The Effect of Papyrus Wetlands on Flow Regulation in a Tropical River Catchment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.2.1. Selection and Evaluation of Rainfall Products
2.2.2. Estimation of Potential Evapotranspiration (PET)
2.2.3. Measured Flow Data
2.2.4. Land Surface Representation
2.2.5. Land Cover and Land Use Layer
2.2.6. Soil and Lithology
2.3. Modelling Approach
2.4. Impacts of Wetlands on Catchment Discharge
2.4.1. Impacts of Wetlands on Baseflow and Quickflow
2.4.2. Impacts of Wetlands on Future Flood and Low Flows
S. No. | Climatic Datasets | Simulation Period (Model Warmup) | Wetlands Present or Not |
---|---|---|---|
1 | MSWEP rainfall and CFSR PET | 1979–2013 (1979–1983) | Yes |
2 | No | ||
3 | GFDL-ESM4 at BL | 1979–2013 (1979–1983) | Yes |
4 | No | ||
5 | MRI-ESM2-0 at BL | 1979–2013 (1979–1983) | Yes |
6 | No | ||
7 | NorESM2-MM at BL | 1979–2013 (1979–1983) | Yes |
8 | No | ||
9 | GFDL-ESM4 at GWL2 | 2028–2063 (2028–2032) | Yes |
10 | No | ||
11 | MRI-ESM2-0 at GWL2 | 2030–2065 (2030–2034) | Yes |
12 | No | ||
13 | NorESM2-MM at GWL2 | 2025–2060 (2025–2029) | Yes |
14 | No | ||
15 | GFDL-ESM4 at GWL4 | 2059–2094 (2059–2063) | Yes |
16 | No | ||
17 | MRI-ESM2-0 at GWL4 | 2051–2086 (2051–2055) | Yes |
18 | No | ||
19 | NorESM2-MM at GWL4 | 2049–2084 (2049–2053) | Yes |
20 | No |
3. Results
3.1. Model Calibration and Validation Results
3.2. Historical Impacts of Wetlands on Catchment Hydrology
3.2.1. Overall Impacts of Wetlands on Catchment Hydrology
3.2.2. Impacts of Wetlands on Baseflow and Quickflow
3.3. Impacts of Wetlands on Future Catchment Hydrology
3.3.1. The Overall Impact of Wetlands on Future Catchment Hydrology
3.3.2. Impacts of Wetlands on Future Flood and Low Flows
4. Discussion
4.1. Historical Impacts of Wetlands on Catchment Hydrology
4.2. Impacts of Wetlands on Future Catchment Hydrology
4.3. Implications and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
S. No. | SPP | Description | Resolution (km) | Reference |
---|---|---|---|---|
1 | TAMSATv3.1 | Tropical Applications of Meteorology using SATellite (TAMSAT) and ground-based observations version 3.1; developed by the University of Reading, UK. | 4 | [111] |
2 | CHIRPSv2.0 | Rainfall Estimates from Rain Gauge and Satellite Observations version 2.0; developed by the U.S. Geological Survey Earth Resources Observation and Science Centre, in collaboration with Santa Barbara Climate Hazards Group of the University of California. | 6 | [112] |
3 | ARC2 | Africa Rainfall Climatology (ARC) version 2.0; developed by NOAA Climate Prediction Centre. | 11 | [113] |
4 | RFE2 | African Rainfall Estimation Algorithm (RFE) version 2.0; developed by NOAA Climate Prediction Centre. | 11 | [114,115] |
5 | MSWEPv2.2 | Multi-Source Weighted-Ensemble Precipitation (MSWEP) version 2.2; developed by. | 11 | [116] |
6 | PERSIANN-CDR | Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN-CDR); developed by UCI Centre for Hydrometeorology & Remote Sensing. | 28 | [117] |
7 | CMORPHv1.0ADJ | Climate Prediction Centre (CPC) morphing technique (CMORPH) bias-corrected with gauge data (ADJ) version 1.0; developed by NOAA Climate Prediction Centre. | 8 | [118] |
8 | TRMM 3B42v7 | Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) version 7; developed by NASA and Japan’s National Space Development Agency. | 28 | [119] |
S. No. | GCM Model | Institution | Resolution (km) for Ensemble Members r1i1p1f1 |
---|---|---|---|
1 | CanESM5 | Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, Victoria, Canada. | 500 |
2 | CESM2-WACCM | National Centre for Atmospheric Research, USA. | 100 |
3 | CNRM-CM6-1 | Centre National de Recherches Météorologiques (CNRM); Centre Européen de Recherches et de Formation Avancéeen Calcul Scientifique, France. | 157 |
4 | GFDL-ESM4 | Geophysical Fluid Dynamics Laboratory (GFDL), USA. | 100 |
5 | MPI-ESM1-2-LR | Max Planck Institute for Meteorology, Germany. | 250 |
6 | MRI-ESM2-0 | Meteorological Research Institute, Japan. | 100 |
7 | NorESM2-LM | Norwegian Climate Centre, Norway. | 250 |
8 | NorESM2-MM | Norwegian Climate Centre, Norway. | 100 |
9 | UKESM1-0-LL | UK Met Office Hadley Centre, UK. | 209 × 139 |
Appendix B
Evaluation of Satellite Precipitation Products (SPPS) with Gauge Data
- Accuracy of SPPs in Daily Rainfall Identification
- Accuracy of SPPs in Capturing Daily and Monthly Rainfall Totals
Appendix C
Model Sensitivity Analysis
- Results of Model Sensitivity Analysis
References
- Davidson, N.C. How Much Wetland Has the World Lost? Long-Term and Recent Trends in Global Wetland Area. Mar. Freshw. Res. 2014, 65, 934–941. [Google Scholar] [CrossRef]
- Hu, S.; Niu, Z.; Chen, Y.; Li, L.; Zhang, H. Global Wetlands: Potential Distribution, Wetland Loss, and Status. Sci. Total Environ. 2017, 586, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Weng, B.; Yan, D.; Wang, K.; Li, X.; Bi, W.; Li, M.; Cheng, X.; Liu, Y. Wetlands of International Importance: Status, Threats, and Future Protection. Int. J. Environ. Res. Public Health 2019, 16, 1818. [Google Scholar] [CrossRef] [PubMed]
