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Abstract: The frequency and severity of large, destructive fires have increased in the recent past,
with extended impacts on the landscape, the human population, and ecosystems. Earth observations
provide a means for the frequent, wide coverage and accurate monitoring of fire impacts. This study
describes an unsupervised approach for the mapping of burned areas from Sentinel-2 satellite imagery,
which is based on multispectral thresholding, and introduces an adaptive thresholding method. It
takes into account the localized variability of the spectral responses in a two-phase approach. The first
phase detects areas that are burned with a high probability, while the second phase adaptively adjusts
this preliminary mapping by expanding and refining its boundaries. The resulting classification
contains two main classes of interest: burned and unburned. The latter is further classified into four (4)
fire impact severity classes, according to the Copernicus Emergency Management Service (CEMS) and
the NASA United States Geological Survey (USGS)’s widely acknowledged nomenclature examples.
Three distinct wildfire events are assessed, which occurred during the summers of 2020 and 2021 in
Greece and Portugal. The classification accuracy is calculated by juxtaposing the classification outputs
to burned area validation maps created through the photointerpretation of very high-resolution (VHR)
satellite imagery. The corresponding CEMS On-Demand Mapping products are also juxtaposed
against the validation maps for comparison purposes. The accuracy assessment showcases that the
unsupervised approach closely follows the capacity provided by the CEMS maps (e.g., the kappa
coefficient—k—of the proposed unsupervised approach is 0.91, 0.83 and 0.83 for the events processed,
while the CEMS products achieve a k of 0.94, 0.93 and 0.8, respectively). The proposed approach
considers the variability of the affected areas’ spectral response; thus, it generalizes well to different
areas, e.g., areas characterized by different land cover types. It seems to offer an effective means of
mapping the wildfire-induced changes, which can be further incorporated and used by forest fire
management services and further decision support systems complementary to the CEMS maps.

Keywords: burned area mapping; Sentinel-2; unsupervised thresholding; adaptive thresholding;
Normalized Burn Ratio; CEMS

1. Introduction

Large, destructive wildfires are on the rise, ravaging communities and ecosystems in
their path [1]. According to a recent analysis of data from the University of Maryland (UMD)
Global Land Analysis and Discovery (GLAD) laboratory, forest fires burn almost twice as
much tree cover today as they did twenty years ago [2]. Among the various driving factors
responsible for this trend, anthropogenic climate change is identified as one of the most
important [3]. Forest fires also have detrimental effects, causing landscape degradation [4]
and soil erosion [5], increasing air pollution [6], disturbing carbon reserves [7] and affecting
human populations’ health [8,9].

Supporting emergency response actions in the immediate aftermath of a wildfire and
developing accurate fire management strategies usually requires maps of the fire’s extent
and severity [10]. The potential contribution of satellite imagery was recognized early
on [11,12]. Spaceborne remote sensing data can be invaluable for fire danger estimation and
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prediction, fire behavior calculation, damage estimation and the monitoring of post-fire
landscape recovery.

Burned area mapping at a global scale mainly relies on sensors that have a high
temporal frequency (daily) but a coarse spatial resolution (such as the Moderate-Resolution
Imaging Spectroradiometer—MODIS) [13–16]). A detailed review of the advantages and
disadvantages of global products was performed by Chuvieco et al. [17]. Many recent
studies developed burned area products utilizing high- to medium-resolution sensors, such
as Sentinel-2 [18], and Landsat [19], creating products that capture details at national to
regional levels [20].

A wide range of burned area mapping algorithms rely on the physics of light inter-
action with different materials and the identification of distinct spectral signatures. They
utilize algebraic band combinations (spectral indices), such as the Normalized Burn Ratio
(NBR) [21], the difference Normalized Burn Ratio (dNBR) [22,23], the Normalized Differ-
ence Vegetation Index (NDVI) [24] and the Burned Area Index for Sentinel-2 (BAIS2) [25].
Other approaches for burned area mapping rely on time series change detection [26–28] or
object-based analysis [29,30]. Automatic machine learning approaches have also been used
in this context: random forests [13,31,32], neural networks [33], support vector machines
(SVMs) [30,34,35] and deep learning [32,36].

