Integrating Erosion Potential Model (EPM) and PAP/RAC Guidelines for Water Erosion Mapping and Detection of Vulnerable Areas in the Toudgha River Watershed of the Central High Atlas, Morocco
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. The Erosion Potential Model (EPM)
2.2.2. Erosion Intensity and Sediment Production Assessment Parameters
- Soil erodibility coefficient (Y):
- Soil protection coefficient (Xa):
- Average slope of the study area (Ja):
- Coefficient of type and extent of erosion (ϕ):
2.2.3. The PAP/RAC Model
- Development of the erodibility map:
- Development of the soil protection map:
- Overlying the erodibility and the soil protection maps:
2.2.4. Causal Factors
- Lithology, or the physical and chemical characteristics of rock, plays a significant role in the erosion of water [79]. The type of rock can also influence the rate at which erosion occurs. For example, sandstone is more porous and, therefore, more susceptible to erosion by water than a denser rock like basalt. Understanding the lithology of an area can help predict the erosion patterns and the potential impacts on the surrounding landscape. The lithological formations had been extracted from four geological maps of the area. The sediments and rocks within the basin vary in age from the Precambrian to Quaternary periods (Figure 4a).
- Land use/cover, or the type and density of vegetation and other surfaces on the land, can have a significant impact on water erosion [80,81]. For example, areas with high levels of vegetation cover experienced less erosion than areas with low vegetation cover. This is because vegetation intercepts and slows down the flow of water, reducing the energy of the flow and decreasing the likelihood of erosion. In addition, vegetation can help stabilize the soil by rooting into the ground and holding it in place. On the other hand, areas with bare soil or impervious surfaces, such as asphalt or concrete, are more prone to erosion because the water flows more quickly and with greater energy over these surfaces. The land use of the Toudgha catchment was used to prepare the thematic layer (Figure 4b) and then reclassified into three categories: soils or soft sediments, hard rocks or substratum, and vegetation classes.
- Rainfall is a major factor that influences water erosion. The intensity, duration, and frequency of rainfall events can all affect the erosion process [82,83,84]. High-intensity rainfall events, which have a shorter duration but a higher rate of precipitation, are more likely to cause erosion than low-intensity events. The higher intensity of the rainfall increases the energy of the flow and the likelihood of erosion. Annual average precipitation for the Tinghir province was categorized into three classes: 400–500, 500–600, and 600–700 mm (Figure 4c,d).
- The NDVI (Normalized Difference Vegetation Index) is a remote sensing tool that measures the greenness of vegetation. The NDVI can be used to assess the impact of vegetation on water erosion. For instant, Merritt et al. [14] found that areas with high NDVI values, indicating dense vegetation cover, experienced less erosion than areas with low NDVI values, indicating sparse vegetation cover. This is because vegetation intercepts and slows down the flow of water. The NDVI can also be used to monitor changes in vegetation cover over time and assess the potential impacts on erosion. In Mediterranean catchments, erosion increased as NDVI values decreased. In our case study, the NDVI was reclassified into three classes: (a) (<−0.23), (b) (−0.23–0.26), and (c) (>0.26–0.7) (Figure 4e).
- Slope, or the angle of the land surface, can have a significant impact on water erosion. In general, steeper slopes are more prone to erosion than moderate slopes because the water flows more quickly and with greater energy over steep slopes. Understanding the relationship between slope and erosion is important for predicting erosion patterns and the potential impacts on the surrounding landscape [84]. The slope map of the Toudgha River catchment (Figure 4e) was divided into five slope categories: (a) (0–7°), (b) (7–16°), (c) (16–27°), (d) (27–81°).
- The elevation is a factor that is frequently used in research on flood and erosion susceptibility because it is a predisposing parameter that is influenced by various geologic and geomorphological processes [74,75]. In the Toudgha River watershed, an elevation map was created using a digital elevation model, showing that the elevation values in the area range from 1332 to 3273 m and can be divided into five classes: 1087 to 3272 m, 1087 to 1462 m, 1462 to 1733 m, 1733 to 2061 m, and 2061 to 3273 m (Figure 4f).