- Junk, W.; An, S.; Finlayson, M.; Gopal, B.; Květ, J.; Mitchell, S.; Mitsch, W.; Robarts, R. Current State of Knowledge Regarding the World’s Wetlands and Their Future under Global Climate Change: A Synthesis. Aquat. Sci. 2013, 75, 151–167. [Google Scholar] [CrossRef]
- Tockner, K. Riverine Flood Plains: Present State and Future Trends. Environ. Conserv. 2002, 29, 308–330. [Google Scholar] [CrossRef]
- Darrah, S.E.; Shennan-Farpón, Y.; Loh, J.; Davidson, N.C.; Finlayson, C.M.; Gardner, R.C.; Walpole, M.J. Improvements to the Wetland Extent Trends (WET) Index as a Tool for Monitoring Natural and Human-Made Wetlands. Ecol. Indic. 2019, 99, 294–298. [Google Scholar] [CrossRef]
- Woodward, R.T.; Wui, Y.S. The Economic Value of Wetland Services: A Meta-Analysis. Ecol. Econ. 2001, 37, 257–270. [Google Scholar] [CrossRef]
- Kashaigili, J.J.; McCartney, M.P.; Mahoo, H.F.; Lankford, B.A.; Mbilinyi, B.P.; Yawson, D.K. Use of a Hydrological Model for Environmental Management of the Usangu Wetlands, Tanzania; International Water Management Institute: Colombo, Sri Lanka, 2009. [Google Scholar]
- Pacini, N.; Hesslerová, P.; Pokorný, J.; Mwinami, T.; Morrison, E.H.J.; Cook, A.A.; Zhang, S.; Harper, D.M. Papyrus as an Ecohydrological Tool for Restoring Ecosystem Services in Afrotropical Wetlands. Ecohydrol. Hydrobiol. 2018, 18, 142–154. [Google Scholar] [CrossRef]
- Van Dam, A.A.; Kipkemboi, J.; Mazvimavi, D.; Irvine, K. A Synthesis of Past, Current and Future Research for Protection and Management of Papyrus (Cyperus papyrus L.) Wetlands in Africa. Wetl. Ecol. Manag. 2014, 22, 99–114. [Google Scholar] [CrossRef]
- Dixon, A.B.; Wood, A.P. Wetland Cultivation and Hydrological Management in Eastern Africa: Matching Community and Hydrological Needs through Sustainable Wetland Use. Nat. Resour. Forum 2003, 27, 117–129. [Google Scholar] [CrossRef]
- Kipkemboi, J.; Van Dam, A.A. Papyrus Wetlands. In The Wetland Book; Finlayson, C., Milton, G., Prentice, R., Davidson, N., Eds.; Springer: Dordrecht, The Netherlands, 2018; pp. 183–197. [Google Scholar]
- Gaudet, J.J. Mineral Concentrations in Papyrus in Various African Swamps. J. Ecol. 1975, 63, 483–491. [Google Scholar] [CrossRef]
- Emerton, L.; Iyango, L.; Luwum, P.; Malinga, A. The Present Economic Value of Nakivubo Urban Wetland, Uganda; IUCN, Regional Office for Eastern Africa: Nairobi, Kenya, 1999. [Google Scholar]
- Kansiime, F.; Nalubega, M. Wastewater Treatment by a Natural Wetland: The Nakivubo Swamp, Uganda: Processes and Implications; A.A. Balkema: Rotterdam, The Netherlands, 1999. [Google Scholar]
- Jones, M.B.; Humphries, S.W. Impacts of the C4 Sedge Cyperus papyrus L. on Carbon and Water Fluxes in an African Wetland. Hydrobiologia 2002, 488, 107–113. [Google Scholar] [CrossRef]
- Kiwango, Y.A.; Wolanski, E. Papyrus Wetlands, Nutrients Balance, Fisheries Collapse, Food Security, and Lake Victoria Level Decline in 2000–2006. Wetl. Ecol. Manag. 2008, 16, 89–96. [Google Scholar] [CrossRef]
- Opio, A.; Jones, M.; Kansiime, F.; Otiti, T. Growth and Development of Cyperus papyrus in a Tropical Wetland. Open J. Ecol. 2014, 04, 113–123. [Google Scholar] [CrossRef]
- Saunders, M.J.; Kansiime, F.; Jones, M.B. Reviewing the Carbon Cycle Dynamics and Carbon Sequestration Potential of Cyperus papyrus L. Wetlands in Tropical Africa. Wetl. Ecol. Manag. 2014, 22, 143–155. [Google Scholar] [CrossRef]
- Ssanyu, G.A.; Kipkemboi, J.; Mathooko, J.M.; Balirwa, J. Land-Use Impacts on Small-Scale Mpologoma Wetland Fishery, Eastern Uganda: A Socio-Economic Perspective. Lakes Reserv. Sci. Policy Manag. Sustain. Use 2014, 19, 280–292. [Google Scholar] [CrossRef]
- Terer, T.; Muasya, A.M.; Higgins, S.; Gaudet, J.J.; Triest, L. Importance of Seedling Recruitment for Regeneration and Maintaining Genetic Diversity of Cyperus papyrus during Drawdown in Lake Naivasha, Kenya. Aquat. Bot. 2014, 116, 93–102. [Google Scholar] [CrossRef]
- Hurst, H.E. The Sudd Region of the Nile. J. R. Soc. Arts 1933, 81, 720–736. [Google Scholar]
- Sutcliffe, J.V.; Parks, Y.P. Comparative Water Balances of Selected African Wetlands. Hydrol. Sci. J. 1989, 34, 49–62. [Google Scholar] [CrossRef]
- Kayendeke, E.; French, H.K. Characterising the Hydrological Regime of a Tropical Papyrus Wetland in the Lake Kyoga Basin, Uganda. In Agriculture and Ecosystem Resilience in Sub Saharan Africa: Livelihood Pathways under Changing Climate; Bamutaze, Y., Kyamanywa, S., Singh, B.R., Nabanoga, G., Lal, R., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 213–236. ISBN 978-3-030-12974-3. [Google Scholar]
- Kayendeke, E.J.; Kansiime, F.; French, H.K.; Bamutaze, Y. Spatial and Temporal Variation of Papyrus Root Mat Thickness and Water Storage in a Tropical Wetland System. Sci. Total Environ. 2018, 642, 925–936. [Google Scholar] [CrossRef] [PubMed]
- Sutcliffe, J.V.; Parks, Y.P. Hydrological Modelling of the Sudd and Jonglei Canal. Hydrol. Sci. J. 1987, 32, 143–159. [Google Scholar] [CrossRef]
