A Comprehensive Review of Plastics in Agricultural Soils: A Case Study of Castilla y León (Spain) Farmlands
Abstract
:1. Introduction
Abundance of Plastics in Soils
2. Laboratory Methods (Extraction, Identification, and Quantification)
3. Occurrence of Plastics in Agricultural Soils: The Case of CYL
Global Evidence of Microplastics in Soils of Castilla y Leon
4. The Effects of Plastics on the Physicochemical Properties of Agricultural Soils
5. Potential Susceptibility of Two Benchmark Soils of CYL to Plastic Pollution
6. Conclusions, Prospects, and Research Gaps
- Avoiding the use of plastics by adopting more sustainable agricultural practices, in such a way that it is necessary to try to eliminate the use of unnecessary or problematic plastics;
- Replacing greenhouse films and unnecessary plastics with more durable alternatives, such as glass or polycarbonate, and safe and sustainable materials;
- Replacing short-term, single-cycle products with reusable ones, e.g., stackable rigid harvesting crates instead of flexible bags;
- Replacing non-biodegradable conventional polymers with biodegradable polymers.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silva, A.B.; Bastos, A.S.; Justino, C.I.; da Costa, J.P.; Duarte, A.C.; Rocha-Santos, T.A. Microplastics in the environment: Challenges in analytical chemistry-A review. Anal. Chim. Acta 2018, 1017, 1–19. [Google Scholar] [CrossRef]
- Carus, M. Bio-Based Building Blocks and Polymers—Global Capacities, Production, and Applications–Status Quo and Trends 2018–2023; Nova-Institute for Ecology and Innovation: Hürth, Germany, 2019; pp. 1–16. [Google Scholar]
- Atiwesh, G.; Mikhael, A.; Parrish, C.C.; Banoub, J.; Le, T.T. Environmental impact of bioplastic use: A review. Heliyon 2021, 7, e07918. [Google Scholar]
- Censi, V.; Saiano, F.; Bongiorno, D.; Indelicato, S.; Napoli, A.; Piazzese, D. Bioplastics: A new analytical challenge. Front. Chem. 2022, 10, 971792. [Google Scholar] [CrossRef]
- De Souza, A.A.; Kloas, W.; Zarfl, C.; Hempel, S.; Rillig, M.C. Microplastics as an emerging threat to terrestrial ecosystems. Glob. Chang. Biol. 2018, 24, 1405–1416. [Google Scholar]
- Rillig, M.C. Microplastic in terrestrial ecosystems and the soil? Environ. Sci. Technol. 2012, 46, 6453–6454. [Google Scholar] [CrossRef]
- Rochman, C.M. Microplastics research from sink to source. Science 2018, 360, 28–29. [Google Scholar] [CrossRef]
- Ng, E.L.; Huerta Lwanga, E.; Eldridge, S.M.; Johnston, P.; Hu, H.W.; Geissen, V.; Chen, D. An overview of microplastic and nanoplastic pollution in agroecosystems. Sci. Total Environ. 2018, 627, 1377–1388. [Google Scholar]
- FAO. Assessment of Agricultural Plastics and Their Sustainability. A Call for Action; FAO: Rome, Italy, 2021. [Google Scholar]
- Bessa, F.; Barría, P.; Neto, J.M.; Frias, J.P.G.L.; Otero, V.; Sobral, P.; Marques, J.C. Occurrence of microplastics in commercial fish from a natural estuarine environment. Mar. Pollut. Bull. 2018, 128, 575–584. [Google Scholar]
- Jinadasa, B.K.K.K.; Uddin, S.; Fowler, S.W. Microplastics (MPs) in marine food chains: Is it a food safety issue? In Advances in Food and Nutrition Research; Academic Press: New York, NY, USA, 2023; Volume 103, pp. 101–140. [Google Scholar]
- UNEP. End Plastic Pollution: Towards an International Legally Binding Instrument. Resolution Adopted by the United Nations Environment Assembly on 2 March 2022; United Nations Environment Assembly of the United Nations Environment Programme: Nairobi, Kenya, 2022. [Google Scholar]
