Effects of Urban Form on Ambient Air Filter Noise Exposure in Open Areas
Abstract
:1. Introduction
2. Methodology
2.1. Measurement and Simulation of Ambient Air Filter Noise
2.1.1. Noise Measurement
2.1.2. Noise Simulation
2.1.3. Comparison between the Measured and Predicted Results
2.2. Urban Form Selection
2.3. Urban Form Indices
2.4. Noise Mapping
3. Results and Discussions
3.1. Results of Urban Form Indices and Ln
3.2. Comparisons of Noise Exposure among Different Sites
3.3. Correlations between Noise and Urban Form Indices
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Environmental Noise Guidelines for the European Region. 2018. Available online: https://www.euro.who.int/en/publications/abstracts/environmental-noise-guidelines-for-the-european-region-2018 (accessed on 26 March 2023).
- Brown, A.L.; van Kamp, I. WHO environmental noise guidelines for the European region: A systematic review of transport noise interventions and their impacts on health. Int. J. Environ. Res. Public Health 2017, 14, 873. [Google Scholar] [CrossRef] [Green Version]
- Evandt, J.; Oftedal, B.; Krog, N.H.; Skurtveit, S.; Nafstad, P.; Schwarze, P.E.; Skovlund, E.; Houthuijs, D.; Aasvang, G.M. Road traffic noise and registry based use of sleep medication. Environ. Health. 2017, 16, 110. [Google Scholar] [CrossRef] [Green Version]
- Skrzypek, M.; Kowalska, M.; Czech, E.M.; Niewiadomska, E.; Zejda, J.E. Impact of road traffic noise on sleep disturbances and attention disorders amongst school children living in upper Silesian Industrial Zone, Poland. Int. J. Occup. Med. Environ. Health 2017, 30, 511–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, L.; Wang, S.; Huang, Y.; Liao, X. The hippocampus may be more susceptible to environmental noise than the auditory cortex. Hear Res. 2016, 333, 93–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, H.; Kang, J. Relationships between noise complaints and socio-economic factors in England. Sustain. Cities Soc. 2021, 65, 102573. [Google Scholar] [CrossRef]
- Das, P.; Talukdar, S.; Ziaul, S.; Das, S.; Pal, S. Noise mapping and assessing vulnerability in meso level urban environment of Eastern India. Sustain. Cities Soc. 2019, 46, 101416. [Google Scholar] [CrossRef]
- Yuan, M.; Yin, C.; Sun, Y.; Chen, W. Examining the associations between urban built environment and noise pollution in high-density high-rise urban areas: A case study in Wuhan, China. Sustain. Cities Soc. 2019, 50, 101678. [Google Scholar] [CrossRef]
- Hong, J.Y.; Lam, B.; Ong, Z.; Ooi, K.; Gan, W.; Kang, J.; Yeong, S.; Lee, I.; Tan, S. Effects of contexts in urban residential areas on the pleasantness and appropriateness of natural sounds. Sustain. Cities Soc. 2020, 63, 102475. [Google Scholar] [CrossRef]
- Morillas, J.M.B.; Gozalo, G.R.; González, D.M.; Moraga, P.A.; Vílchez-Gómez, R. Noise Pollution and Urban Planning. Curr. Pollut. Rep. 2018, 4, 208–219. [Google Scholar] [CrossRef]
- Han, X.; Huang, X.; Liang, H.; Ma, S.; Gong, J. Analysis of the relationships between environmental noise and urban morphology. Environ. Pollut. 2018, 233, 755–763. [Google Scholar] [CrossRef]
- Guedes, I.C.M.; Bertoli, S.R.; Zannin, P.H.T. Influence of urban shapes on environmental noise: A case study in Aracaju-Brazil. Sci. Total Environ. 2011, 412–413, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.T.; Oliveira, M.; Silva, J.F. Urban form indicators as proxy on the noise exposure of buildings. Appl. Acoust. 2017, 76, 366–376. [Google Scholar] [CrossRef] [Green Version]
- Adolphe, L. A simplified model of urban morphology: Application to an analysis of the environmental performance of cities. Environ. Plan. B-Plan. Des. 2001, 28, 183–200. [Google Scholar] [CrossRef]
- Xie, X.; Huang, Z.; Wang, J. The impact of urban street layout on local atmospheric environment. Build. Environ. 2006, 41, 1352–1363. [Google Scholar]
- Ng, E.; Yuan, C.; Chen, L.; Ren, C.; Fung, J.C.H. Improving the wind environment in high-density cities by understanding urban morphology and surface roughness: A study in Hong Kong. Landsc. Urban Plan. 2011, 101, 59–74. [Google Scholar] [CrossRef]