- Howell, P.; Lock, M.; Cobb, S. The Jonglei Canal: Impact and Opportunity; Cambridge University Press: Cambridge, UK, 2009; ISBN 9780521105491. [Google Scholar]
- Di Vittorio, C.A.; Georgakakos, A.P. Hydrologic Modeling of the Sudd Wetland Using Satellite-Based Data. J. Hydrol. Reg. Stud. 2021, 37, 100922. [Google Scholar] [CrossRef]
- Cohen, M.J.; Creed, I.F.; Alexander, L.; Basu, N.B.; Calhoun, A.J.K.; Craft, C.; D’Amico, E.; DeKeyser, E.; Fowler, L.; Golden, H.E.; et al. Do Geographically Isolated Wetlands Influence Landscape Functions? Proc. Natl. Acad. Sci. USA 2016, 113, 1978–1986. [Google Scholar] [CrossRef] [PubMed]
- Thorslund, J.; Jarsjo, J.; Jaramillo, F.; Jawitz, J.W.; Manzoni, S.; Basu, N.B.; Chalov, S.R.; Cohen, M.J.; Creed, I.F.; Goldenberg, R.; et al. Wetlands as Large-Scale Nature-Based Solutions: Status and Challenges for Research, Engineering and Management. Ecol. Eng. 2017, 108, 489–497. [Google Scholar] [CrossRef]
- Salimi, S.; Almuktar, S.A.A.A.N.; Scholz, M. Impact of Climate Change on Wetland Ecosystems: A Critical Review of Experimental Wetlands. J. Environ. Manag. 2021, 286, 112160. [Google Scholar] [CrossRef]
- Langan, C.; Farmer, J.; Rivington, M.; Smith, J.U. Tropical Wetland Ecosystem Service Assessments in East Africa; A Review of Approaches and Challenges. Environ. Model. Softw. 2018, 102, 260–273. [Google Scholar] [CrossRef]
- Wang, H.; Xu, S.; Sun, L. Effects of Climatic Change on Evapotranspiration in Zhalong Wetland, Northeast China. Chin. Geogr. Sci. 2006, 16, 265–269. [Google Scholar] [CrossRef]
- Döll, P.; Zhang, J. Impact of Climate Change on Freshwater Ecosystems: A Global-Scale Analysis of Ecologically Relevant River Flow Alterations. Hydrol. Earth Syst. Sci. 2010, 14, 783–799. [Google Scholar] [CrossRef]
- Barnes, C.; Bonell, M. How to Choose an Appropriate Catchment Model. In Forests, Water and People in the Humid Tropics: Past, Present and Future Hydrological Research for Integrated Land and Water Management; Bruijnzeel, L.A., Bonell, M., Eds.; International Hydrology Series; Cambridge University Press: Cambridge, UK, 2005; pp. 717–741. ISBN 9780521829533. [Google Scholar]
- Golden, H.E.; Lane, C.R.; Amatya, D.M.; Bandilla, K.W.; Raanan Kiperwas, H.; Knightes, C.D.; Ssegane, H. Hydrologic Connectivity between Geographically Isolated Wetlands and Surface Water Systems: A Review of Select Modeling Methods. Environ. Model. Softw. 2014, 53, 190–206. [Google Scholar] [CrossRef]
- Acreman, M.C.; Miller, F. Hydrological Impact Assessment of Wetlands. In The Global Importance of Groundwater in the 21st Century, Proceedings of the International Symposium on Groundwater Sustainability, Alicante, Spain, 24–27 January 2006; Ragone, S., Hernandez-Mora, N., de la Hera, A., Berkamp, G., Mckay, J., Eds.; National Groundwater Association Press: Westerville, OH, USA, 2007; pp. 225–255. [Google Scholar]
- Fitz, H.C.; Hughes, N. Wetland Ecological Models; SL257; University of Florida, Institure of Food and Agricultural Sciences: Gainesville, FL, USA, 2008. [Google Scholar]
- Ewen, J.; Geoff, P.; O’Connell, E.P. SHETRAN: Distributed River Basin Flow and Transport Modeling System. J. Hydrol. Eng. 2000, 5, 250–258. [Google Scholar] [CrossRef]
- Birkinshaw, S.; Guerreiro, S.; Nicholson, A.; Liang, Q.; Quinn, P.; Zhang, L.; He, B.; Yin, J.; Fowler, H. Climate Change Impacts on Yangtze River Discharge at the Three Gorges Dam. Hydrol. Earth Syst. Sci. 2017, 21, 1911–1927. [Google Scholar] [CrossRef]
- Op de Hipt, F.; Diekkrüger, B.; Steup, G.; Yira, Y.; Hoffmann, T.; Rode, M.; Näschen, K. Modeling the Effect of Land Use and Climate Change on Water Resources and Soil Erosion in a Tropical West African Catch-Ment (Dano, Burkina Faso) Using SHETRAN. Sci. Total Environ. 2019, 653, 431–445. [Google Scholar] [CrossRef]
- Zhang, R.; Corte-Real, J.; Moreira, M.; Kilsby, C.; Birkinshaw, S.; Burton, A.; Fowler, H.J.; Forsythe, N.; Nunes, J.P.; Sampaio, E.; et al. Downscaling Climate Change of Water Availability, Sediment Yield and Extreme Events: Application to a Mediterranean Climate Basin. Int. J. Climatol. 2019, 39, 2947–2963. [Google Scholar] [CrossRef]
- Dembélé, M.; Schaefli, B.; van de Giesen, N.; Mariéthoz, G. Suitability of 17 Gridded Rainfall and Temperature Datasets for Large-Scale Hydrological Modelling in West Africa. Hydrol. Earth Syst. Sci. 2020, 24, 5379–5406. [Google Scholar] [CrossRef]
- Hughes, D.A. Comparison of Satellite Rainfall Data with Observations from Gauging Station Networks. J. Hydrol. 2006, 327, 399–410. [Google Scholar] [CrossRef]
- Wilby, R.L.; Clifford, N.J.; De Luca, P.; Harrigan, S.; Hillier, J.K.; Hodgkins, R.; Johnson, M.F.; Matthews, T.K.R.; Murphy, C.; Noone, S.J.; et al. The ‘Dirty Dozen’ of Freshwater Science: Detecting Then Reconciling Hydrological Data Biases and Errors. WIREs Water 2017, 4, e1209. [Google Scholar] [CrossRef]
- MWE. Mpologoma Catchment Management Plan; Ministry of Water and Environment: Kampala, Uganda, 2018.