A two-phase approach is frequently employed for burned area detection. In the first
phase, the main bulk of the burned area is detected. In the second phase, various analysis
techniques are employed to improve the burned areas’ estimations and delineation. Exam-
ples of methods include region growing [26,37], locally adapted multitemporal analysis [20],
logistic regression [38,39] and edge detection [39]. Loboda et al. [23] proposed a three-
phase approach using the dNBR for burned area mapping using MODIS data. In a similar
fashion, this study describes a localized adaptive thresholding approach for burned area
mapping using Sentinel-2 data to measure fire impacts on land and examine its usefulness
as a complementary option to the Copernicus Emergency Management Service (CEMS)
products. CEMS contains operational service chains aiming to deliver very high-accuracy
products concerning disaster events in brief time windows from the service request time.
CEMS disaster mapping products have been used as validation data in various approaches
regarding wildfires [40–43]. Concerning catastrophic fire events, CEMS provides a set of
georeferenced delineation products that contain information both for the extent of the dam-
aged area and the area’s classification into distinct classes, based on the damage severity.
All products are created in a timely manner, utilizing the best resources available for the spe-
cific event. CEMS products do not rely exclusively on medium-resolution Sentinel-2 data
but can leverage other very high-resolution (VHR) data, e.g., SPOT 6, based on satellite
data availability. Thus, the resulting maps have a spatial resolution that is case-specific
but typically is 10 m × 10 m or finer. The following damage severity classes are provided:
(1) possibly damaged, (2) damaged and (3) destroyed. For the task of delineating burned
areas, all three damage classes are considered burned, as per the guidelines established
in [44].

This study is a follow-up of the international discussion and developments surround-
ing burned area mapping. Automatic mapping capacity approaches have formally been
applied to image products of coarser spatial and lesser radiometric resolutions, and this
study adjusts and verifies them using the latest, freely available spaceborne products of
finer spatial and better radiometric resolutions. It introduces a two-phase unsupervised
local thresholding approach for generating burned area maps utilizing Sentinel-2 images
with acquisition dates in close temporal proximity to the fire event. The aim was to provide
a surrogate automatic burned area assessment tool that complements CEMS burned area
mapping products, enabling the wider coverage of events. Stakeholders and citizens,
regardless of the level or the field of their expertise, would be able to benefit from it and
have additional support in the decision-making processes. To evaluate its credibility, the
accuracy is evaluated in comparison with state-of-the-art maps, made publicly available
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by CEMS, and reference validation maps derived from the manual photointerpretation of
VHR (3 m × 3 m) images.

2. Materials and Methods
2.1. Earth Observation Products

Sentinel-2 Level-2A radiometrically and atmospherically corrected products provided
Bottom of Atmosphere (BOA) surface reflectance input for the analysis. For each fire
event assessed, a pair of images was acquired; the first image of the pair precedes the
fire event, while the other follows it. Time intervals for the acceptable data acquisition
window are defined in such a way as to retrieve a Sentinel-2 acquisition that is as close
as possible to the date of the event. The approach also aimed to minimize variations
in the physicochemical and structural conditions of dynamically changing elements of
the landscape (e.g., inundation, plant communities’ phenology, sun-to-object-to-sensor
illumination geometry) that may influence spectral responses (histogram composition).
Trial and error iterations by experimenting in the study areas led the authors to suggest
and optimize time intervals for up to two Sentinel-2 overpasses before the date of the event
and up to four Sentinel-2 overpasses after the date of the event, as a burn scar generally
remains less changed and well detected for a longer period.

2.2. Events and Study Areas

Three distinct wildfire events were investigated. All events took place in Mediter-
ranean regions (as shown in Figure 1), during the summer periods of 2020 and 2021. These
fires were of high severity and activated the Copernicus Emergency Management Service
(EMS) on-demand rapid mapping [45]. The first event took place in Barao de Sao Joao and
Bordeira in Algarve, Portugal, and affected 2295 ha of land. Mainly forested areas covered
with pine and eucalyptus were damaged.
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Figure 1. Maps of the three study areas: Aigialeia Municipality and Eastern Mani in Greece (left) and
Algarve in Portugal (right) (on top of the Hillshaded Relief Map, which was produced from EU-DEM
v1.1 [46]).
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The second event took place in a forest area in Eastern Mani, Greece, where the
evacuation of nearby communities was ordered by the respective authorities. The fire was
considered large, damaging a total area of 1882 ha. The last event took place in Aigialeia
Municipality in Greece. Forested areas were affected, along with rural and urban areas.
Four (4) villages were evacuated as a precaution, and the total area affected by the fire was
395 ha.