- Salomons, E.M.; Pont, M.B. Urban traffic noise and the relation to urban density, form, and traffic elasticity. Landsc. Urban Plan. 2012, 108, 2–16. [Google Scholar] [CrossRef]
- Bouzir, T.A.K.; Zemmouri, N. Effect of urban morphology on road noise distribution. Energy Procedia 2017, 119, 376–385. [Google Scholar] [CrossRef]
- Tang, U.W.; Wang, Z.S. Influences of urban forms on traffic-induced noise and air pollution: Results from a modelling system. Environ. Modell. Softw. 2007, 22, 1750–1764. [Google Scholar] [CrossRef]
- Kim, P.; Ryu, H.; Jeon, J.; Chang, S.I. Statistical Road-Traffic Noise Mapping Based on Elementary Urban Forms in Two Cities of South Korea. Sustainability 2021, 13, 2365. [Google Scholar] [CrossRef]
- Hao, Y.; Kang, J.; Krijnders, D.; Wörtche, H. On the Relationship between Traffic Noise Resistance and Urban Morphology in Low-Density Residential Areas. Acta Acust. United Acust. 2015, 101, 510–519. [Google Scholar] [CrossRef]
- Margaritis, E.; Kang, J. Relationship between urban green spaces and other features of urban morphology with traffic noise distribution. Urban For. Urban Green. 2016, 15, 174–185. [Google Scholar] [CrossRef]
- Sanchez, G.M.E.; Renterghem, T.V.; Thomas, P.; Botteldooren, D. The effect of street canyon design on traffic noise exposure along roads. Build. Environ. 2016, 97, 96–110. [Google Scholar] [CrossRef] [Green Version]
- Lam, K.; Ma, W.; Chan, P.K.; Hui, W.C.; Chung, K.L.; Chung, Y.T.; Wong, C.Y.; Lin, H. Relationship between road traffic noisescape and urban form in Hong Kong. Environ. Monit. Assess. 2013, 185, 9683–9695. [Google Scholar] [CrossRef] [PubMed]
- Forssén, J.; Gustafson, A.; Pont, M.B.; Haeger-Eugensson, M.; Achberger, C.; Rosholm, N. Effects of urban morphology on traffic noise: A parameter study including indirect noise exposure and estimated health impact. Appl. Acoust. 2022, 186, 108436. [Google Scholar] [CrossRef]
- Flores, R.; Gagliardi, P.; Asensio, C.; Licitra, G. A Case Study of the Influence of Urban Morphology on Aircraft Noise. Acoust. Aust. 2017, 45, 389–401. [Google Scholar] [CrossRef]
- Hao, Y.; Kang, J. Influence of mesoscale urban morphology on the spatial noise attenuation of flyover aircrafts. Appl. Acoust. 2014, 84, 73–82. [Google Scholar] [CrossRef]
- Qu, F.; Kang, J. Effects of built environment morphology on wind turbine noise exposure at building façades. Renew. Energy 2017, 107, 629–638. [Google Scholar] [CrossRef]
- Badino, E.; Manca, R.; Shtrepi, L.; Calleri, C.; Astolfi, A. Effect of façade shape and acoustic cladding on reduction of leisure noise levels in a street canyon. Build. Environ. 2019, 157, 242–256. [Google Scholar] [CrossRef]
- Ariza-Villaverde, A.B.; Jiménez-Hornero, F.J.; Ravé, E.G.D. Influence of urban morphology on total noise pollution: Multifractal description. Sci. Total Environ. 2014, 472, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Kang, J.; Krijnders, J.D. Integrated effects of urban morphology on birdsong loudness and visibility of green areas. Landsc. Urban Plan. 2015, 137, 149–162. [Google Scholar] [CrossRef] [Green Version]
- Tong, H.; Kang, J. Characteristics of noise complaints and the associations with urban morphology: A comparison across densities. Environ. Res. 2021, 197, 111045. [Google Scholar] [CrossRef] [PubMed]
- Bouzid, I.; Derbel, A.; Elleuch, B. Factors responsible for road traffic noise annoyance in the city of Sfax, Tunisia. Appl. Acoust. 2020, 168, 107412. [Google Scholar] [CrossRef]
- Bachler, P.; Müller, T.K.; Warth, T.; Yildiz, T.; Dittler, A. Impact of ambient air filters on PM concentration levels at an urban traffic hotspot (Stuttgart, Am Neckartor). Atmos. Pollut. Res. 2021, 12, 101059. [Google Scholar] [CrossRef]
- Tan, D.; Zhou, X.; Xu, Y.; Wu, C.; Li, Y. Environmental, health and economic benefits of using urban updraft tower to govern urban air pollution. Renew. Sustain. Energy Rev. 2017, 77, 1300–1308. [Google Scholar] [CrossRef]
- ISO 3744: 2010; Acoustics-Determination of Sound Power Levels and Sound Energy Levels of Noise Sources Using Sound Pressure—Engineering Methods for An Essentially Free Field over a Reflecting Plane. International Organization for Standardization: Geneva, Switzerland, 2010.