- Basalirwa, C.P.K. Raingauge Network Designs for Uganda. Ph.D. Thesis, Nairobi University, Nairobi, Kenya, 1991. [Google Scholar]
- Chombo, O.; Lwasa, S.; Makooma, T.M. Spatial Differentiation of Small Holder Farmers’ Vulnerability to Climate Change in the Kyoga Plains of Uganda. Am. J. Clim. Chang. 2018, 7, 624. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Bunyangha, J.; Majaliwa, M.J.G.; Muthumbi, A.W.; Gichuki, N.N.; Egeru, A. Past and Future Land Use/Land Cover Changes from Multi-Temporal Landsat Imagery in Mpologoma Catchment, Eastern Uganda. Egypt. J. Remote Sens. Space Sci. 2021, 24, 675–685. [Google Scholar] [CrossRef]
- Bitew, M.M.; Gebremichael, M.; Ghebremichael, L.T.; Bayissa, Y.A. Evaluation of High-Resolution Satellite Rainfall Products through Streamflow Simulation in a Hydrological Modeling of a Small Mountainous Watershed in Ethiopia. J. Hydrometeorol. 2012, 13, 338–350. [Google Scholar] [CrossRef]
- Fuka, D.R.; Walter, M.T.; Macalister, C.; Degaetano, A.T.; Steenhuis, T.S.; Easton, Z.M. Using the Climate Forecast System Reanalysis as Weather Input Data for Watershed Models. Hydrol. Process. 2013, 28, 5613–5623. [Google Scholar] [CrossRef]
- Maidment, R.; Grimes, D.; Allan, R.; Greatrex, H.; Rojas, O.; Leo, O. Evaluation of Satellite-Based and Model Re-Analysis Rainfall Estimates for Uganda. Meteorol. Appl. 2013, 20, 308–317. [Google Scholar] [CrossRef]
- Mutai, C.C.; Ward, M.N. East African Rainfall and the Tropical Circulation/Convection on Intraseasonal to Interannual Timescales. J. Clim. 2000, 13, 3915–3939. [Google Scholar] [CrossRef]
- Gumindoga, W.; Rientjes, T.H.M.; Haile, A.T.; Makurira, H.; Reggiani, P. Performance of Bias-Correction Schemes for CMORPH Rainfall Estimates in the Zambezi River Basin. Hydrol. Earth Syst. Sci. 2019, 23, 2915–2938. [Google Scholar] [CrossRef]
- Dembélé, M.; Zwart, S.J. Evaluation and Comparison of Satellite-Based Rainfall Products in Burkina Faso, West Africa. Int. J. Remote Sens. 2016, 37, 3995–4014. [Google Scholar] [CrossRef]
- Dinku, T.; Funk, C.; Peterson, P.; Maidment, R.; Tadesse, T.; Gadain, H.; Ceccato, P. Validation of the CHIRPS Satellite Rainfall Estimates over Eastern Africa. Q. J. R. Meteorol. Soc. 2018, 144, 292–312. [Google Scholar] [CrossRef]
- Duan, Z.; Tuo, Y.; Liu, J.; Gao, H.; Song, X.; Zhang, Z.; Yang, L.; Mekonnen, D.F. Hydrological Evaluation of Open-Access Precipitation and Air Temperature Datasets Using SWAT in a Poorly Gauged Basin in Ethiopia. J. Hydrol. 2019, 569, 612–626. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper No. 56.; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; ISBN 9251042195. [Google Scholar]
- Crochemore, L.; Isberg, K.; Pimentel, R.; Pineda, L.; Hasan, A.; Arheimer, B. Lessons Learnt from Checking the Quality of Openly Accessible River Flow Data Worldwide. Hydrol. Sci. J. 2020, 65, 699–711. [Google Scholar] [CrossRef]
- McMillan, H.K.; Westerberg, I.K.; Krueger, T. Hydrological Data Uncertainty and Its Implications. WIREs Water 2018, 5, e1319. [Google Scholar] [CrossRef]
- Wildemeersch, S.; Goderniaux, P.; Orban, P.; Brouyère, S.; Dassargues, A. Assessing the Effects of Spatial Discretization on Large-Scale Flow Model Performance and Prediction Uncertainty. J. Hydrol. 2014, 510, 10–25. [Google Scholar] [CrossRef]
- Sreedevi, S.; Eldho, T.I. Effects of Grid-Size on Effective Parameters and Model Performance of SHETRAN for Estimation of Streamflow and Sediment Yield. Int. J. River Basin Manag. 2021, 19, 535–551. [Google Scholar] [CrossRef]
- Zhang, R. Integrated Modelling for Evaluation of Climate Change Impacts on Agricultural Dominated Basin. Ph.D. Thesis, University of Évora, Évora, Portugal, 2015. [Google Scholar]
- Tan, M.L.; Ficklin, D.L.; Dixon, B.; Ibrahim, A.L.; Yusop, Z.; Chaplot, V. Impacts of DEM Resolution, Source, and Resampling Technique on SWAT-Simulated Streamflow. Appl. Geogr. 2015, 63, 357–368. [Google Scholar] [CrossRef]
- NASA/Japan Space Systems. ASTER Global Digital Elevation Model V003. Available online: https://asterweb.jpl.nasa.gov/gdem.asp (accessed on 5 March 2020).
