An Unsupervised Burned Area Mapping Approach Using Sentinel-2 Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Earth Observation Products
2.2. Events and Study Areas
2.3. Unsupervised Approach
2.4. Reference Validation Data
3. Results
3.1. Accuracy Assessment Analysis
3.2. Burn Damage Severity Assessment
- -
- It is evident that the identified area, which is classified as showcasing a high-severity impact by the fire, is mostly evident (at approximately and more than 90%), where the CEMS destroyed class is registered. However, it can be noticed that, systematically, around 25% is misplaced to the CEMS damaged class.
- -
- In relation to the CEMS damaged class, this is mostly identified as exhibiting moderately high (around 45–50%) or low (25–30%) impacts by the fire event. It appears that there is a match at approximately 70% between the moderate-severity subclasses (high and low) and the CEMS-nominated damaged class.
- -
- The results become, on one hand, more distinct for the possibly damaged class, as, herein, mostly the low-severity class (at approximately 55–65%) and the moderately low-severity subclass are to be assigned (around 25–35%). The moderate–high-severity class presents a few percentage misclassifications here.
- -
- Confusion is observed, where ambiguity becomes higher, i.e., between the low-severity class and the unburned area designation by the CEMS. Misinterpretation reaches 80–90%. Cases of moderate–low-severity (up to 12%) and moderate—high-severity (at around 1–5%) are also registered in the unburned area class.
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sullivan, A.; Baker, E.; Kurvits, T. Spreading Like Wildfire: The Rising Threat of Extraordinary Landscape Fires; UNEP: Nairobi, Kenya, 2022. [Google Scholar]
- Tyukavina, A.; Potapov, P.; Hansen, M.C.; Pickens, A.H.; Stehman, S.V.; Turubanova, S.; Parker, D.; Zalles, V.; Lima, A.; Kommareddy, I.; et al. Global Trends of Forest Loss Due to Fire From 2001 to 2019. Front. Remote Sens. 2022, 3. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Williams, A.P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. USA 2008, 113, 11770–11775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández, C.; Vega, J.A.; Fonturbel, T.; Pérez-Gorostiaga, P.; Jiménez, E.; Madrigal, J. Effects of wildfire, salvage logging and slash treatments on soil degradation. Land Degrad. Dev. 2007, 18, 591–607. [Google Scholar] [CrossRef]
- Alloza, J.A.; Baeza, M.J.; De la Riva, J.; Duguy, B.; Echeverr, M.T.; Ibarra, P.; Llovet, J.; Perez-Cabello, F.; Rovira, P.; Vallejo, V.R. A model to evaluate the ecological vulnerability to forest fires in Mediterranean ecosystems. For. Ecol. Manag. 2006, 234, S203. [Google Scholar] [CrossRef]
- Wu, J.; Kong, S.; Wu, F.; Cheng, Y.; Zheng, S.; Yan, Q.; Zheng, H.; Yang, G.; Zheng, M.; Liu, D.; et al. Estimating the open biomass burning emissions in central and eastern China from 2003 to 2015 based on satellite observation. Atmos. Chem. Phys. 2006, 18, 11623–11646. [Google Scholar] [CrossRef] [Green Version]
- Bowman, D.M.J.S.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Harrison, S.P.; et al. Fire in the Earth System. Science (N. Y.) 2009, 324, 481–484. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Azzi, M.; White, S.; Salter, D.; Trieu, T.; Morgan, G.; Rahman, M.; Watt, S.; Riley, M.; Chang, L.T.-C.; et al. The Summer 2019–2020 Wildfires in East Coast Australia and Their Impacts on Air Quality and Health in New South Wales, Australia. Int. J. Environ. Res. Public Health 2021, 18, 3538. [Google Scholar] [CrossRef]
- Cascio, W.E. Wildland fire smoke and human health. Sci. Total Environ. 2018, 624, 586–595. [Google Scholar] [CrossRef]