- Dissanayake, P.V.; Kim, S.; Sarkar, B.; Oleszczuk, P.; Sang, M.K.; Haque, M.N.; Ahn, J.H.; Bank, M.S.; Ok, Y.S. Effects of microplastics on the terrestrial environment: A critical review. Environ. Res. 2022, 209, 112734. [Google Scholar]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef]
- Rochman, C.M.; Hoellein, T. The global odyssey of plastic pollution. Science 2020, 368, 1184–1185. [Google Scholar] [CrossRef] [PubMed]
- Eriksen, M.; Cowger, W.; Erdle, L.M.; Coffin, S.; Villarrubia-Gómez, P.; Moore, C.J.; Carpenter, E.J.; Day, R.H.; Thiel, M.; Wilcox, C. A growing plastic smog, now estimated to be over 170 trillion plastic particles afloat in the world’s oceans—Urgent solutions required. PLoS ONE 2023, 18, e0281596. [Google Scholar]
- FAO. Good Agricultural Practices for Greenhouse Vegetable Crops; Principles for Mediterranean Climate Areas; FAO: Rome, Italy, 2013; 640p. [Google Scholar]
- Mendoza-Fernández, A.J.; Peña-Fernández, A.; Molina, L.; Aguilera, P.A. The Role of Technology in Greenhouse Agriculture: Towards a Sustainable Intensification in Campo de Dalías (Almería, Spain). Agronomy 2021, 11, 101. [Google Scholar] [CrossRef]
- Parra, S. Protected horticulture and environment. An integral decision model for greenhouse waste management in South-Eastern Spain. In Proceedings of the 107th Seminar, Sevilla, Spain, 29 January–1 February 2008. [Google Scholar]
- Russo, G.; Scarascia, G. LCA methodology applied to various typology of greenhouses. Acta Hortic. 2005, 691, 837–844. [Google Scholar] [CrossRef]
- Plastics Europe. The Facts 2021. An Analysis of European Plastics Production, Demand and Waste Data. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2021/ (accessed on 3 June 2023).
- Lusher, A.; Hollman, P.; Mendoza-Hill, J. Microplastics in Fisheries and Aquaculture; Fisheries and Aquaculture Technical Paper 615; FAO: Rome, Italy, 2017; Available online: http://www.fao.org/3/a-i7677e.pdf (accessed on 4 June 2023).
- He, D.; Luo, Y.; Lu, S.; Liu, M.; Song, Y.; Lei, L. Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. Trends Anal. Chem. 2018, 109, 163–172. [Google Scholar]
- Bläsing, M.; Amelung, W. Plastics in soil: Analytical methods and possible sources. Sci. Total Environ. 2018, 612, 422–435. [Google Scholar]
- Andrady, A.L. The plastic in microplastics: A review. Mar. Pollut. Bull. 2017, 119, 12–22. [Google Scholar]
- Zubris, K.A.V.; Richards, B.K. Synthetic fibers as an indicator of land application of sludge. Environ. Pollut. 2005, 138, 201–211. [Google Scholar]
- Zhang, B.; Yang, X.; Chen, L.; Chao, J.; Teng, J.; Wang, Q. Microplastics in soils: A review of possible sources, analytical methods and ecological impacts. J. Chem. Technol. Biotechnol. 2020, 37, 1045. [Google Scholar] [CrossRef]
- European Union. EIP-AGRI Focus Group Circular Horticulture; Office of the European Union: Brussels, Belgium, 2017; pp. 1–18. Available online: https://ec.europa.eu/eip/agriculture/en/publications/eip-agri-focus-group-circular-horticulture (accessed on 7 June 2023).
- Abbate, C.; Scavo, A.; Pesce, G.R.; Fontanazza, S.; Restuccia, A.; Mauromicale, G. Soil bioplastic mulches for agroecosystem sustainability: A comprehensive review. Agriculture 2023, 13, 197. [Google Scholar]
- Junta de Castilla y León. Plan Integral de Residuos de Castilla y León. 2015. Available online: https://medioambiente.jcyl.es/web/es/calidad-ambiental/plan-integral-residuos-castilla.html (accessed on 10 July 2023).