- Defourny, P.; Bontemps, S.; Lamarche, C.; Brockmann, C.; Boettcher, M.; Wevers, J.; Kirches, G. Land Cover CCI. Product User Guide Version 2; UCL–Geomatics: Louvain-la-Neuve, Belgium, 2017. [Google Scholar]
- FAO/UNESCO. The Digital Soil Map of The World—Version 3.6. Available online: https://data.apps.fao.org/map/catalog/srv/eng/catalog.search#/metadata/446ed430-8383-11db-b9b2-000d939bc5d8 (accessed on 5 March 2020).
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Am. Soc. Agric. Biol. Eng. 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Smakhtin, V.U.; Batchelor, A.L. Evaluating Wetland Flow Regulating Functions Using Discharge Time-Series. Hydrol. Process. 2005, 19, 1293–1305. [Google Scholar] [CrossRef]
- Bullock, A.; Acreman, M. The Role of Wetlands in the Hydrological Cycle. Hydrol. Earth Syst. Sci. 2003, 7, 358–389. [Google Scholar] [CrossRef]
- Postel, S.; Richter, B.D. Rivers for Life—Managing Water for People and Nature; Island Press: Washington, DC, USA, 2003; ISBN 155963443X. [Google Scholar]
- Fossey, M.; Rousseau, A.N.; Savary, S. Assessment of the Impact of Spatio-Temporal Attributes of Wetlands on Stream Flows Using a Hydrological Modelling Framework: A Theoretical Case Study of a Watershed under Temperate Climatic Conditions. Hydrol. Process. 2016, 30, 1768–1781. [Google Scholar] [CrossRef]
- Willems, P. A Time Series Tool to Support the Multi-Criteria Performance Evaluation of Rainfall-Runoff Models. Environ. Model. Softw. 2009, 24, 311–321. [Google Scholar] [CrossRef]
- Maraun, D.; Widmann, M. Statistical Downscaling and Bias Correction for Climate Research; Cambridge University Press: Cambridge, UK, 2018; ISBN 9781107066052. [Google Scholar]
- Cannon, A.J. Package ‘MBC’ User Guide. Multivariate Bias Correction of Climate Model Outputs. Available online: https://cran.r-project.org/web/packages/MBC/MBC.pdf (accessed on 1 May 2022).
- Friedlingstein, P.; Jones, M.W.; O’Sullivan, M.; Andrew, R.M.; Bakker, D.C.E.; Hauck, J.; Le Quéré, C.; Peters, G.P.; Peters, W.; Pongratz, J.; et al. Global Carbon Budget 2021. Earth Syst. Sci. Data 2022, 14, 1917–2005. [Google Scholar] [CrossRef]
- UNFCCC. Decision 1/CP.18 Report of the Conference of the Parties on Its Eighteenth Session, Held in Doha from 26 November to 8 December 2012; UNFCCC: New York, NY, USA, 2013. [Google Scholar]
- Arias, P.; Bellouin, N.; Coppola, E.; Jones, C.; Krinner, G.; Marotzke, J.; Naik, V.; Plattner, G.-K.; Rojas, M.; Sillmann, J.; et al. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Technical Summary; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Gistemp, T. GISS Surface Temperature Analysis (GISTEMP), Version 4. NASA Goddard Institute for Space Studies. Available online: https://data.giss.nasa.gov/gistemp/ (accessed on 1 June 2022).