In order to effectively minimize the noise induced by using images from different
acquisition dates to produce the maps, the dates used by CEMS for creating the burned area
maps were chosen as reference dates. All data used for the proposed burned area detection
approach and the PlanetScope data acquisition dates used for creating the validation maps
were selected based on their temporal proximity to these reference dates. If there were no
Sentinel-2 images coinciding with the dates of satellite data used by CEMS, then the next
closest dates were chosen, provided that the images were not hindered by cloud coverage
or smoke, and there were no active fires. A detailed listing of all events and the satellite
resources processed can be found in Table 1.

Table 1. List of events examined (“1” represents the event in Algarve, Portugal; “2” represents the
event in Eastern Mani, Greece; “3” represents the event in Aigialeia Municipality, Greece).

Event Approach Event Date Previous Image Following Image Satellite

1 Proposed 19/06/2020 18/06/2020 23/06/2020 Sentinel-2
1 CEMS 19/06/2020 18/06/2020 24/06/2020 SPOT6/7
1 Supervised 19/06/2020 19/06/2020 21/07/2020 Planetscope
2 Proposed 22/08/2020 16/08/2020 28/08/2020 Sentinel-2
2 CEMS 22/08/2020 16/08/2020 25/08/2020 SPOT6/7
2 Supervised 22/08/2020 17/08/2020 24/08/2020 Planetscope
3 Proposed 31/07/2021 27/07/2021 01/08/2021 Sentinel-2
3 CEMS 31/07/2021 27/07/2021 02/08/2021 SPOT6/7
3 Supervised 31/07/2021 28/07/2021 02/08/2021 Planetscope

2.3. Unsupervised Approach

The proposed approach aims at delineating burned areas by employing an unsuper-
vised local thresholding approach that discriminates the pixels in the study area into burned
and unburned classes. The flowchart of the proposed approach can be found in Figure 2.
By making use of the dNBR index, the methodology proposed also offers the capacity to
differentiate between different levels of damage severity based on the index values of each
pixel. The damaged regions can be further divided into low severity (or possibly damaged)
and moderate severity (or damaged), with these further divided into moderate–high and
moderate–low severity in this study, and high severity (or destroyed), as per the established
dNBR damage severity scales (as described and widely used in [10,44]).
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The first phase of the unsupervised approach is to perform multispectral threshold-
ing to detect core burned areas. Core burned areas are regions with a spectral signature
indicating a high probability of fire damage. These core burned areas are then expanded
to incorporate more pixels that have not been significantly damaged by the fire. This ex-
pansion is performed adaptively, considering each event’s localized variability, reflectance
distribution and approximate distance from the core burned area.

Preliminary tests indicated that results could be heavily influenced by noise, i.e., areas
falsely detected as burned during the first detection of core burned areas. Consequently,
the need arose for the establishment of noise filtering methods that can detect and exclude
from the calculations all noise-afflicted areas. A noise reduction step is thus introduced
to omit any potential reflectance patterns that can be regarded as burn scars, significantly
impacting the subsequent steps, e.g., open surface water areas, non-vegetated areas, clouds,
shadows and smoke. Open surface water areas are masked out in the post-event image
using the Normalized Difference Water Index (NDWI) spectral index [47]. For the detection
of non-vegetated areas, the NDVI is calculated for both the pre- and post-fire images. A
pixel is classified as non-vegetated when the NDVI index value for both images is low (e.g.,
lower than 0.17 for the specific study areas) and its change is less than 0.04 in absolute value.
This technique has been used successfully in another burned area mapping approach [48].
Clouds, shadows and smoke, which share a similar spectral signature, are masked out
via the Scene Classification Layer (SCL), provided in Level 2A atmospherically corrected
Sentinel-2 images by Copernicus.

Sequentially, core burned areas are detected by performing a spectral analysis on the
NBR [21] index for the post-fire image. The NBR is calculated from Equation (1) using the
near-infrared band (NIR) and the short-wave infrared band (SWIR), Band 08 and Band 12 of
Sentinel-2, respectively. The NBR index has been selected as it is a widely used informative
index for pre- and post-fire assessments on forested sites and performs well in the majority
of cases [49].