- Keeley, J.E. Fire intensity, fire severity and burn severity: A brief review and suggested usage. Int. J. Wildland Fire 2009, 18, 116–126. [Google Scholar] [CrossRef]
- Jayaweera, K.O.L.F.; Ahlnas, K. Detection of thunderstorms from satellite imagery for forest fire control. J. For. 1974, 72, 768–770. [Google Scholar]
- Gutman, G.; Bartalev, S.; Korovin, G. Delineation of large fire damage areas in boreal forests using NOAA AVHRR measurements. Adv. Space Res. 1995, 15, 111–113. [Google Scholar] [CrossRef]
- Ramo, R.; Chuvieco, E. Developing a Random Forest algorithm for MODIS global burned area classification. Remote Sens. 2017, 9, 1193. [Google Scholar] [CrossRef] [Green Version]
- Giglio, L.; Descloitres, J.; Justice, C.O.; Kaufman, Y.J. An Enhanced Contextual Fire Detection Algorithm for MODIS. Remote Sens. Environ. 2003, 87, 273–282. [Google Scholar] [CrossRef]
- Roy, D.P.; Jin, Y.; Lewis, P.E.; Justice, C.O. Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data. Remote Sens. Environ. 2005, 97, 137–162. [Google Scholar] [CrossRef]
- Giglio, L.; Van der Werf, G.R.; Randerson, J.T.; Collatz, G.J.; Kasibhatla, P. Global estimation of burned area using MODIS active fire observations. Atmos. Chem. Phys. 2006, 6, 957–974. [Google Scholar] [CrossRef] [Green Version]
- Chuvieco, E.; Mouillot, F.; van der Werf, G.R.; Miguel, J.S.; Tanase, M.; Koutsias, N.; García, M.; Yebra, M.; Padilla, M.; Gitas, I.; et al. Historical background and current developments for mapping burned area from satellite Earth observation. Remote Sens. Environ. 2019, 225, 45–64. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Loveland, T.R.; Dwyer, J.L. Sentinel-2: Landsat: Building a strong future. Remote Sens. Environ. 2012, 122, 22–29. [Google Scholar] [CrossRef]
- Roteta, E.; Bastarrika, A.; Padilla, M.; Storm, T.; Chuvieco, E. Development of a Sentinel-2 burned area algorithm: Generation of a small fire database for sub-Saharan Africa. Remote Sens. Environ. 2019, 222, 1–17. [Google Scholar] [CrossRef]
- Benson, N.; Key, C.H.; Northern, U.; Mountain, R.; Benson, N.C.; Glacier, U.; Park, N. Measuring and remote sensing of burn severity: The CBI and NBR. In Proceedings of the Joint Fire Science Conference and Workshop, Boise, ID, USA, 15–17 June 1999; pp. 15–17. [Google Scholar]
- Miller, J.D.; Thode, A.E. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sens. Environ. 2007, 109, 66–80. [Google Scholar] [CrossRef]
- Loboda, T.; O’neal, K.J.; Csiszar, I. Regionally adaptable dNBR-based algorithm for burned area mapping from MODIS data. Remote Sens. Environ. 2007, 109, 429–442. [Google Scholar] [CrossRef]
- Chuvieco, E.; Martin, M.P.; Palacios, A. Assessment of different spectral indices in the red-near-infrared spectral domain for burned land discrimination. Int. J. Remote Sens. 2002, 23, 5103–5110. [Google Scholar] [CrossRef]
- Filipponi, F. BAIS2: Burned Area Index for Sentinel-2. Proceedings 2018, 2, 364. [Google Scholar]
- Hardtke, L.A.; Blanco, P.D.; del Valle, H.F.; Metternicht, G.I.; Sione, W.F. Semi-automated mapping of burned areas in semi-arid ecosystems using MODIS time-series imagery. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 25–35. [Google Scholar] [CrossRef]
- Farhadi, H.; Mokhtarzade, M.; Ebadi, H.; Asghari Beirami, B. Rapid and automatic burned area detection using sentinel-2 time-series images in google earth engine cloud platform: A case study over the Andika and Behbahan Regions, Iran. Environ. Monit. Assess. 2022, 194, 369. [Google Scholar] [CrossRef]
- Liu, J.; Maeda, E.E.; Wang, d.; Heiskanen, J. Sensitivity of Spectral Indices on Burned Area Detection using Landsat Time Series in Savannas of Southern Burkina Faso. Remote Sens. 2021, 13, 2492. [Google Scholar] [CrossRef]