3. Results and Discussion
3.1. PAP/RAC
3.2. Erosion Potential Model
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jain, M.K.; Das, D. Estimation of sediment yield and areas of soil erosion and deposition for watershed prioritization using GIS and remote sensing. Water Resour. Manag. 2010, 24, 2091–2112. [Google Scholar] [CrossRef]
- Issaka, S.; Ashraf, M.A. Impact of soil erosion and degradation on water quality: A review. Geol. Ecol. Landsc. 2017, 1, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Eswaran, H.; Lal, R.; Reich, P.F. Land Degradation: An Overview. In Responses to Land Degradation; Bridges, E.M., Hannam, I.D., Oldeman, L.R., de Vries, P.F.W.T., Scher, S.J., Sompatpanit, S., Eds.; CRC Press: Boca Raton, FL, USA, 2001; pp. 20–35. [Google Scholar] [CrossRef]
- Tun, K.K.; Shrestha, R.P.; Datta, A. Assessment of land degradation and its impact on crop production in the Dry Zone of Myanmar. Int. J. Sustain. Dev. World Ecol. 2015, 22, 533–544. [Google Scholar] [CrossRef]
- Zhang, X.; Wenhong, C.; Qingchao, G.; Sihong, W. Effects of landuse change on surface runoff and sediment yield at different watershed scales on the Loess Plateau. Int. J. Sediment Res. 2010, 25, 283–293. [Google Scholar] [CrossRef]
- Aswathi, J.; Sajinkumar, K.; Rajaneesh, A.; Oommen, T.; Bouali, E.; Binojkumar, R.; Rani, V.; Thomas, J.; Thrivikramji, K.; Ajin, R.; et al. Furthering the precision of RUSLE soil erosion with PSInSAR data: An innovative model. Geocarto Int. 2022, 37, 16108–16131. [Google Scholar] [CrossRef]
- Wijitkosum, S. Factor influencing land degradation sensitivity and desertification in a drought prone watershed in Thailand. Int. Soil Water Conserv. Res. 2021, 9, 217–228. [Google Scholar] [CrossRef]
- Duda, A.M. Environmental and economic damage caused by sediment from agricultural nonpoint sources. J. Am. Water Resour. Assoc. 1985, 21, 225–234. [Google Scholar] [CrossRef]
- Wang, G.; Gertner, G.; Fang, S.; Anderson, A.B. Mapping multiple variables for predicting soil loss by geostatistical methods with TM images and a slope map. Photogramm. Eng. Remote Sens. 2003, 8, 889–898. [Google Scholar] [CrossRef]
- Liu, X.; Li, H.; Zhang, S.; Cruse, R.M.; Zhang, X. Gully Erosion Control Practices in Northeast China: A Review. Sustainability 2019, 11, 5065. [Google Scholar] [CrossRef] [Green Version]
- Morera, S.B.; Condom, T.; Vauchel, P.; Guyot, J.L.; Galvez, C.; Crave, A. Pertinent spatio-temporal scale of observation to understand suspended sediment yield control factors in the Andean region: The case of the Santa River (Peru). Hydrol. Earth Syst. Sci. 2013, 17, 4641–4657. [Google Scholar] [CrossRef] [Green Version]
- Marondedze, A.K.; Schütt, B. Assessment of Soil Erosion Using the RUSLE Model for the Epworth District of the Harare Metropolitan Province, Zimbabwe. Sustainability 2020, 12, 8531. [Google Scholar] [CrossRef]
- Martınez-Casasnovas, J.A.; Ramos, M.C.; Ribes-Dasi, M. Soil erosion caused by extreme rainfall events: Mapping and quantification in agricultural plots from very detailed digital elevation models. Geoderma 2002, 105, 125–140. [Google Scholar] [CrossRef]
- Merritt, W.S.; Letcher, R.A.; Jakeman, A.J. A review of erosion and sediment transport models. Environ. Model. Softw. 2003, 18, 761–799. [Google Scholar] [CrossRef]
- De Vente, J.; Poesen, J. Predicting soil erosion and sediment yield at the basin scale: Scale issues and semi-quantitative models. Earth Sci. Rev. 2005, 71, 95–125. [Google Scholar] [CrossRef]
- Fu, G.; Chen, S.; McCool, D.K. Modeling the impacts of no-till practice on soil erosion and sediment yield with RUSLE, SEDD, and ArcView GIS. Soil. Tillage Res. 2006, 85, 38–49. [Google Scholar] [CrossRef]
- Boardman, J.; Poesen, J. Soil Erosion in Europe; Wiley: New York, NY, USA, 2006. [Google Scholar] [CrossRef] [Green Version]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning; US Department of Agriculture, Science and Education Administration: Washington, DC, USA, 1978.
- Renard, K.; Foster, G.; Weesies, G.; McCool, D.; Yoder, D. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); United States Government Printing: Washington, DC, USA, 1997; p. 404.