- GB/T 3767-2016; Acoustics-Determination of Sound Power Levels and Sound Energy Levels of Noise Sources Using Sound Pres-sure—Engineering Methods for An Essentially Free Field over a Reflecting Plane. National Standard of the People’s Republic of China: Beijing, China, 2016.
- Bistafa, S.R.; Bradley, J.S. Predicting speech metrics in a simulated classroom with varied sound absorption. J. Acoust. Soc. Am. 2001, 109, 1474–1482. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.C.; Qin, Y.G.; Yan, X.; Wang, P. Acoustical design of the National Theatre Company of China (NTCC). J. Acoust. Soc. Am. 2012, 131, 3358. [Google Scholar] [CrossRef]
- Gerges, S.N.Y.; Gomes, M.H.A. The assessment of room acoustics parameters using the MLS technique and numerical simulation. J. Acoust. Soc. Am. 2001, 110, 2620. [Google Scholar] [CrossRef]
- Vorländer, M. Auralization: Fundamentals of Acoustics, Modelling, Simulation, Algorithms and Acoustic Virtual Reality; Springer Science+Business Media LLC: Berlin, Germany, 2008. [Google Scholar]
- Cox, T.J.; D’Antonio, P. Acoustic Absorbers and Diffusers: Theory, Design and Application; Spon Press: London, UK, 2004. [Google Scholar]
- Wang, B.; Kang, J. Effects of urban morphology on the traffic noise distribution through noise mapping: A comparative study between UK and China. Appl. Acoust. 2011, 72, 556–568. [Google Scholar] [CrossRef]
- Yu, W.L.; Kang, J. Relationship between traffic noise resistance and village form in China. Landsc. Urban Plan. 2017, 163, 44–55. [Google Scholar] [CrossRef]
63 Hz | 125 Hz | 250 Hz | 500 Hz | 1000 Hz | 2000 Hz | |
---|---|---|---|---|---|---|
Sound power level of the source/dB | 83.8 | 92.7 | 85.8 | 81.2 | 78.9 | 74.2 |
SPLs of background noise/dB | 43.9 | 38.0 | 35.2 | 36.7 | 37.1 | 34.6 |
Sound-absorption coefficients of ground | 0.10 | 0.08 | 0.09 | 0.15 | 0.05 | 0.07 |
Sound-absorption coefficients of building envelope | 0.07 | 0.15 | 0.19 | 0.19 | 0.10 | 0.12 |
a | b | c | |
---|---|---|---|
Measured | 67.6 dB (A) | 66.9 dB (A) | 67.2 dB (A) |
Simulated, point source | 65.3 dB (A) | 65.4 dB (A) | 65.4 dB (A) |
Simulated, plane source | 66.6 dB (A) | 65.8 dB (A) | 65.3 dB (A) |
Parameters | Definitions and Notes | Formula |
---|---|---|
Building Plan Area Fraction (BPAF) | The ratio of the plan area of buildings at ground level (AP) to the total surface area of the study region (AT). | |
Spacing Index (SI) | The averaged spacing from the target building to the adjacent building units on both sides. S1,i, S2,i, respectively, are the distances from the target building to the adjacent buildings on both sides; nSI is the number of target buildings in the study region. | |