NBR =
NIR − SWIR
NIR + SWIR

(1)

The histogram of the NBR index after the fire (NBRafter) is calculated and is used to
estimate an initial threshold Tinit, which is defined as the first deep valley of the NBRafter
histogram. Tinit is used to perform a rough separation of the scene into core burned (low
NBR) and mildly burned or unburned areas (high NBR). If a pixel p has NBRafter(p) < Tinit,
then it is classified as burned; otherwise, it is classified as unburned. As a result, an initial
burned area map can be generated, containing pixels with a high probability of being
burned, using the threshold Tinit (Figure 3).

The second phase of the unsupervised approach is the segmentation of the Sentinel-
2 satellite image into non-overlapping segments using the mean-shift segmentation algo-
rithm [50]. The algorithm is given as input an image that is composed of three spectral
bands: (i) Blue (Band 2), (ii) Green (Band 3) and (iii) Red (Band 4). These bands were
selected on the basis of their 10 m spatial resolution, which offers a greater discrimination
ability regarding the segments of the image.

The reflectances of each band are normalized to the range [0, 255]. As the minimum
and maximum values of the normalized range, the 1st and the 99th percentile points
of the reflectance distribution were chosen. In the case in which a reflectance intensity
value is less or greater than the minimum or maximum values, then it is normalized
to 0 or 255, respectively. There are two parameters of interest that affect the mean-shift
segmentation algorithm, namely the spatial radius hs and the segmentation feature space
radius hr. It has been proven in [51] that small changes in the values do not significantly
affect the results. Both hs and hr have been empirically set equal to 3. The result of this
segmentation process is a segmentation map with segments being composed of pixels that
have similar spectral behavior (Figure 4). This can be also verified in [52].



Land 2023, 12, 379 6 of 16

Land 2023, 12, Version January 22, 2023 submitted to Land AFTER PEER REVIEW 5 of 16 
 

The first phase of the unsupervised approach is to perform multispectral threshold-

ing to detect core burned areas. Core burned areas are regions with a spectral signature 

indicating a high probability of fire damage. These core burned areas are then expanded 

to incorporate more pixels that have not been significantly damaged by the fire. This ex-

pansion is performed adaptively, considering each event’s localized variability, reflec-

tance distribution and approximate distance from the core burned area. 

Preliminary tests indicated that results could be heavily influenced by noise, i.e., ar-

eas falsely detected as burned during the first detection of core burned areas. Conse-

quently, the need arose for the establishment of noise filtering methods that can detect 

and exclude from the calculations all noise-afflicted areas. A noise reduction step is thus 

introduced to omit any potential reflectance patterns that can be regarded as burn scars, 

significantly impacting the subsequent steps, e.g., open surface water areas, non-vege-

tated areas, clouds, shadows and smoke. Open surface water areas are masked out in the 

post-event image using the Normalized Difference Water Index (NDWI) spectral index 

[47]. For the detection of non-vegetated areas, the NDVI is calculated for both the pre- and 

post-fire images. A pixel is classified as non-vegetated when the NDVI index value for 

both images is low (e.g., lower than 0.17 for the specific study areas) and its change is less 

than 0.04 in absolute value. This technique has been used successfully in another burned 

area mapping approach [48]. Clouds, shadows and smoke, which share a similar spectral 

signature, are masked out via the Scene Classification Layer (SCL), provided in Level 2A 

atmospherically corrected Sentinel-2 images by Copernicus. 

Sequentially, core burned areas are detected by performing a spectral analysis on the 

NBR [21] index for the post-fire image. The NBR is calculated from Equation (1) using the 

near-infrared band (NIR) and the short-wave infrared band (SWIR), Band 08 and Band 12 

of Sentinel-2, respectively. The NBR index has been selected as it is a widely used informa-

tive index for pre- and post-fire assessments on forested sites and performs well in the 

majority of cases [49]. 

𝑁𝐵𝑅 =  
𝑁𝐼𝑅 −  𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 +  𝑆𝑊𝐼𝑅
 (1) 

The histogram of the NBR index after the fire (NBRafter) is calculated and is used to 

estimate an initial threshold Tinit, which is defined as the first deep valley of the NBRafter 

histogram. Tinit is used to perform a rough separation of the scene into core burned (low 

NBR) and mildly burned or unburned areas (high NBR). If a pixel p has NBRafter(p) < Tinit, 

then it is classified as burned; otherwise, it is classified as unburned. As a result, an initial 

burned area map can be generated, containing pixels with a high probability of being 

burned, using the threshold Tinit (Figure 3). 
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Figure 4. The post-fire RGB image of the study area in Aigialeia Municipality (left) and the segmen-
tation map created after the application of the mean-shift algorithm (right).