- Sundara Kumar, P.; Praveen, T.V.; Prasad, A. Simulation of sediment yield over un-gauged stations using MUSLE and Fuzzy Model. Aquat. Procedia 2015, 4, 1291–1298. [Google Scholar] [CrossRef]
- Grum, B.; Woldearegay, K.; Hessel, R.; Baartman, J.E.M.; Abdulkadir, M.; Yazew, E.; Kessler, A.; Ritsema, C.J.; Geissen, V. Assessing the Effect of Water Harvesting Techniques on Event-Based Hydrological Responses and Sediment Yield at a Catchment Scale in Northern Ethiopia Using the Limburg Soil Erosion Model (LISEM). Catena 2017, 159, 20–34. [Google Scholar] [CrossRef]
- Morgan, R.P.C.; Morgan, D.D.V.; Finney, H.J. A predictive model for the assessment of soil erosion risk. J. Agric. Eng. Res. 1984, 30, 245–253. [Google Scholar] [CrossRef]
- Shrestha, D.P.; Jetten, V.G. Modelling erosion on a daily basis, an adaptation of the MMF approach. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 117–131. [Google Scholar] [CrossRef]
- Quijano, L.; Beguería, S.; Gaspar, L.; Navas, A. Estimating erosion rates using 137Cs measurements and WATEM/SEDEM in a Mediterranean cultivated field. Catena 2016, 138, 38–51. [Google Scholar] [CrossRef]
- Vigiak, O.; Malagó, A.; Bouraoui, F.; Vanmaercke, M.; Poesen, J. Adapting SWAT hillslope erosion model to predict sediment concentration sand yields in large Basins. Sci. Total Environ. 2015, 538, 855–875. [Google Scholar] [CrossRef] [PubMed]
- Pieri, L.; Bittelli, M.; Wu, J.Q.; Dun, S.; Flanagan, D.C.; Rossi Pisa, P.; Ventura, F.; Salvatorelli, F. Using the Water Erosion Prediction Project (WEPP) model to simulate field observed runoff and erosion in the Apennines Mountain range, Italy. J. Hydrol. 2007, 336, 84–97. [Google Scholar] [CrossRef]
- Morgan, R.P.C.; Quinton, J.N.; Smith, R.E.; Govers, G.; Poesen, J.W.A.; Auerswald, K.; Chisci, G.; Torri, D.; Styczen, M.E. The European Soil Erosion Model (EUROSEM): A dynamic approach for predicting sediment transport from fields and small catchments. Earth Surf. Process. Landf. 1998, 23, 527–544. [Google Scholar] [CrossRef]
- Gavrilovic, S. A method for estimating the average annual quantity of sediments according to the potency of erosion. Bull. Fac. For. 1962, 26, 151–168. [Google Scholar]
- Gavrilovic, S. Modern ways of calculating the torrential sediment and erosion mapping. In Erosion, Torrents and Alluvial Deposits; Yugoslav Committee for International Hydrological Decade: Belgrade, Serbia, 1970; pp. 85–100. [Google Scholar]
- Tošić, R.; Dragićević, S.; Lovrić, N. Assessment of soil erosion and sediment yield changes using erosion potential model–case study: Republic of Srpska (BiH). Carpathian J. Earth Environ. Sci. 2012, 7, 147–154. [Google Scholar]
- Gavrilovic, Z. Use of an empirical method (Erosion Potential Method) for calculating sediment production and transportation in unstudied or torrential streams. In International Conference on River Regime; Hydraulics Research Ltd.: Wallingford, UK, 1988; pp. 411–422. [Google Scholar]
- Kostadinov, S.; Braunović, S.; Dragićević, S.; Zlatić, M.; Dragović, N.; Rakonjac, N. Effects of Erosion Control Works: Case Study—Grdelica Gorge, the South Morava River (Serbia). Water 2018, 10, 1094. [Google Scholar] [CrossRef] [Green Version]
- Echogdali, F.Z.; Boutaleb, S.; Kpan, R.B.; Ouchchen, M.; Bendarma, A.; El Ayady, H.; Abdelrahman, K.; Fnais, M.S.; Sajinkumar, K.S.; Abioui, M. Application of Fuzzy Logic and Fractal Modeling Approach for Groundwater Potential Mapping in Semi-Arid Akka Basin, Southeast Morocco. Sustainability 2022, 14, 10205. [Google Scholar] [CrossRef]