Compactness Index (CI) | The ratio between the source-receiver distance (DS-R,i) and the distance from the nearest building at the front along the incidence wave (D1,i); nCI is the number of target buildings in the study region. | |
First-row Building Orientation (FBO) | The angle (Ai) between the connection line of air filters and the longer façade of the first-row building. n1 is the number of the target buildings in the first row. | |
Distance of First-row Building to the Ambient Air Filter (DFBAAF) | The mean of the distances (di) from the frontal façades of the first-row buildings to the air filter. | |
Building Frontal Area Index (BFAI) | The ratio of the total area of the projected façade areas parallel with the connection line of air filters (Apro) to the total surface area of the study region (AT). |
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BPAF | 0.23 | 0.21 | 0.10 | 0.19 | 0.12 | 0.16 | 0.26 | 0.18 | 0.36 | 0.33 | 0.18 | 0.24 | 0.14 | 0.16 | 0.15 |
SI/m | 16.5 | 46.1 | 39.0 | 34.2 | 39.6 | 58.0 | 17.2 | 0 | 23.3 | 9.3 | 11.4 | 7.2 | 72.5 | 29.8 | 40.2 |
CI | 12.3 | 6.6 | 2.5 | 6.1 | 3.0 | 5.8 | 15.2 | 0 | 16.4 | 9.1 | 5.2 | 19.8 | 4.6 | 6.4 | 3.7 |
FBO/° | 41.0 | 0 | 80.0 | 27.0 | 21.0 | 78.0 | 70.0 | 90.0 | 34.0 | 9.3 | 51.7 | 67.0 | 0 | 53.0 | 14.0 |
DFBAAF/m | 55.0 | 13.4 | 39.0 | 32.9 | 45.2 | 34.0 | 24.3 | 64.5 | 70.1 | 12.0 | 7.1 | 38.6 | 16.5 | 29.4 | 60.1 |
BFAI | 0.17 | 0.29 | 0.39 | 0.38 | 0.63 | 0.15 | 0.33 | 0.02 | 0.20 | 0.94 | 0.58 | 0.12 | 0.09 | 0.38 | 0.14 |
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | # | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Two ambient air filters | ||||||||||||||||
L10 | 56.1 | 53.6 | 56.1 | 55.2 | 56.4 | 55.9 | 56.2 | 54.7 | 56.3 | 45.5 | 45.5 | 55.3 | 49.8 | 55.7 | 56.2 | 56.0 |
L20 | 54.6 | 48.9 | 53.4 | 48.1 | 53.6 | 53.5 | 51.9 | 51.4 | 54.2 | 45.5 | 45.5 | 52.7 | 47.2 | 51.2 | 54.5 | 53.7 |
L40 | 47.5 | 46.7 | 49.3 | 45.5 | 47.1 | 49.1 | 46.9 | 48.9 | 49.5 | 45.5 | 45.5 | 45.5 | 45.5 | 47.2 | 48.3 | 50.4 |
L60 | 45.5 | 45.5 | 47.2 | 45.5 | 45.5 | 46.6 | 45.5 | 46.6 | 45.9 | 45.5 | 45.5 | 45.5 | 45.5 | 45.5 | 46.9 | 48.6 |
L80 | 45.5 | 45.5 | 45.9 | 45.5 | 45.5 | 45.5 | 45.5 | 45.5 | 45.5 | 45.5 | 45.5 | 45.5 | 45.5 | 45.5 | 45.5 | 47.6 |
Four ambient air filters | ||||||||||||||||
L10 | 58.9 | 54.3 | 57.7 | 58.5 | 58.6 | 58.3 | 58.7 | 57.6 | 58.7 | 51.2 | 52.4 | 58.1 | 50.3 | 58.2 | 58.5 | 58.3 |
L20 | 57.1 | 49.2 | 54.5 | 53.7 | 55.8 | 55.1 | 53.9 | 54.6 | 56.1 | 47.8 | 49.3 | 55.5 | 48.1 | 54.6 | 56.5 | 55.5 |
L40 | 49.6 | 46.8 | 49.5 | 48.1 | 49.2 | 50.3 | 49.0 | 51.3 | 51.1 | 45.5 | 47.5 | 49.4 | 45.7 | 49.7 | 50.0 | 52.2 |
L60 | 45.5 | 45.5 | 47.6 | 45.9 | 46.9 | 48.5 | 46.4 | 47.7 | 46.5 | 45.5 | 46.7 | 46.4 | 45.7 | 47.5 | 47.6 | 50.0 |