The segmentation map is then subsequently utilized for detecting and selecting seg-
ments with a high percentage of burned pixels, as detected during Phase 1 by the core
burned pixel classification described previously. Segments characterized by a large per-
centage of burned pixels (>70%) are selected, and their centroids Cm are estimated. Square
patches pk

m of expanding size are centered around each Cm. The size of the square patch
in pixels is calculated as (20 · · · k) · · · (20 · · · k), k = 1, 2, · · · , 20. Using Minimum Cross-
Entropy Thresholding [53], the threshold for the binary classification (i.e., burned and
unburned) foptk is estimated for a given size k. For each segment Cm, the median of all
the expanding windows is considered the optimal threshold for separating burned and
unburned areas. The optimal splitting threshold for the scene Tfinal is estimated as the
median of all the segments’ optimal thresholds (Figure 3). The final threshold Tfinal is used
for a more refined classification of the area. Pixels p with NBRafter(p) < Tfinal are considered
burned. All other pixels are considered unburned. As a result, the final burned area map is
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generated, containing pixels that, based on the localized approach, are considered to have
a high probability of being labeled as burned.

2.4. Reference Validation Data

Reference validation data were obtained using the photointerpretation of VHR Planet
multispectral imagery. A first preliminary step was implemented to assist in the process
of creating the validation maps. The PlanetScope constellation of satellites provides a
swarm of EO imagery with a spatial resolution of 3 m × 3 m. Images used in the creation
of the validation dataset were acquired specifically with the PS2.SD and PSB.SD sensors
operating at the Blue, Green, Red and NIR spectral bands. Using the unsupervised K-means
clustering approach, a binary clustering of the areas of interest was performed into burned
and unburned classes. K-means clustering aims at partitioning n observations into k sets S
= {S1, S2, · · · Sk}, so as to minimize the within-cluster sum of squares (WCSS). Blue, Green,
Red and NIR band reflectance and NDVI values (both for the pre- and post-fire instances),
along with their linear combinations, are considered as the feature data that are used for the
binary clustering of the image. By clustering spectral data in a bimodal fashion, utilizing
the data before and after a fire event, the detected classes for the scene depicted the two
different states of the landscape: (i) pixels affected by the fire, and (ii) pixels not affected by
the fire. This preliminary burned area map is used in a supportive manner, as a first rough
delineation of the areas of interest that are potentially impacted by the fire. Following this,
the multispectral bands and NDVI index images (pre- and post-fire) were photointerpreted
by the authors on-screen and the first rough delineation map was manually refined to
create the final burned area validation map.

3. Results

The maps produced from the proposed approach and the maps provided by CEMS
were compared to the burned area reference maps derived from VHR data. All maps were
resampled at a 3 m × 3 m spatial grid resolution, matching the resolution provided by
PlanetScope, minimizing cross-scale comparison errors. Two sets of comparisons were
performed to assess the proposed approach’s effectiveness. The first took into account
results produced from the proposed approach and assessed them against the validation
maps. The second set of comparisons took into account the maps provided by CEMS and
assessed them against the validation maps. Comparisons were performed map-wise, with
all pixels being considered and compared with their counterparts.

3.1. Accuracy Assessment Analysis

The accuracy estimation metrics include the estimation of the producer’s accuracy
(PA), user’s accuracy (UA), overall accuracy (OA) and the kappa coefficient (k). UA (also
known as type 1 error) is a metric providing the map user with the probability that a pixel
of a class on the map represents, at that location, the same class in reality, or is the result of
errors of commission, where pixels are falsely assigned to a wrong class. PA (also known as
type 2 error) is a metric providing the map creator with the probability that a real location
of a class appears as the same pixel class in the classification map, or is the result of errors of
omission, where pixels of the target class are incorrectly classified. OA is a metric showing
the probability of a classification being true. Finally, the kappa coefficient (k) is another
accuracy metric that is frequently used in remote sensing applications [54], designed to
include the chance agreement of the validation. Detailed accuracy assessment results can
be found in Table 2.
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Table 2. Accuracy metrics for all study areas per approach.