- Xie, F.; Zhao, G.; Mu, X.; Tian, P.; Gao, P.; Sun, W. Sediment Yield in Dam-Controlled Watersheds in the Pisha Sandstone Region on the Northern Loess Plateau, China. Land 2021, 10, 1264. [Google Scholar] [CrossRef]
- Fanetti, D.; Vezzoli, L. Sediment input and evolution of lacustrine deltas: The Breggia and Greggio rivers case study (Lake Como, Italy). Quat. Int. 2007, 173, 113–124. [Google Scholar] [CrossRef]
- De Vente, J.; Poesen, J.; Bazzoffi, P.; Rompaey, A.V.; Verstraeten, G. Predicting catchment sediment yield in Mediterranean environments: The importance of sediment sources and connectivity in Italian drainage basins. Earth Surf. Process. Landf. 2006, 31, 1017–1034. [Google Scholar] [CrossRef]
- Koirala, P.; Thakuri, S.; Joshi, S.; Chauhan, R. Estimation of Soil Erosion in Nepal Using a RUSLE Modeling and Geospatial Tool. Geosciences 2019, 9, 147. [Google Scholar] [CrossRef] [Green Version]
- Gocić, M.; Dragićević, S.; Radivojević, A.; Martić Bursać, N.; Stričević, L.; Đorđević, M. Changes in Soil Erosion Intensity Caused by Land Use and Demographic Changes in the Jablanica River Basin, Serbia. Agriculture 2020, 10, 345. [Google Scholar] [CrossRef]
- Emmanouloudis, D.A.; Christou, O.P.; Filippidis, E. Quantitative estimation of degradation in the Alikamon river basin using GIS. In Erosion Prediction in Ungauged Basins: Integrating Methods and Techniques; De Boer, D., Froehlich, W., Mizuyama, T., Pietroniro, A., Eds.; IAHS Publication: Wallingford, UK, 2003; Volume 279. [Google Scholar]
- Sinha, A.; Nikhil, S.; Ajin, R.S.; Danumah, J.H.; Saha, S.; Costache, R.; Rajaneesh, A.; Sajinkumar, K.S.; Amrutha, K.; Johny, A.; et al. Wildfire Risk Zone Mapping in Contrasting Climatic Conditions: An Approach Employing AHP and F-AHP Models. Fire 2023, 6, 44. [Google Scholar] [CrossRef]
- Margiorou, S.; Kastridis, A.; Sapountzis, M. Pre/Post-Fire Soil Erosion and Evaluation of Check-Dams Effectiveness in Mediterranean Suburban Catchments Based on Field Measurements and Modeling. Land 2022, 11, 1705. [Google Scholar] [CrossRef]
- Kastridis, A.; Stathis, D.; Sapountzis, M.; Theodosiou, G. Insect Outbreak and Long-Term Post-Fire Effects on Soil Erosion in Mediterranean Suburban Forest. Land 2022, 11, 911. [Google Scholar] [CrossRef]
- Depountis, N.; Michalopoulou, M.; Kavoura, K.; Nikolakopoulos, K.; Sabatakakis, N. Estimating Soil Erosion Rate Changes in Areas Affected by Wildfires. ISPRS Int. J. Geo-Inf. 2020, 9, 562. [Google Scholar] [CrossRef]
- Benchettouh, A.; Kouri, L.; Jebari, S. Spatial estimation of soil erosion risk using RUSLE/GIS techniques and practices conservation suggested for reducing soil erosion in Wadi Mina watershed (northwest, Algeria). Arab. J. Geosci. 2017, 10, 79. [Google Scholar] [CrossRef]
- Kastridis, A.; Margiorou, S.; Sapountzis, M. Check-Dams and Silt Fences: Cost-Effective Methods to Monitor Soil Erosion under Various Disturbances in Forest Ecosystems. Land 2022, 11, 2129. [Google Scholar] [CrossRef]
- Bensekhria, A.; Bouhata, R. Assessment and Mapping Soil Water Erosion Using RUSLE Approach and GIS Tools: Case of Oued el-Hai Watershed, Aurès West, Northeastern of Algeria. ISPRS Int. J. Geo-Inf. 2022, 11, 84. [Google Scholar] [CrossRef]
- Hategekimana, Y.; Allam, M.; Meng, Q.; Nie, Y.; Mohamed, E. Quantification of Soil Losses along the Coastal Protected Areas in Kenya. Land 2020, 9, 137. [Google Scholar] [CrossRef]
- Covelli, C.; Cimorelli, L.; Pagliuca, D.N.; Molino, B.; Pianese, D. Assessment of Erosion in River Basins: A Distributed Model to Estimate the Sediment Production over Watersheds by a 3-Dimensional LS Factor in RUSLE Model. Hydrology 2020, 7, 13. [Google Scholar] [CrossRef] [Green Version]