- Vautard, R.; Gobiet, A.; Sobolowski, S.; Kjellström, E.; Stegehuis, A.; Watkiss, P.; Mendlik, T.; Landgren, O.; Nikulin, G.; Teichmann, C.; et al. The European Climate under a 2 °C Global Warming. Environ. Res. Lett. 2014, 9, 34006. [Google Scholar] [CrossRef]
- Xu, X.; Wang, Y.-C.; Kalcic, M.; Muenich, R.L.; Yang, Y.C.E.; Scavia, D. Evaluating the Impact of Climate Change on Fluvial Flood Risk in a Mixed-Use Watershed. Environ. Model. Softw. 2019, 122, 104031. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, J.; Jun Xu, Y.; Zhang, G.; Liu, T. Projection of Future Hydrometeorological Extremes and Wetland Flood Mitigation Services with Different Global Warming Levels: A Case Study in the Nenjiang River Basin. Ecol. Indic. 2022, 140, 108987. [Google Scholar] [CrossRef]
- Masih, I.; Maskey, S.; Mussá, F.E.F.; Trambauer, P. A Review of Droughts on the African Continent: A Geospatial and Long-Term Perspective. Hydrol. Earth Syst. Sci. 2014, 18, 3635–3649. [Google Scholar] [CrossRef]
- Bisselink, B.; Zambrano-Bigiarini, M.; Burek, P.; de Roo, A. Assessing the Role of Uncertain Precipitation Estimates on the Robustness of Hydrological Model Parameters under Highly Variable Climate Conditions. J. Hydrol. Reg. Stud. 2016, 8, 112–129. [Google Scholar] [CrossRef]
- Stisen, S.; Sandholt, I. Evaluation of Remote-Sensing-Based Rainfall Products through Predictive Capability in Hydrological Runoff Modeling. Hydrol. Process. 2010, 24, 879–891. [Google Scholar] [CrossRef]
- Blöschl, G.; Sivapalan, M. Scale Issues in Hydrological Modelling: A Review. Hydrol. Process. 1995, 9, 251–290. [Google Scholar] [CrossRef]
- Mutenyo, I.; Nejadhashemi, A.P.; Woznicki, S.A.; Giri, S. Evaluation of SWAT Performance on a Mountainous Watershed in Tropical Africa. Hydrol. Curr. Res. 2013, 6, 7. [Google Scholar] [CrossRef]
- Quin, A.; Destouni, G. Large-Scale Comparison of Flow-Variability Dampening by Lakes and Wetlands in the Landscape. Land Degrad. Dev. 2018, 29, 3617–3627. [Google Scholar] [CrossRef]
- Kadykalo, A.N.; Findlay, C.S. The Flow Regulation Services of Wetlands. Ecosyst. Serv. 2016, 20, 91–103. [Google Scholar] [CrossRef]
- Acreman, M.; Holden, J. How Wetlands Affect Floods. Wetlands 2013, 33, 773–786. [Google Scholar] [CrossRef]
- Rains, M.C.; Leibowitz, S.G.; Cohen, M.J.; Creed, I.F.; Golden, H.E.; Jawitz, J.W.; Kalla, P.; Lane, C.R.; Lang, M.W.; McLaughlin, D.L. Geographically Isolated Wetlands Are Part of the Hydrological Landscape. Hydrol. Process. 2016, 30, 153–160. [Google Scholar] [CrossRef]
- Makula, E.K.; Zhou, B. Coupled Model Intercomparison Project Phase 6 Evaluation and Projection of East African Precipitation. Int. J. Climatol. 2022, 42, 2398–2412. [Google Scholar] [CrossRef]
- Ayugi, B.; Shilenje, Z.W.; Babaousmail, H.; Lim Kam Sian, K.T.C.; Mumo, R.; Dike, V.N.; Iyakaremye, V.; Chehbouni, A.; Ongoma, V. Projected Changes in Meteorological Drought over East Africa Inferred from Bias-Adjusted CMIP6 Models. Nat. Hazards 2022, 113, 1151–1176. [Google Scholar] [CrossRef] [PubMed]
- Bucher, E.; Bonetto, A.; Boyle, T.; Canevari, P.; Castro, G.; Huszar, P.; Stone, T. Hidrovia: An Initial Environmental Examination of the Paraguay-Parana Waterway; Humedades para las Americas. Publicacao; Publicatio.; Wetlands for the Americas: Manomet, MA, USA, 1993. [Google Scholar]
- Turyahabwe, N.; Tumusiime, D.; Kakuru, W.; Barasa, B. Wetland Use/Cover Changes and Local Perceptions in Uganda. Sustain. Agric. Res. 2013, 2, 95–105. [Google Scholar] [CrossRef]
- Gulbin, S.; Kirilenko, A.P.; Kharel, G.; Zhang, X. Wetland Loss Impact on Long Term Flood Risks in a Closed Watershed. Environ. Sci. Policy 2019, 94, 112–122. [Google Scholar] [CrossRef]
- Acreman, M.C.; Riddington, R.; Booker, D.J. Hydrological Impacts of Floodplain Restoration: A Case Study of the River Cherwell, UK. Hydrol. Earth Syst. Sci. 2003, 7, 75–85. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Day, J.W. Restoration of Wetlands in the Mississippi–Ohio–Missouri (MOM) River Basin: Experience and Needed Research. Ecol. Eng. 2006, 26, 55–69. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, G.; Rousseau, A.N.; Xu, Y.J.; Foulon, É. On How Wetlands Can Provide Flood Resilience in a Large River Basin: A Case Study in Nenjiang River Basin, China. J. Hydrol. 2020, 587, 125012. [Google Scholar] [CrossRef]
- Yang, W.; Wang, X.; Liu, Y.; Gabor, S.; Boychuk, L.; Badiou, P. Simulated Environmental Effects of Wetland Restoration Scenarios in a Typical Canadian Prairie Watershed. Wetl. Ecol. Manag. 2010, 18, 269–279. [Google Scholar] [CrossRef]
- Thompson, J.R.; Gosling, S.N.; Zaherpour, J.; Laizé, C.L.R. Increasing Risk of Ecological Change to Major Rivers of the World With Global Warming. Earths Future 2021, 9, e2021EF002048. [Google Scholar] [CrossRef]