Burned Class Unburned Class
PA UA PA UA OA k

Algarve—Proposed approach 92.50 90.14 99.20 99.41 98.71 0.91
Algarve—CEMS approach 90.44 98.39 99.87 99.18 99.12 0.94

Eastern Mani—Proposed approach 75.71 96.57 99.53 95.88 95.96 0.83
Eastern Mani—CEMS approach 99.58 89.14 97.81 99.92 98.08 0.93
Aigialeia—Proposed approach 80.60 87.42 99.36 98.93 98.38 0.83

Aigialeia—CEMS approach 91.85 72.87 98.11 99.54 97.78 0.80

Rows 1 and 2 present the accuracy metrics for the event in Algarve, Portugal, on
19 June 2020 (Figure 5). More specifically, the proposed approach has a PA of 92.5% and a
UA of 90.14% concerning the burned class. The CEMS mapping products have a UA of
98.39% and a PA of 90.44%. Both maps’ OA and k values are very high, with 98.71% and
0.91 for the proposed approach and 99.12% and 0.94 for CEMS, respectively. Overall, both
maps display very high levels of accuracy, and the proposed approach is on par with the
state-of-the-art mapping services’ products.
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Rows 3 and 4 present the accuracy metrics for the fire event in Eastern Mani, Greece, on
22 August 2020. This time, the discrepancy between the proposed approach and Copernicus
EMS is larger, as the proposed approach underestimates the burned area and scores 75.71%
in PA and 96.57% in UA, with still a high value of 95.96% in OA (close to the 98.08% of
CEMS), and a comparably lower value than the CEMS k at 0.83. In this event, it is evident
that the PA of the proposed approach is significantly lower than that of the CEMS maps.
This can be attributed to the second phase of the proposed approach, i.e., the adaptive
thresholding part, which was influenced by noise present in the image, i.e., the lower left
part of Figure 6. As a result, the optimal threshold was estimated in a way that prohibited
the detection of certain burned areas—hence, leading to the decrease in PA.
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Greece (left), and the burned area classified into 4 severity classes (right).

Regarding the last event in Aigialeia Municipality in Greece (rows 5 and 6) (Figure 7),
the proposed approach reaches 80.06% PA, 87.92% UA, 98.38% OA and k equal to 0.83.
On the other hand, the CEMS maps achieve 91.85% PA, 72.87% UA, 97.78% OA and 0.8 k.
This time, the proposed approach has underestimated, by a small margin, the burned area,
while, on the other hand, the CEMS approach has overestimated the total burned area. The
event in Aigialeia Municipality can be considered small in terms of the overall area affected
(395 ha), with many areas ambiguous in terms of fire damage severity, which may have
influenced the mapping results.
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3.2. Burn Damage Severity Assessment

In this study, our focus was on the ability of the proposed approach to discriminate
between burned and unburned areas. However, in view of a comparison against the
benchmark results of CEMS, thresholds, suggested by USGS for dNBR interpretation [10]
and adjusted by CEMS in fewer classes [44], are applied and finer fire impact severity
classes could be mapped (see Figures 5–7). Classes of interest concern destroyed, damaged
and possibly damaged areas. This is a more simplified scheme followed by Copernicus,
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where pixels of the moderate–low- and moderate–high-severity subclasses are grouped into
one class, i.e., the damaged (moderate) class [44]. In this study, both subclasses (moderate–
low and moderate–high) are presented, since the suggested thresholds for both are applied
and the need for a fire to be described in more detail is considered.

An assessment is then carried out to register how well the various CEMS subclasses
may be re-estimated by the proposed approach (on top of the comparison presented in
Section 3.1). Figure 8 shows the correlation between the impact severity classes identified
by the unsupervised approach in comparison with the damage classes proposed by CEMS
for each event. The following conclusions may be inferred:

- It is evident that the identified area, which is classified as showcasing a high-severity
impact by the fire, is mostly evident (at approximately and more than 90%), where the
CEMS destroyed class is registered. However, it can be noticed that, systematically,
around 25% is misplaced to the CEMS damaged class.

- In relation to the CEMS damaged class, this is mostly identified as exhibiting mod-
erately high (around 45–50%) or low (25–30%) impacts by the fire event. It appears
that there is a match at approximately 70% between the moderate-severity subclasses
(high and low) and the CEMS-nominated damaged class.