- Tahouri, J.; Sadiki, A.; Karrat, L.; Johnson, V.C.; Weng Chan, N.; Fei, Z.; Te Kung, H. Using a modified PAP/RAC model and GIS-for mapping water erosion and causal risk factors: Case study of the Asfalou watershed, Morocco. Int. Soil. Water Conserv. Res. 2022, 10, 254–272. [Google Scholar] [CrossRef]
- Pham, T.G.; Degener, J.; Kappas, M. Integrated universal soil loss equation (USLE) and Geographical Information System (GIS) for soil erosion estimation in A Sap basin: Central Vietnam. Int. Soil. Water Conserv. Res. 2018, 6, 99–110. [Google Scholar] [CrossRef]
- Fistikoglu, O.; Harmancioglu, N.B. Integration of GIS with USLE in assessment of soil erosion. Water Resour. Manag. 2002, 16, 447–467. [Google Scholar] [CrossRef]
- Parveen, R.; Kumar, U. Integrated approach of universal soil loss equation (USLE) and geographical information system (GIS) for soil loss risk assessment in Upper South Koel Basin, Jharkhand. J. Geogr. Inf. Syst. 2012, 4, 588–596. [Google Scholar] [CrossRef] [Green Version]
- Dominici, R.; Larosa, S.; Viscomi, A.; Mao, L.; De Rosa, R.; Cianflone, G. Yield Erosion Sediment (YES): A PyQGIS Plug-In for the Sediments Production Calculation Based on the Erosion Potential Method. Geosciences 2020, 10, 324. [Google Scholar] [CrossRef]
- Mohammadi, M.; Khaledi Darvishan, A.K.; Spalevic, V.; Dudic, B.; Billi, P. Analysis of the Impact of Land Use Changes on Soil Erosion Intensity and Sediment Yield Using the IntErO Model in the Talar Watershed of Iran. Water 2021, 13, 881. [Google Scholar] [CrossRef]
- Ali, S.A.; Hagos, H. Estimation of soil erosion using USLE and GIS in Awassa Catchment, Rift valley, Central Ethiopia. Geoderma Reg. 2016, 7, 159–166. [Google Scholar] [CrossRef]
- Echogdali, F.Z.; Boutaleb, S.; Taia, S.; Ouchchen, M.; Id–Belqas, M.; Kpan, R.B.; Abioui, M.; Aswathi, J.; Sajinkumar, K.S. Assessment of soil erosion risk in a semi–arid climate watershed using SWAT model: Case of Tata basin, South–East of Morocco. Appl. Water Sci. 2022, 12, 137. [Google Scholar] [CrossRef]
- Elaloui, A.; Khalki, E.M.E.; Namous, M.; Ziadi, K.; Eloudi, H.; Faouzi, E.; Bou-Imajjane, L.; Karroum, M.; Tramblay, Y.; Boudhar, A.; et al. Soil Erosion under Future Climate Change Scenarios in a Semi-Arid Region. Water 2023, 15, 146. [Google Scholar] [CrossRef]
- Diani, K.; Ettazarini, S.; Hahou, Y.; El Belrhiti, H.; Allaoui, W.; Mounir, K.; Gourfi, A. Identification of soil erosion sites in semiarid zones: Using GIS, remote sensing, and PAP/RAC model. In Handbook of Hydroinformatics; Eslamian, S., Eslamian, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 169–183. [Google Scholar] [CrossRef]
- Aït Hssaine, A. Éléments sur l’hydrologie de la partie atlasique de l’oued Guir (Maroc sud-oriental) et sur l’inondation catastrophique du 10 octobre 2008. Physio-Géo 2014, 8, 337–354. [Google Scholar] [CrossRef]
- Kogo, B.K.; Kumar, L.; Koech, R. Impact of Land Use/Cover Changes on Soil Erosion in Western Kenya. Sustainability 2020, 12, 9740. [Google Scholar] [CrossRef]
- Hembram, T.K.; Paul, G.C.; Saha, S. Comparative analysis between morphometry and geo-environmental factor based soil erosion risk assessment using weight of evidence model: A study on Jainti river basin, eastern India. Environ. Process. 2019, 6, 883–913. [Google Scholar] [CrossRef]
- Chaaouan, J.; Faleh, A.; Sadiki, A.; Mesrar, H. Télédétection, SIG et modélisation de l’érosion hydrique dans le bassin versant de l’oued Amzaz, Rif Central. Rev. Fr. Photogramm. Télédetect. 2013, 203, 19–25. [Google Scholar] [CrossRef]