- Nyenje, P.M.; Batelaan, O. Estimating the Effects of Climate Change on Groundwater Recharge and Baseflow in the Upper Ssezibwa Catchment, Uganda. Hydrol. Sci. J. 2009, 54, 713–726. [Google Scholar] [CrossRef]
- Bahati, H.K.; Ogenrwoth, A.; Sempewo, J.I. Quantifying the Potential Impacts of Land-Use and Climate Change on Hydropower Reliability of Muzizi Hydropower Plant, Uganda. J. Water Clim. Chang. 2021, 12, 2526–2554. [Google Scholar] [CrossRef]
- Gabiri, G.; Diekkrüger, B.; Näschen, K.; Leemhuis, C.; van der Linden, R.; Majaliwa, J.-G.M.; Obando, J.A. Impact of Climate and Land Use/Land Cover Change on the Water Resources of a Tropical Inland Valley Catchment in Uganda, East Africa. Climate 2020, 8, 83. [Google Scholar] [CrossRef]
- Mehdi, B.; Dekens, J.; Herrnegger, M. Climatic Impacts on Water Resources in a Tropical Catchment in Uganda and Adaptation Measures Proposed by Resident Stakeholders. Clim. Change 2021, 164, 10. [Google Scholar] [CrossRef]
- Mileham, L.; Taylor, R.G.; Todd, M.; Tindimugaya, C.; Thompson, J. The Impact of Climate Change on Groundwater Recharge and Runoff in a Humid, Equatorial Catchment: Sensitivity of Projections to Rainfall Intensity. Hydrol. Sci. J. 2009, 54, 727–738. [Google Scholar] [CrossRef]
- Prudhomme, C.; Jakob, D.; Svensson, C. Uncertainty and Climate Change Impact on the Flood Regime of Small UK Catchments. J. Hydrol. 2003, 277, 1–23. [Google Scholar] [CrossRef]
- Lee, S.; Qi, J.; McCarty, G.W.; Yeo, I.-Y.; Zhang, X.; Moglen, G.E.; Du, L. Uncertainty Assessment of Multi-Parameter, Multi-GCM, and Multi-RCP Simulations for Streamflow and Non-Floodplain Wetland (NFW) Water Storage. J. Hydrol. 2021, 600, 126564. [Google Scholar] [CrossRef]
- Maidment, R.I.; Grimes, D.; Black, E.; Tarnavsky, E.; Young, M.; Greatrex, H.; Allan, R.P.; Stein, T.; Nkonde, E.; Senkunda, S.; et al. A New, Long-Term Daily Satellite-Based Rainfall Dataset for Operational Monitoring in Africa. Sci. Data 2017, 4, 170063. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The Climate Hazards Infrared Precipitation with Stations—A New Environmental Record for Monitoring Extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef]
- Novella, N.S.; Thiaw, W.M. African Rainfall Climatology Version 2 for Famine Early Warning Systems. J. Appl. Meteorol. Climatol. 2013, 52, 588–606. [Google Scholar] [CrossRef]
- NOAA-CPC. RFE 2.0 Technical Description Summary; NOAA Climate Prediction Center: College Park, MD, USA, 2001. [Google Scholar]
- Xie, P.; Arkin, P.A. Analyses of Global Monthly Precipitation Using Gauge Observations, Satellite Estimates, and Numerical Model Predictions. J. Clim. 1996, 9, 840–858. [Google Scholar] [CrossRef]
- Beck, H.E.; Wood, E.F.; Pan, M.; Fisher, C.K.; Miralles, D.G.; van Dijk, A.I.J.M.; McVicar, T.R.; Adler, R.F. MSWEP V2 Global 3-Hourly 0.1° Precipitation: Methodology and Quantitative Assessment. Bull. Am. Meteorol. Soc. 2019, 100, 473–500. [Google Scholar] [CrossRef]
- Ashouri, H.; Hsu, K.-L.; Sorooshian, S.; Braithwaite, D.K.; Knapp, K.R.; Cecil, L.D.; Nelson, B.R.; Prat, O.P. PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies. Bull. Am. Meteorol. Soc. 2015, 96, 69–83. [Google Scholar] [CrossRef]
- Xie, P.; Joyce, R.; Wu, S. Bias-Corrected CMORPH—Climate Algorithm Theoretical Basis Document. NOAA Climate Data Record Program. CDRP-ATBD-0812, Rev. 0; NOAA: Washington, DC, USA, 2018. [Google Scholar]
- Huffman, J.G.; Adler, F.R.; Bolvin, T.D.; Nelkin, J.E. The TRMM Multi-Satellite Precipitation Analysis (TMPA). In Satellite Rainfall Applications for Surface Hydrology; Gebremichael, M., Hossain, F., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 3–22. ISBN 978-90-481-2915-7. [Google Scholar]
- Ayugi, B.; Zhihong, J.; Zhu, H.; Ngoma, H.; Babaousmail, H.; Rizwan, K.; Dike, V. Comparison of CMIP6 and CMIP5 Models in Simulating Mean and Extreme Precipitation over East Africa. Int. J. Climatol. 2021, 41, 6474–6496. [Google Scholar] [CrossRef]
- Ngoma, H.; Wen, W.; Ayugi, B.; Babaousmail, H.; Karim, R.; Ongoma, V. Evaluation of Precipitation Simulations in CMIP6 Models over Uganda. Int. J. Climatol. 2021, 41, 4743–4768. [Google Scholar] [CrossRef]
- Asadullah, A.; Mcintyre, N.; Kigobe, M. Evaluation of Five Satellite Products for Estimation of Rainfall over Uganda. Hydrol. Sci. J. 2008, 53, 1137–1150. [Google Scholar] [CrossRef]
- Dinku, T.; Ceccato, P.; Grover-Kopec, E.; Lemma, M.; Connor, S.J.; Ropelewski, C.F. Validation of Satellite Rainfall Products over East Africa’s Complex Topography. Int. J. Remote Sens. 2007, 28, 1503–1526. [Google Scholar] [CrossRef]
- Diem, J.E.; Hartter, J.; Ryan, S.J.; Palace, M.W. Validation of Satellite Rainfall Products for Western Uganda. J. Hydrometeorol. 2014, 15, 2030–2038. [Google Scholar] [CrossRef]