- The results become, on one hand, more distinct for the possibly damaged class, as,
herein, mostly the low-severity class (at approximately 55–65%) and the moderately
low-severity subclass are to be assigned (around 25–35%). The moderate–high-severity
class presents a few percentage misclassifications here.

- Confusion is observed, where ambiguity becomes higher, i.e., between the low-severity
class and the unburned area designation by the CEMS. Misinterpretation reaches
80–90%. Cases of moderate–low-severity (up to 12%) and moderate—high-severity
(at around 1–5%) are also registered in the unburned area class.
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Figure 8. Contribution of the fire impact severity class as identified by the proposed approach for the
identification of the relevant CEMS class (left), and relevance of the categorization of the proposed
approach in relation to the definition merging by CEMS (right).

It is obvious that boundary conditions cannot be strictly defined for natural processes
and an expected degree of ambiguity is present, especially across neighboring classes
subdivided by strict thresholding. The aforementioned mismatches provide a detailed
analysis of the local fitting between the definitions provided by CEMS, which are to be
applied globally, and the outcome of the proposed approach, where the specificities of the
local landscape synthesis are taken into account.

4. Discussion

Many of the proposed methods of the past years rely on multispectral data of varying
spatial resolutions, i.e., MODIS, Landsat, Sentinel [13,38,43,55–57]. This work intended to
leverage medium/high-resolution Sentinel-2 data and specifically address the timeliness
factor of the burned area mapping processes, i.e., to deliver accurate results in a fast and
efficient way, using as little data as possible, without any prior calibration [38]. This will
significantly aid emergency mapping procedures, where timely reaction is of the essence
and where approaches using vast time series of data would be less efficient [58].

The proposed approach has been applied to three major forest wildfire events. The
overall classification accuracy of all three applications was over 90% (reaching up to 98.71%),
and k was over 0.8 (reaching up to 0.91). These positive results display the potential of the
proposed approach in terms of burned area mapping, as, in most cases, OA and k values
approximate the validity of the results provided by CEMS, which are considered the official
benchmark in the Earth observation (EO) application domain.

The first phase of the proposed approach detects core burned areas, i.e., pixels that
have a spectral signature, which correlates to higher-severity changes with a very high
probability. The second phase adaptively adjusts this core area by effectively expanding
its boundaries, enclosing pixels of lesser severity that, based on event-specific thresholds,
can be considered burned. Overall, the proposed two-phase approach has been designed
with effort to minimize both errors of commission and errors of omission. While the
first phase has very high detection accuracy for core burned areas (due to their distinct
spectral signature), the effectiveness of the adaptive second phase is what defines, in the
end, the overall accuracy of the approach. As the methodology aims to be completely
automatic, errors can be possibly introduced in certain events (as is evident from some
low-severity burned areas far from the main body in Figures 5 and 6). For example, dense
vegetation with a high difference in moisture content between images, or artifact shadows,
may produce NBR values that could potentially affect the adaptive thresholding procedure
and be regarded as falsely impacted by the fire.

Previous relevant studies have also employed strict or adaptive thresholding with a
multiphase approach. Of note is the work of Loboda et al. [23], who achieved values of k
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ranging from 0.76 to 0.79, using a three-phase adaptive thresholding approach on MODIS
data for areas across the globe. However, this performance is reported for large-area
burn scars. This study’s proposed adaptive thresholding approach verifies and improves
these results for the undulated relief of the Mediterranean region on a larger scale (i.e.,
per Sentinel-2 pixel), suggesting a two-phase approach. Moreover, the self-adjusting
thresholding applied by [48] seems a partially comparable approach with very good results.
However, the applied Minimum Mapping Unit post-processing tends to filter out small
objects, which are better targeted with this study’s approach. Furthermore, this study’s
results indicate their comparability with alternative approaches, such as the change-point
analysis-based thresholding [59], which reports a k of 0.76 utilizing Landsat-8 in Alaska, and
the empirical thresholding of separability across spectral indices using spectral sensitivity
analysis, achieving overall accuracies at a range of 50.1% to 96.3% for NBR across study
areas in the Mediterranean [60].