- Ewunetu, A.; Simane, B.; Teferi, E.; Zaitchik, B.F. Mapping and Quantifying Comprehensive Land Degradation Status Using Spatial Multicriteria Evaluation Technique in the Headwaters Area of Upper Blue Nile River. Sustainability 2021, 13, 2244. [Google Scholar] [CrossRef]
- Spalevic, V.; Barovic, G.; Vujacic, D.; Curovic, M.; Behzadfar, M.; Djurovic, N.; Dudic, B.; Billi, P. The Impact of Land Use Changes on Soil Erosion in the River Basin of Miocki Potok, Montenegro. Water 2020, 12, 2973. [Google Scholar] [CrossRef]
- Zingg, A.W. Degree and length of land slope as it affects soil loss in run-off. Agric. Eng. 1940, 21, 59–64. [Google Scholar]
- Mohammed, S.; Al-Ebraheem, A.; Holb, I.J.; Alsafadi, K.; Dikkeh, M.; Pham, Q.B.; Linh, N.T.T.; Szabo, S. Soil Management Effects on Soil Water Erosion and Runoff in Central Syria—A Comparative Evaluation of General Linear Model and Random Forest Regression. Water 2020, 12, 2529. [Google Scholar] [CrossRef]
- Echogdali, F.Z.; Boutaleb, S.; Bendarma, A.; Saidi, M.E.; Aadraoui, M.; Abioui, M.; Ouchchen, M.; Abdelrahman, K.; Fnais, M.S.; Sajinkumar, K.S. Application of Analytical Hierarchy Process and Geophysical Method for Groundwater Potential Mapping in the Tata Basin, Morocco. Water 2022, 14, 2393. [Google Scholar] [CrossRef]
- Mohammed, S.; Abdo, H.G.; Szabo, S.; Pham, Q.B.; Holb, I.J.; Linh, N.T.T.; Tram Anh, D.; Alsafadi, K.; Mokhtar, A.; Kbibo, I.; et al. Estimating human impacts on soil erosion considering different hillslope inclinations and land uses in the coastal region of Syria. Water 2020, 12, 2786. [Google Scholar] [CrossRef]
- Römkens, M.J.; Helming, K.; Prasad, S.N. Soil erosion under different rainfall intensities, surface roughness, and soil water regimes. Catena 2002, 46, 103–123. [Google Scholar] [CrossRef]
- Alexakis, D.D.; Hadjimitsis, D.G.; Agapiou, A. Integrated use of remote sensing, GIS and precipitation data for the assessment of soil erosion rate in the catchment area of “Yialias” in Cyprus. Atmos. Res. 2013, 131, 108–124. [Google Scholar] [CrossRef]
- Cerdan, O. Analyse et Modélisation du Transfert de Particules Solides à l’échelle de Petits Bassins Versants Cultives. Ph.D. Thesis, Université d’Orléans, Orléans, France, 2001. [Google Scholar]
- Cerdan, O.; Delmas, M.; Négrel, P.; Mouchel, J.M.; Petelet-Giraud, E.; Salvador-Blanes, S.; Degan, F. Contribution of diffuse hillslope erosion to the sediment export of French rivers. C. R. Geosci. 2012, 344, 636–645. [Google Scholar] [CrossRef]
- Rey, F.; Ballais, J.L.; Marre, A.; Rovéra, G. Rôle de la végétation dans la protection contre l’érosion hydrique de surface. C. R. Geosci. 2004, 336, 991–998. [Google Scholar] [CrossRef]
- Xian, G.; Shi, H.; Dewitz, J.; Wu, Z. Performances of WorldView 3, Sentinel 2, and Landsat 8 data in mapping impervious surface. Remote Sens. Appl. Soc. Environ. 2019, 15, 100246. [Google Scholar] [CrossRef]
- Sánchez-Espinosa, A.; Schröder, C. Land use and land cover mapping in wetlands one step closer to the ground: Sentinel-2 versus Landsat 8. J. Environ. Manag. 2019, 247, 484–498. [Google Scholar] [CrossRef]
- Pflugmacher, D.; Rabe, A.; Peters, M.; Hostert, P. Mapping pan-European land cover using Landsat spectral-temporal metrics and the European LUCAS survey. Remote Sens. Environ. 2019, 221, 583–595. [Google Scholar] [CrossRef]
- Chikh, H.A.; Habi, M.; Morsli, B. Influence of vegetation cover on the assessment of erosion and erosive potential in the Isser marly watershed in northwestern Algeria—Comparative study of RUSLE and PAP/RAC methods. Arab. J. Geosci. 2019, 12, 154. [Google Scholar] [CrossRef]
