graña, Carlos E. Nieto, and Marco Criado. 2023. "Natural Hazard Characterisation in the Arribes del Duero Natural Park (Spain)" Land 12, no. 5: 995. https://doi.org/10.3390/land12050995
APA StyleMerchán, L., Martínez-Graña, A. M., Nieto, C. E., & Criado, M. (2023). Natural Hazard Characterisation in the Arribes del Duero Natural Park (Spain). Land, 12(5), 995. https://doi.org/10.3390/land12050995