- BOCCYL. PNL 52/9 Instando a la Junta de Castilla y León a la Revisión de la Declaración de Impacto Ambiental Recogida en la Orden FYM/796/2013, de 25 de Septiembre. Cortes de Castilla y León, 2015. Available online: https://www.ccyl.es/Publicaciones/PublicacionesIniciativa?Legislatura=9&CodigoIniciativa=PNL&NumeroExpediente=52 (accessed on 10 July 2023).
- Junta de Castilla y León. Estrategia de Economía Circular de Castilla y León 2021–2030. 2021. Available online: https://medioambiente.jcyl.es/web/es/planificacion-indicadores-cartografia/estrategia-economia-circular-2021.html (accessed on 10 July 2023).
- Hwang, J.; Choi, D.; Han, S.; Choi, J.; Hong, J. An assessment of the toxicity of polypropylene microplastics in human derived cells. Sci. Total Environ. 2019, 684, 657–669. [Google Scholar] [CrossRef]
- Brodhagen, M.; Goldberger, J.R.; Hayes, D.; Inglis, D.A.; Marsh, T.L.; Miles, C. Policy considerations for limiting unintended residual plastic in agricultural soils. Environ. Sci. Policy 2017, 69, 81–84. [Google Scholar] [CrossRef]
- European Commission’s Group of Chief Scientific Advisors. Environmental and Health Risks of Microplastic Pollution. 2019. Available online: https://ec.europa.eu/info/sites/default/files/research_and_innovation/groups/sam/ec_rtd_sam-mnp-opinion_042019.pdf (accessed on 6 June 2023).
- EIP-AGRI Focus Group. Reducing the Plastic Footprint of Agriculture. Available online: https://ec.europa.eu/eip/agriculture/sites/default/files/eip-gri_fg_plastic_footprint_final_report_2021_en.pdf (accessed on 5 June 2023).
- Alimi, O.S.; Farner Budarz, J.; Hernandez, L.M.; Tufenkji, N. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport. Environ. Sci. Technol. 2018, 52, 1704–1724. [Google Scholar] [CrossRef] [PubMed]
- Boots, B.; Russell, C.W.; Green, D.S. Effects of microplastics in soil ecosystems: Above and below ground. Environ. Sci. Technol. 2019, 53, 11496–11506. [Google Scholar] [CrossRef] [PubMed]
- Kunz, A.; Walther, B.A.; Löwemark, L.; Lee, Y.C. Distribution and quantity of microplastic on sandy beaches along the northern coast of Taiwan. Mar. Pollut. Bull. 2016, 111, 126–135. [Google Scholar] [CrossRef]
- Shim, W.J.; Hong, S.H.; Eo, S.E. Identification methods in microplastic analysis: A review. Anal. Methods 2017, 9, 1384–1391. [Google Scholar] [CrossRef]
- Frias, J.P.G.L.; Nash, R. Microplastics: Finding a consensus on the definition. Mar. Pollut. Bull. 2018, 138, 145–147. [Google Scholar] [CrossRef]
- Hartmann, N.B.; Hüffer, T.; Thompson, R.C.; Hassellöv, M.; Verschoor, A.; Daugaard, A.E.; Rist, S.; Karlsson, T.; Brennholt, N.; Cole, M.; et al. Are we speaking the same language? recommendations for a definition and categorization framework for plastic debris. Environ. Sci. Technol. 2019, 53, 1039–1047. [Google Scholar] [CrossRef]
- Allen, S.; Allen, D.; Karbalaei, S.; Maselli, V.; Walker, T.R. Micro(nano)plastics sources, fate, and effects: What we know after ten years of research. J. Hazard. Mater. Adv. 2022, 6, 100057. [Google Scholar]
- Zhang, Z.; Zhao, S.; Chen, L.; Duan, C.; Zhang, X.; Fang, L. A review of microplastics in soil: Occurrence, analytical methods, combined contamination and risks. Environ. Pollut. 2022, 306, 119374. [Google Scholar]
- Surendran, U.; Jayakumar, M.; Raja, P.; Gopinath, G.; Chellam, P.V. Microplastics in terrestrial ecosystem: Sources and migration in soil environment. Chemosphere 2023, 318, 137946. [Google Scholar] [CrossRef]