- Kostyuchenko, Y.; Artemenko, I.; Abioui, M.; Benssaou, M. Global and Regional Climatic Modeling. In Encyclopedia of Mathematical Geosciences; Sagar, B.D., Cheng, Q., McKinley, J., Agterberg, F., Eds.; Springer: Cham, Switzerland, 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Simonneaux, V.; Cheggour, A.; Deschamps, C.; Mouillot, F.; Cerdan, O.; Le Bissonnais, Y. Land use and climate change effects on soil erosion in a semi-arid mountainous watershed (High Atlas, Morocco). J. Arid. Environ. 2015, 122, 64–75. [Google Scholar] [CrossRef] [Green Version]
- Aslam, B.; Maqsoom, A.; Alaloul, W.S.; Musarat, M.A.; Jabbar, T.; Zafar, A. Soil erosion susceptibility mapping using a GIS-based multi-criteria decision approach: Case of district Chitral, Pakistan. Ain Shams Eng. J. 2021, 12, 1637–1649. [Google Scholar] [CrossRef]
- Molina, A.; Govers, G.; Vanacker, V.; Poesen, J.; Zeelmaekers, E.; Cisneros, F. Runoff generation in a degraded Andean ecosystem: Interaction of vegetation cover and land use. Catena 2007, 71, 357–370. [Google Scholar] [CrossRef]
- Nunes, A.N.; de Almeida, A.C.; Coelho, C.O.A. Impact of land use and cover type on runoff and erosion in a marginal area of Portugal. Appl. Geogr. 2011, 31, 687–699. [Google Scholar] [CrossRef]
- Wei, W.; Chen, L.D.; Fu, B.J. Effects of rainfall change on water erosion processes in terrestrial ecosystems: A review. Prog. Phys. Geogr. 2009, 33, 307–318. [Google Scholar] [CrossRef]
- Wei, W.; Chen, L.D.; Fu, B.J.; Lü, Y.H.; Gong, J. Responses of water erosion to rainfall extremes and vegetation types in a loess semiarid hilly area, NW China. Hydrol. Process. 2009, 23, 1780–1791. [Google Scholar] [CrossRef]
- Kim, K.; Jeong, Y. Hydrological variations of discharge, soil loss and recession coefficient in three small forested catchments. In Environmental Forest Science; Sassa, K., Ed.; Springer: Dordrecht, The Netherlands, 1998; pp. 431–438. [Google Scholar] [CrossRef]
- Elbadaoui, K.; Algouti, A.; Algouti, A.; Aitmlouk, M.; Abdelouhed, F. Flood risk modelling using hydrologic data, HECRAS and GIS tools: Case of Toudgha River (Tinghir, Morocco). Disaster Adv. 2020, 13, 1–13. [Google Scholar]
- Benjmel, K.; Amraoui, F.; Aydda, A.; Tahiri, A.; Yousif, M.; Pradhan, B.; Abdelrahman, K.; Fnais, M.S.; Abioui, M. A multidisciplinary approach for groundwater potential mapping in a fractured semi-arid terrain (Kerdous Inlier, Western Anti-Atlas, Morocco). Water 2022, 14, 1553. [Google Scholar] [CrossRef]
- Abioui, M.; Ikirri, M.; Boutaleb, S.; Faik, F.; Wanaim, A.; Id-Belqas, M.; Echogdali, F.Z. GIS for Watershed Characterization and Modeling: Example of the Taguenit River (Lakhssas, Morocco). In Water, Land, and Forest Susceptibility and Sustainability: Geospatial Approaches and Modeling; Chatterjee, U., Pradhan, B., Kumar, S., Saha, S., Zakwan, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 61–85. [Google Scholar] [CrossRef]
Soil Protection Coefficient (Xa) | Value | Coefficient of Type and Extent of Erosion (ϕ) | Value |
Mixed and dense forest | 0.05–0.2 | Little erosion on watershed | 0.1–0.2 |
Thin forest with grove | 0.05–0.2 | Erosion in waterways on 20–50% of the catchment area | 0.3–0.5 |
Forest with little grove, scarce bushes, bush prairie | 0.2–0.4 | Erosion in rivers, alluvial deposits, karstic erosion | 0.6–0.7 |
Damaged forest and bushes, pasture | 0.4–0.6 | >50% of the catchment area affected by surface erosion | 0.8–0.9 |
Damaged pasture and cultivated land | 0.6–0.8 | Whole watershed affected by erosion | 1 |
Areas without vegetal cover | 0.8–1.0 | ||
Soil erodibility coefficient (Y) | Value | Erosion coefficient (Z) | Value |