- Katagis, T.; Gitas, I.Z.; Mitri, G.H. An object-based approach for fire history reconstruction by using three generations of landsat sensors. Remote Sens. 2014, 6, 5480–5496. [Google Scholar] [CrossRef] [Green Version]
- Dragozi, E.; Gitas, I.Z.; Stavrakoudis, D.G.; Theocharis, J.B. Burned area mapping using support vector machines and the FuzCoC feature selection method on VHR IKONOS imagery. Remote Sens. 2014, 6, 12005–12036. [Google Scholar] [CrossRef] [Green Version]
- Gibson, R.; Danaher, T.; Hehir, H.; Collins, L. A remote sensing approach to mapping fire severity in south-eastern Australia using sentinel 2 and random forest. Remote Sens. Environ. 2020, 240, 111702. [Google Scholar] [CrossRef]
- Lee, C.; Park, S.; Kim, T.; Liu, S.; Md Reba, M.N.; Oh, J.; Han, Y. Machine Learning-Based Forest Burned Area Detection with Various Input Variables: A Case Study of South Korea. Appl. Sci. 2022, 12, 10077. [Google Scholar] [CrossRef]
- Ba, R.; Song, W.; Li, X.; Xie, Z.; Lo, S. Integration of multiple spectral indices and a neural network for burned area mapping based on MODIS data. Remote Sens. 2019, 11, 326. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Chen, J.; Matsushita, B.; Imura, H.; Wang, L. An automatic method for burn scar mapping using support vector machines. Int. J. Remote Sens. 2009, 30, 577–594. [Google Scholar] [CrossRef]
- Pereira, A.A.; Pereira, J.M.; Libonati, R.; Oom, D.; Setzer, A.W.; Morelli, F.; Machado-Silva, F.; De Carvalho, L.M.T. Burned area mapping in the Brazilian Savanna using a one-class support vector machine trained by active fires. Remote Sens. 2017, 9, 1161. [Google Scholar] [CrossRef] [Green Version]
- Knopp, L.; Wieland, M.; Rättich, M.; Martinis, S. A deep learning approach for burned area segmentation with Sentinel-2 data. Remote Sens. 2020, 12, 2422. [Google Scholar] [CrossRef]
- Lizundia-Loiola, J.; Otón, G.; Ramo, R.; Chuvieco, E. A spatio-temporal active-fire clustering approach for global burned area mapping at 250m from MODIS data. Remote Sens. Environ. 2020, 236, 111493. [Google Scholar] [CrossRef]
- Bastarrika, A.; Chuvieco, E.; Martín, M.P. Mapping burned areas from landsat TM/ETM+ data with a two-phase algorithm: Balancing omission and commission errors. Remote Sens. Environ. 2011, 115, 1003–1012. [Google Scholar] [CrossRef]
- Bastarrika, A.; Chuvieco, E.; Martin, M.P. Automatic burned land mapping from MODIS time series images: Assessment in Mediterranean ecosystems. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3401–3413. [Google Scholar] [CrossRef]
- Filipponi, F. Exploitation of sentinel-2 time series to map burned areas at the national level: A case study on the 2017 Italy wildfires. Remote Sens. 2019, 11, 622. [Google Scholar] [CrossRef] [Green Version]
- Navarro, G.; Caballero, I.; Silva, G.; Parra, P.C.; Vázquez, Á.; Caldeira, R. Evaluation of forest fire on Madeira Island using Sentinel-2A MSI imagery. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Manso, A.; Fernández-Manso, O.; Quintano, C. SENTINEL-2A red-edge spectral indices suitability for discriminating burn severity. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 170–175. [Google Scholar] [CrossRef]
- Kovács, K.D. Evaluation of burned areas with sentinel-2 using snap: The case of kineta and mati, Greece, July 2018. Geogr. Tech. 2019, 14, 20–38. [Google Scholar] [CrossRef] [Green Version]
- Emergency Mapping Guidelines—Fire Mapping Chapter. Available online: https://www.un-spider.org/sites/default/files/IWG_SEM__Guidelines_Fire_chapter_SERTIT_2_0.pdf (accessed on 20 January 2023).