- AghaKouchak, A.; Mehran, A.; Norouzi, H.; Behrangi, A. Systematic and Random Error Components in Satellite Precipitation Data Sets. Geophys. Res. Lett. 2012, 39, 4. [Google Scholar] [CrossRef]
- Maggioni, V.; Massari, C. On the Performance of Satellite Precipitation Products in Riverine Flood Modeling: A Review. J. Hydrol. 2018, 558, 214–224. [Google Scholar] [CrossRef]
- Bhatti, H.A.; Rientjes, T.; Haile, A.T.; Habib, E.; Verhoef, W. Evaluation of Bias Correction Method for Satellite-Based Rainfall Data. Sensors 2016, 16, 884. [Google Scholar] [CrossRef]
- Gebrechorkos, S.H.; Hülsmann, S.; Bernhofer, C. Evaluation of Multiple Climate Data Sources for Managing Environmental Resources in East Africa. Hydrol. Earth Syst. Sci. 2018, 22, 4547–4564. [Google Scholar] [CrossRef]
- Van Griensven, A.; Meixner, T.; Grunwald, S.; Bishop, T.; Diluzio, M.; Srinivasan, R. A Global Sensitivity Analysis Tool for the Parameters of Multi-Variable Catchment Models. J. Hydrol. 2006, 324, 10–23. [Google Scholar] [CrossRef]
- Wagener, T.; Kollat, J. Numerical and Visual Evaluation of Hydrological and Environmental Models Using the Monte Carlo Analysis Toolbox. Environ. Model. Softw. 2007, 22, 1021–1033. [Google Scholar] [CrossRef]
- Sreedevi, S.; Eldho, T.I. A Two-Stage Sensitivity Analysis for Parameter Identification and Calibration of a Physically-Based Distributed Model in a River Basin. Hydrol. Sci. J. 2019, 64, 701–719. [Google Scholar] [CrossRef]
- Op de Hipt, F.; Diekkrüger, B.; Steup, G.; Yira, Y.; Hoffmann, T.; Rode, M. Applying SHETRAN in a Tropical West African Catchment (Dano, Burkina Faso)—Calibration, Validation, Uncertainty Assessment. Water 2017, 9, 101. [Google Scholar] [CrossRef]
- Birkinshaw, S. SHETRAN Version 4: Data Requirements, Data Processing and Parameter Values; Newcastle University: Newcastle Upon Tyne, UK, 2008. [Google Scholar]
Topsoil Type | Mean Bottom Depth from the Ground Surface (m) | ||
---|---|---|---|
Topsoil | Weathered Rock | Base Rock | |
Loam | 3.893 | 12.553 | 30 |
Clay loam | 3.857 | 12.943 | 30 |
Sandy silt loam/sandy clay loam | 5.226 | 14.16 | 30 |
Water Balance Component | Without Wetlands | With Wetlands | Relative Change (%) |
---|---|---|---|
Precipitation (mm) | 1299.3 | 1299.3 | |
Actual evapotranspiration (mm) | 1218.2 | 1222.5 | 0.4 |
Catchment outflow (mm) | 78.6 | 74.3 | −5.5 |
Water Balance Component | Without Wetlands | With Wetlands | Relative Change (%) |
---|---|---|---|
Model ensemble—baseline period | |||
Precipitation (mm) | 1294.9 | 1294.9 | |
Actual evapotranspiration (mm) | 1212.7 | 1217.0 | 0.4 |
Catchment discharge (mm) | 82.4 | 77.0 | −6.6 |
Model ensemble—GWL2 | |||
Precipitation (mm) | 1403.4 | 1403.4 | |
Actual evapotranspiration (mm) | 1298.8 | 1304.3 | 0.4 |
Catchment discharge (mm) | 111.8 | 107.0 | −4.3 |
Model ensemble—GWL4 | |||
Precipitation (mm) | 1456.9 | 1456.9 | |
Actual evapotranspiration (mm) | 1361.8 | 1367.4 | 0.4 |
Catchment discharge (mm) | 105.7 | 100.5 | −5.0 |
Scenario | Flow Duration (Days) | Flow Magnitude (m3/s) | Event Frequency | |||
---|---|---|---|---|---|---|
Mean | Range | Mean | Range | Mean | Range | |
Flood flows | ||||||
BLw | 85 | 3–216 | 37.65 | 33.27–52.70 | 1 | 0–2 |
GWL2w | 128 | 9–365 | 42.87 | 34.14–60.68 | 1 | 0–3 |
GWL4w | 110 | 21–295 | 41.21 | 33.70–56.78 | 1 | 0–4 |
BLwo | 46 | 3–144 | 42.23 | 33.37–65.43 | 2 | 0–4 |
GWL2wo | 72 | 16–250 | 45.21 | 35.35–68.29 | 2 | 0–5 |
GWL4wo | 61 | 8–272 | 44.70 | 33.92–59.92 | 2 | 0–5 |
Low flows | ||||||
BLw | 32 | 3–59 | 10.42 | 8.91–11.40 | 1 | 0–2 |
GWL2w | 33 | 14–65 | 10.60 | 9.69–11.30 | 1 | 0–2 |
GWL4w | 48 | 15–97 | 10.04 | 7.40–11.17 | 1 | 0–4 |
BLwo | 22 | 2–53 | 10.47 | 8.62–11.54 | 2 | 0–5 |
GWL2wo | 19 | 5–61 | 10.71 | 9.56–11.27 | 1 | 0–7 |
GWL4wo | 27 | 3–88 | 10.45 | 9.39–11.32 | 1 | 0–6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oyarmoi, A.; Birkinshaw, S.; Hewett, C.J.M.; Fowler, H.J. The Effect of Papyrus Wetlands on Flow Regulation in a Tropical River Catchment. Land 2023, 12, 2158. https://doi.org/10.3390/land12122158
Oyarmoi A, Birkinshaw S, Hewett CJM, Fowler HJ. The Effect of Papyrus Wetlands on Flow Regulation in a Tropical River Catchment. Land. 2023; 12(12):2158. https://doi.org/10.3390/land12122158
Chicago/Turabian StyleOyarmoi, Alem, Stephen Birkinshaw, Caspar J. M. Hewett, and Hayley J. Fowler. 2023. "The Effect of Papyrus Wetlands on Flow Regulation in a Tropical River Catchment" Land 12, no. 12: 2158. https://doi.org/10.3390/land12122158
APA StyleOyarmoi, A., Birkinshaw, S., Hewett, C. J. M., & Fowler, H. J. (2023). The Effect of Papyrus Wetlands on Flow Regulation in a Tropical River Catchment. Land, 12(12), 2158. https://doi.org/10.3390/land12122158