Hard rock, erosion resistant | 0.2–0.6 | Excessive erosion >1.00 | >1 |
Rock with moderate erosion resistance | 0.6–1.0 | Severe erosion 0.70–1.00 | 0.7–1 |
Weak rock, schistose, stabilized | 1.0–1.3 | Medium erosion 0.40–0.70 | 0.4–0.7 |
Sediments, clay, and rocks with low resistance | 1.3–1.8 | Slight erosion 0.20–0.40 | 0.2–0.4 |
Fine sediments/soils without erosion resistance | 1.8–2.0 | Very slight erosion | 0–0.2 |
Degrees | Code | Factor 1 (Slopes Degrees) | Factor 2 (Resistance to Erosion) | ||||
---|---|---|---|---|---|---|---|
Classes | Area (km²) | (%) | Classes Degrees | Area (km²) | (%) | ||
Very low | 1 | 3–0% | 962.3 | 41.51 | Highly resistance | 189.58 | 8.18 |
low | 2 | 12–3% | 554.42 | 23.91 | Medium resistance | 371.01 | 16.00 |
Medium | 3 | 20–12% | 424.74 | 18.32 | Low resistance | 436.73 | 18.83 |
High | 4 | 35–20% | 296.12 | 12.77 | Coarse sediments | 456.82 | 19.70 |
Very high | 5 | >35% | 80.72 | 3.48 | No resistance | 864.6 | 37.29 |
Resistance to erosion | |||||||
5 | 4 | 3 | 2 | 1 | Slope degrees | ||
2 | 1 | 1 | 1 | 1 | 1 | ||
3 | 3 | 2 | 1 | 1 | 2 | ||
4 | 4 | 3 | 2 | 2 | 3 | ||
5 | 5 | 4 | 3 | 3 | 4 | ||
5 | 5 | 5 | 4 | 4 | 5 |
Degrees | Code | Factor 3 (Vegetation Density) | Factor 4 (Land Use/Cover) | ||||
---|---|---|---|---|---|---|---|
Classes | Area (km²) | (%) | Classes Degrees | Area (km²) | (%) | ||
Very low | 1 | <25% | 577.92 | 24.93 | Dry plantings | 521.84 | 27.56 |
Lo | 2 | 25–50 | 1463.22 | 63.12 | Regular implants | 495.25 | 21.41 |
Medium | 3 | 50–75 | 250.12 | 10.79 | Irrigated crops | 463.88 | 20.05 |
High | 4 | >75% | 27.05 | 1.17 | Forest | 369.79 | 10.98 |
Very high | 5 | Dense trees | 462.68 | 20.00 | |||
Vegetation density | |||||||
4 | 3 | 2 | 1 | Land cover | |||
4 | 4 | 2 | 5 | 1 | |||
4 | 4 | 5 | 5 | 2 | |||
1 | 1 | 2 | 3 | 3 | |||
1 | 2 | 3 | 4 | 4 | |||
2 | 3 | 4 | 5 | 5 |
Degrees | Code | Erodibility | Soil Protection | ||||
---|---|---|---|---|---|---|---|
Classes | Area (km²) | (%) | Class | Area (km²) | (%) | ||
Very low | 1 | Very low | 606.33 | 26.21 | Extremely low | 136.93 | 26.21 |
Low | 2 | Low | 741.8 | 32.06 | Insufficient | 300.14 | 32.07 |
Medium | 3 | Medium | 500.93 | 21.65 | Average | 291.89 | 21.66 |
High | 4 | High | 309.27 | 13.37 | Excessive | 398.84 | 13.37 |
Very high | 5 | Very high | 155.24 | 6.71 | Valuable | 1185.42 | 6.71 |
Erodibility | |||||||
5 | 4 | 3 | 2 | 1 | Soil protection | ||
2 | 2 | 1 | 1 | 1 | 1 | ||
4 | 3 | 2 | 1 | 1 | 2 | ||
4 | 4 | 3 | 2 | 1 | 3 | ||
5 | 5 | 3 | 3 | 2 | 4 | ||
5 | 5 | 4 | 3 | 2 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elbadaoui, K.; Mansour, S.; Ikirri, M.; Abdelrahman, K.; Abu-Alam, T.; Abioui, M. Integrating Erosion Potential Model (EPM) and PAP/RAC Guidelines for Water Erosion Mapping and Detection of Vulnerable Areas in the Toudgha River Watershed of the Central High Atlas, Morocco. Land 2023, 12, 837. https://doi.org/10.3390/land12040837
Elbadaoui K, Mansour S, Ikirri M, Abdelrahman K, Abu-Alam T, Abioui M. Integrating Erosion Potential Model (EPM) and PAP/RAC Guidelines for Water Erosion Mapping and Detection of Vulnerable Areas in the Toudgha River Watershed of the Central High Atlas, Morocco. Land. 2023; 12(4):837. https://doi.org/10.3390/land12040837
Chicago/Turabian StyleElbadaoui, Kamal, Soukaina Mansour, Mustapha Ikirri, Kamal Abdelrahman, Tamer Abu-Alam, and Mohamed Abioui. 2023. "Integrating Erosion Potential Model (EPM) and PAP/RAC Guidelines for Water Erosion Mapping and Detection of Vulnerable Areas in the Toudgha River Watershed of the Central High Atlas, Morocco" Land 12, no. 4: 837. https://doi.org/10.3390/land12040837