- Copernicus Emergency Management Service. Available online: https://emergency.copernicus.eu/ (accessed on 20 January 2023).
- EU-DEM v1.1—Copernicus Land Monitoring Service. Available online: https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1 (accessed on 29 December 2022).
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Wozniak, E.; Aleksandrowicz, S. Self-adjusting thresholding for burnt area detection based on optical images. Remote Sens. 2019, 11, 2669. [Google Scholar] [CrossRef] [Green Version]
- Cocke, A.E.; Fulé, P.Z.; Crouse, J.E. Comparison of burn severity assessments using Differenced Normalized Burn Ratio and ground data. Int. J. Wildland Fire 2005, 14, 189–198. [Google Scholar] [CrossRef] [Green Version]
- Comaniciu, D.; Meer, P. Mean Shift: A Robust Approach Toward Feature Space Analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 603–619. [Google Scholar] [CrossRef] [Green Version]
- Kordelas, G.A.; Manakos, I.; Aragonés, D.; Díaz-Delgado, R.; Bustamante, J. Fast and automatic data-driven thresholding for inundation mapping with Sentinel-2 data. Remote Sens. 2018, 10, 910. [Google Scholar] [CrossRef] [Green Version]
- Tombari, F.; Mattoccia, S.; Di Stefano, L. Segmentation-Based Adaptive Support for Accurate Stereo Correspondence. In Proceedings of the Pacific-Rim Symposium on Image and Video Technology, Santiago, Chile, 17–19 December 2007; pp. 427–438. [Google Scholar]
- Li, C.H.; Lee, C.K. Minimum cross entropy thresholding. Pattern Recognit. 1993, 26, 4. [Google Scholar] [CrossRef]
- Congalton, R.G.; Oderwald, R.G.; Mead, R.A. Assessing Landsat classification accuracy using discrete multivariate analysis statistical techniques. Photogramm. Eng. Remote Sens. 1983, 49, 1671–1678. [Google Scholar]
- Roy, D.P.; Huang, H.; Boschetti, L.; Giglio, L.; Yan, L.; Zhang, H.H.; Li, Z. Landsat-8 and Sentinel-2 burned area mapping—A combined sensor multi-temporal change detection approach. Remote Sens. Environ. 2019, 231, 111254. [Google Scholar] [CrossRef]
- Ngadze, F.; Mpakairi, K.S.; Kavhu, B.; Ndaimani, H.; Maremba, M.S. Exploring the utility of Sentinel-2 MSI and Landsat 8 OLI in burned area mapping for a heterogenous savannah landscape. PLoS ONE 2020, 15, e0232962. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Roy, D.P.; Boschetti, L.; Zhang, H.K.; Yan, L.; Kumar, S.S.; Gomez-Dans, J.; Li, J. Separability analysis of Sentinel-2A Multi-Spectral Instrument (MSI) data for burned area discrimination. Remote Sens. 2016, 8, 873. [Google Scholar] [CrossRef] [Green Version]
- Hawbaker, T.J.; Vanderhoof, M.K.; Beal, Y.J.; Takacs, J.D.; Schmidt, G.L.; Falgout, J.T.; Williams, B.; Fairaux, N.M.; Caldwell, M.K.; Picotte, J.J.; et al. Mapping burned areas using dense time-series of Landsat data. Remote Sens. Environ. 2017, 198, 504–522. [Google Scholar] [CrossRef]
- Gholinejad, S.; Khesali, E. An automatic procedure for generating burn severity maps from the satellite images-derived spectral indices. Int. J. Digit. Earth 2021, 14, 1659–1673. [Google Scholar] [CrossRef]
- Smiraglia, D.; Filipponi, F.; Mandrone, S.; Tornato, A.; Taramelli, A. Agreement Index for Burned Area Mapping: Integration of Multiple Spectral Indices Using Sentinel-2 Satellite Images. Remote Sens. 2020, 12, 1862. [Google Scholar] [CrossRef]