The methodology presented within the scope of this work relies on an index for
mapping burned areas, namely the NBR index. Other related works have used different
indices in burned area mapping applications. For example, Liu et al. [28] tested several
different indices in Southern Burkina Faso and observed that the Burned Area Index
(BAI) performed best. The same has been deducted from the work in [38]. In [27], the
authors observed that the Sentinel-2 Burned Area Index (BAI2) provided the best results
when compared with other indices used in burned area mapping in a case study in Iran.
The Mid-Infrared Bi-Spectral Index (MIRBI) is another index that was designed to have
high sensitivity to spectral changes induced by burning and has been used in Landsat
applications [61,62]. While there are indices that may display better results, either in burn
scar delineation or burn damage severity assessment, the NBR (or dNBR) has always been
a point of reference for burned area mapping approaches. Cocke et al. observed that the
dNBR method was reliable for mapping burned areas that had been severely affected [49].
In [63], a thorough analysis of nine spectral indices was conducted, with NBR being second
best in most cases.

Regarding the classification of the areas into different damage severity classes, the main
obstacle was that validation maps could not be accurately provided by visual interpretation,
as was possible with the distinction into burned and unburned areas. As a result, the
comparison that could be performed was with the CEMS classes provided. As a result,
a complete accuracy estimation for the damage severity classification of the proposed
approach could not be performed. However, it seems that the distribution of the percentages
into the different classes between events varies only slightly, demonstrating that the results
are consistent across the various events.

The proposed automatic local thresholding approach aims at creating a burned area
map detecting changes induced by wildfires at a pixel level. It enables the registration of
changes affecting small areas or ’ambiguous’ areas, or small patches of land that might have
negligible damage. This is in line with the real situation on the ground, as fire propagation
throughout the area follows a non-generalizable pattern, i.e., a region may be completely
destroyed by the fire, but an adjacent minor area might be completely unaffected by the
fire. The proposed approach strives to efficiently capture this dynamic, while remaining
fully unsupervised. In this way, it can be of assistance to certain interested parties, i.e., civil
protection or planning agencies, while at the same time requiring minimum expertise.

On the other hand, a per pixel classification scheme requires noise removal and result
refinement steps to reduce commission errors and maintain PA at acceptable levels. In
comparison, CEMS aims at delivering the highest-quality mapping product, in a short time
window. For this purpose, semi-automatic means (supervised classification) but rarely
automatic means are employed for the refinement of the results [64]. In the results presented
from the proposed approach, no manual refinement has been performed. As a result,
deviations can be detected in terms of accuracy, similar to those reported in other works [43].
Regarding its advantages, the proposed method is trained by the data themselves, as the
optimal threshold for classifying an area regarding the burned and unburned classes of
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interest is calculated in an adaptive procedure, relying on the individuality of each scene
and the segments created from it. This adaptability provides a robustness to the approach,
theoretically allowing credible results to be produced regardless of the image and data
variability.

Through trial and error, Multilevel Minimum Cross-Entropy Thresholding (MCET)
was found to best fit the purpose of this study. However, there are other thresholding
approaches, such as Otsu’s method [65], minimum error thresholding [66] and minmax
optimization thresholding [67], that one could also employ, depending on the landscape
particularities of the region.

Finally, the Sentinel-2 satellite imagery acquisition dates were chosen to be as close to
the CEMS map production dates as possible, allowing for a straightforward comparison
of the corresponding results. In the future, an expanded approach may be considered
utilizing multiple date pairs as inputs, which are acquired at a number of pre- and post-fire
instances. Such an approach could produce less noisy results, which would enhance the
transferability of the approach to further areas.

5. Conclusions

In this work, an unsupervised local thresholding method was proposed for the timely
generation of maps depicting areas affected by wildfire events (burn scars) from Sentinel-
2 images. The proposed approach follows two phases. The first phase is to roughly detect
core burned areas in the images provided, while the second phase refines estimations
based on an adaptive approach. Results demonstrate that the burned areas can be mapped
with very good accuracy with a pair of Sentinel-2 images, close in time to the event. The
comparison with state-of-the-art maps, offered publicly by Copernicus EMS, and reference
validation datasets, demonstrates that the proposed approach offers the capacity to perform
mapping of the affected areas with similar overall accuracy. Therefore, it is suggested that
it can be used by domain-engaged private and public sector personnel as a surrogate
automatic burned area assessment tool that complements CEMS burned area mapping
products. Further investigation of the automatic pixel-wise approach is suggested to assess
the robustness and transferability of the method to different events and/or landscapes.
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