L80 | 45.5 | 45.5 | 46.4 | 45.5 | 45.5 | 46.8 | 45.5 | 46.3 | 45.5 | 45.5 | 45.5 | 45.5 | 45.7 | 45.9 | 45.5 | 48.9 |
Six ambient air filters | ||||||||||||||||
L10 | 61.9 | 57.6 | 60.4 | 60.8 | 60.8 | 61.2 | 61.2 | 60.1 | 61.5 | 53.6 | 52.4 | 61.2 | 52.4 | 61.0 | 61.3 | 60.0 |
L20 | 58.9 | 51.3 | 57.0 | 54.7 | 57.8 | 57.1 | 56.5 | 57.1 | 58.4 | 48.1 | 49.2 | 58.0 | 48.9 | 56.5 | 58.7 | 57.4 |
L40 | 51.0 | 49.1 | 51.7 | 47.8 | 49.7 | 51.9 | 49.6 | 53.2 | 52.5 | 45.5 | 47.2 | 50.5 | 45.8 | 50.7 | 51.5 | 53.8 |
L60 | 45.5 | 46.6 | 48.8 | 45.8 | 46.9 | 49.3 | 46.8 | 49.0 | 46.9 | 45.5 | 46.5 | 46.6 | 45.5 | 48.1 | 48.2 | 51.4 |
L80 | 45.5 | 45.5 | 47.4 | 45.5 | 45.5 | 47.6 | 45.5 | 47.7 | 45.5 | 45.5 | 45.5 | 45.5 | 45.5 | 46.2 | 46.2 | 49.9 |
Building Plan Area Fraction | Spacing Index | Compactness Index | First-Row Building Orientation | Distance of First-Row Building to the Ambient Air Filter | Building Frontal Area Index | ||
---|---|---|---|---|---|---|---|
Two air filters | L10 | −0.12 | 0.201 | 0.05 | 0.206 | 0.697 ** | −0.013 |
L20 | −0.107 | 0.134 | 0.048 | 0.229 | 0.828 ** | −0.293 | |
L40 | −0.215 | 0.145 | −0.233 | 0.468 | 0.742 ** | −0.222 | |
L60 | −0.383 | 0.172 | −0.485 | 0.433 | 0.605 * | −0.304 | |
L80 | −0.433 | 0.124 | −0.371 | 0.371 | 0.124 | 0.247 | |
Four air filters | L10 | 0.202 | −0.011 | 0.317 | 0.197 | 0.601 * | −0.009 |
L20 | −0.055 | −0.059 | 0.075 | 0.275 | 0.844 ** | −0.324 | |
L40 | −0.114 | −0.111 | −0.139 | 0.599 * | 0.832 ** | −0.464 | |
L60 | −0.564 * | 0.101 | −0.585 * | 0.638 * | 0.447 | −0.176 | |
L80 | −0.578 * | 0.255 | −0.523 * | 0.546 * | 0.115 | −0.285 | |
Six air filters | L10 | 0.262 | −0.045 | 0.442 | 0.245 | 0.666 ** | −0.284 |
L20 | −0.013 | −0.091 | 0.089 | 0.301 | 0.882 ** | −0.399 | |
L40 | −0.15 | −0.057 | −0.175 | 0.62 * | 0.843 ** | −0.45 | |
L60 | −0.429 | 0.16 | −0.438 | 0.612 * | 0.51 | −0.212 | |
L80 | −0.526* | 0.1 | −0.588 * | 0.605 * | 0.383 | −0.315 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lou, H.; Zhao, Y.; Rong, N.; Min, H. Effects of Urban Form on Ambient Air Filter Noise Exposure in Open Areas. Land 2023, 12, 762. https://doi.org/10.3390/land12040762
Lou H, Zhao Y, Rong N, Min H. Effects of Urban Form on Ambient Air Filter Noise Exposure in Open Areas. Land. 2023; 12(4):762. https://doi.org/10.3390/land12040762
Chicago/Turabian StyleLou, Huading, Yuchen Zhao, Ningning Rong, and Hequn Min. 2023. "Effects of Urban Form on Ambient Air Filter Noise Exposure in Open Areas" Land 12, no. 4: 762. https://doi.org/10.3390/land12040762
APA StyleLou, H., Zhao, Y., Rong, N., & Min, H. (2023). Effects of Urban Form on Ambient Air Filter Noise Exposure in Open Areas. Land, 12(4), 762. https://doi.org/10.3390/land12040762