- Crawford, C.B.; Quinn, B. Microplastic separation techniques. In Microplastic Pollutants; Elsevier: Amsterdam, The Netherlands, 2017; pp. 203–218. [Google Scholar]
- Möller, J.N.; Löder, M.G.; Laforsch, C. Finding microplastics in soils: A review of analytical methods. Environ. Sci. Technol. 2020, 54, 2078–2090. [Google Scholar] [CrossRef]
- Zhang, G.S.; Liu, Y.F. The distribution of microplastics in soil aggregate fractions in southwestern China. Sci. Total Environ. 2018, 642, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Fuller, S.; Gautam, A. A procedure for measuring microplastics using pressurized fluid extraction. Environ. Sci. Technol. 2016, 50, 5774–5780. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo-Ruz, V.; Gutow, L.; Thompson, R.C.; Thiel, M. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environ. Sci. Technol. 2012, 46, 3060–3075. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhang, Y.; Li, C.; Jing, N.; Shao, S.; Wang, F.; Mei, H.; Rogers, K.M.; Kong, X.; Yuan, Y. Identification of biodegradable plastics using differential scanning calorimetry and carbon composition with chemometrics. J. Hazard. Mater. Adv. 2023, 10, 100260. [Google Scholar] [CrossRef]
- Scheurer, M.; Bigalke, M. Microplastics in Swiss Floodplain Soils. Environ. Sci. Technol. 2018, 52, 3591–3598. [Google Scholar] [CrossRef]
- Deng, Y.; Wu, J.; Chen, J.; Kang, K. Overview of microplastic pollution and its influence on the health of organisms. J. Environ. Sci. Health 2023, 58, 412–422. [Google Scholar] [CrossRef]
- Hossain, M.N.; Rahman, M.M.; Afrin, S.; Akbor, M.A.; Siddique, M.A.B.; Malafaia, G. Identification and quantification of microplastics in agricultural farmland soil and textile sludge in Bangladesh. Sci. Total Environ. 2023, 858, 160118. [Google Scholar] [CrossRef]
- Löder, M.G.; Gerdts, G. Chapter 8. Methodology used for the detection and identification of microplastics—A critical appraisal. In Marine Anthropogenic Litter; Springer: Berlin/Heidelberg, Germany, 2015; pp. 201–227. [Google Scholar]
- Xu, J.L.; Thomas, K.V.; Luo, Z.; Gowen, A.A. FTIR and Raman imaging for microplastics analysis: State of the art, challenges and prospects. TrAC Trends Anal. Chem. 2019, 119, 115629. [Google Scholar] [CrossRef]
- Li, J.; Song, Y.; Cai, Y. Focus topics on microplastics in soil: Analytical methods, occurrence, transport, and ecological risks. Environ. Pollut. 2020, 257, 113570. [Google Scholar] [CrossRef]
- Li, W.; Luo, Y.; Pan, X. Identification and characterization methods for microplastics basing on spatial imaging in micro-/nanoscales. In Microplastics in Terrestrial Environments: Emerging Contaminants and Major Challenges; Springer: Berlin/Heidelberg, Germany, 2020; pp. 25–37. [Google Scholar]
- Chen, J.; Wang, W.; Liu, H.; Xu, X.; Xia, J. A review on the occurrence, distribution, characteristics, and analysis methods of microplastic pollution in ecosystems. Environ. Pollut. Bioavailab. 2012, 33, 227–246. [Google Scholar] [CrossRef]
- He, D.; Zhang, X.; Hu, J. Methods for separating microplastics from complex solid matrices: Comparative analysis. J. Hazard. Mater. 2021, 409, 124640. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Xiang, Y.; Zhao, Y.; Li, Y.; Pan, X. Nanoscale infrared, thermal and mechanical properties of aged microplastics revealed by an atomic force microscopy coupled with infrared spectroscopy (AFM-IR) technique. Sci. Total Environ. 2020, 744, 140944. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Chen, J.; Zhang, D.; Pan, X. Evaluation of organic matter removal by H2O2 from microplastic surface by nano-physicochemical methods. Green. Anal. Chem. 2022, 3, 100035. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, X.; Gertsen, H.; Peters, P.; Salánki, T.; Geissen, V. A simple method for the extraction and identification of light density microplastics from soil. Sci. Total Environ. 2018, 616–617, 1056–1065. [Google Scholar] [CrossRef]