- Trigg, S.; Flasse, S. An evaluation of different bi-spectral spaces for discriminating burned shrub-savannah. Int. J. Remote Sens. 2001, 22, 2641–2647. [Google Scholar] [CrossRef]
- McCarley, T.R.; Smith, A.M.; Kolden, C.A.; Kreitler, J. Evaluating the Mid-Infrared Bi-spectral Index for improved assessment of low-severity fire effects in a conifer forest. Int. J. Wildland Fire 2018, 27, 407–412. [Google Scholar] [CrossRef]
- Liu, S.; Zheng, Y.; Dalponte, M.; Tong, X. A novel fire index-based burned area change detection approach using Landsat-8 OLI data. Eur. J. Remote Sens. 2020, 53, 104–112. [Google Scholar] [CrossRef] [Green Version]
- Joubert-Boitat, I.; Wania, A.; Dalmasso, S. Manual for CEMS-Rapid Mapping Products, EUR 30370 EN; Publications Office of the European Union: Luxembourg, 2020; ISBN 978-92-76-21683-4. [Google Scholar]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Kittler, J.; Illingworth, J. Minimum error thresholding. Pattern Recognit. 1986, 19, 41–47. [Google Scholar] [CrossRef]
- Saha, B.N.; Ray, N. Image thresholding by variational minimax optimization. Pattern Recognit. 2009, 42, 843–856. [Google Scholar] [CrossRef]
Event | Approach | Event Date | Previous Image | Following Image | Satellite |
---|---|---|---|---|---|
1 | Proposed | 19/06/2020 | 18/06/2020 | 23/06/2020 | Sentinel-2 |
1 | CEMS | 19/06/2020 | 18/06/2020 | 24/06/2020 | SPOT6/7 |
1 | Supervised | 19/06/2020 | 19/06/2020 | 21/07/2020 | Planetscope |
2 | Proposed | 22/08/2020 | 16/08/2020 | 28/08/2020 | Sentinel-2 |
2 | CEMS | 22/08/2020 | 16/08/2020 | 25/08/2020 | SPOT6/7 |
2 | Supervised | 22/08/2020 | 17/08/2020 | 24/08/2020 | Planetscope |
3 | Proposed | 31/07/2021 | 27/07/2021 | 01/08/2021 | Sentinel-2 |
3 | CEMS | 31/07/2021 | 27/07/2021 | 02/08/2021 | SPOT6/7 |
3 | Supervised | 31/07/2021 | 28/07/2021 | 02/08/2021 | Planetscope |
Burned Class | Unburned Class | |||||
---|---|---|---|---|---|---|
PA | UA | PA | UA | OA | k | |
Algarve—Proposed approach | 92.50 | 90.14 | 99.20 | 99.41 | 98.71 | 0.91 |
Algarve—CEMS approach | 90.44 | 98.39 | 99.87 | 99.18 | 99.12 | 0.94 |
Eastern Mani—Proposed approach | 75.71 | 96.57 | 99.53 | 95.88 | 95.96 | 0.83 |
Eastern Mani—CEMS approach | 99.58 | 89.14 | 97.81 | 99.92 | 98.08 | 0.93 |
Aigialeia—Proposed approach | 80.60 | 87.42 | 99.36 | 98.93 | 98.38 | 0.83 |
Aigialeia—CEMS approach | 91.85 | 72.87 | 98.11 | 99.54 | 97.78 | 0.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sismanis, M.; Chadoulis, R.-T.; Manakos, I.; Drosou, A. An Unsupervised Burned Area Mapping Approach Using Sentinel-2 Images. Land 2023, 12, 379. https://doi.org/10.3390/land12020379
Sismanis M, Chadoulis R-T, Manakos I, Drosou A. An Unsupervised Burned Area Mapping Approach Using Sentinel-2 Images. Land. 2023; 12(2):379. https://doi.org/10.3390/land12020379
Chicago/Turabian StyleSismanis, Michail, Rizos-Theodoros Chadoulis, Ioannis Manakos, and Anastasios Drosou. 2023. "An Unsupervised Burned Area Mapping Approach Using Sentinel-2 Images" Land 12, no. 2: 379. https://doi.org/10.3390/land12020379
APA StyleSismanis, M., Chadoulis, R.-T., Manakos, I., & Drosou, A. (2023). An Unsupervised Burned Area Mapping Approach Using Sentinel-2 Images. Land, 12(2), 379. https://doi.org/10.3390/land12020379