- Hurley, R.R.; Nizzetto, L. Fate and occurrence of micro(nano)- plastics in soils: Knowledge gaps and possible risks. Curr. Opin. Environ. Sci. Health. 2018, 1, 6–11. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, J.; Zhang, H.; Shi, H.; Fei, Y.; Huang, S.; Tong, Y.; Wen, D.; Luo, Y.; Barceló, D. Microplastics in agricultural soils on the coastal plain of Hangzhou Bay, east China: Multiple sources other than plastic mulching film. J. Hazard. Mater. 2020, 388, 121814. [Google Scholar] [CrossRef]
- Liu, X.; Tang, N.; Yang, W.; Chang, J. Microplastics pollution in the soils of various land-use types along Sheshui River basin of Central China. Sci. Total Environ. 2021, 806, 150620. [Google Scholar] [CrossRef]
- De Souza, A.A.; Lau, C.W.; Till, J.; Kloas, W.; Lehmann, A.; Becker, R.; Rillig, M.C. Impacts of microplastics on the soil biophysical environment. Environ. Sci. Technol. 2018, 52, 9656–9665. [Google Scholar] [CrossRef]
- Hayes, D. Micro-and nanoplastics in soil: Should we be concerned? Biodegrad. Mulch Perform. Adopt. 2019, Report No. PA-2019-01, 1–6. [Google Scholar]
- Ragoobur, D.; Huerta-Lwanga, E.; Somaroo, G.D. Microplastics in agricultural soils, wastewater effluents and sewage sludge in Mauritius. Sci. Total Environ. 2021, 798, 149326. [Google Scholar] [CrossRef] [PubMed]
- Espí, E.; Salmerón, A.; Fontecha, A.; García, Y.; Real, A.I. Plastic films for agricultural applications. J. Plast. Film. Sheeting 2006, 22, 85–102. [Google Scholar] [CrossRef]
- Scarascia-Mugnozza, G.; Sica, C.; Russo, G. Plastic Materials in European Agriculture: Actual Use and Perspectives. J. Agric. Eng. 2012, 42, 15–28. [Google Scholar] [CrossRef]
- Piehl, S.; Leibner, A.; Löder, M.G.J.; Dris, R.; Bogner, C.; Laforsch, C. Identification and quantification of macro- and microplastics on an agricultural farmland. Sci. Rep. 2018, 8, 1–9. [Google Scholar]
- Picuno, C.; Godosi, Z.; Kuchta, K.; Picuno, P. Agrochemical plastic packaging waste decontamination for recycling: Pilot tests in Italy. J. Agric. Eng. 2019, 50, 99–104. [Google Scholar] [CrossRef]
- Fakour, H.; Lo, S.-L.; Yoashi, N.; Massao, A.; Lema, N.; Mkhontfo, F.; Jomalema, P.; Jumanne, N.; Mbuya, B.; Mtweve, J.; et al. Quantification and Analysis of Microplastics in Farmland Soils: Characterization, Sources, and Pathways. Agriculture 2021, 11, 330. [Google Scholar] [CrossRef]
- Rillig, M.C.; Lehmann, A.; de Souza, A.A.; Yang, G. Microplastic effects on plants. New. Phytol. 2019, 223, 1066–1070. [Google Scholar] [CrossRef]
- Steinmetz, Z.; Wollmann, C.; Schaefer, M.; Buchmann, C.; David, J.; Tröger, J.; Muñoz, K.; Frör, O.; Schaumann, G.E. Plastic mulching in agriculture—Trading short-term agronomic benefits for long-term soil degradation? Sci. Total Environ. 2016, 550, 690–705. [Google Scholar]
- Yan, C.R.; He, W.Q.; Liu, S.; Cao, S.L. Application of Mulch Films and Prevention of Its Residual Pollution in China; China Science Publication Beijing: Beijing, China, 2015. (In Chinese) [Google Scholar]
- Blair, R.M.; Waldron, S.; Phoenix, V.; Gauchotte-Lindsay, C. Micro- and nanoplastic pollution of freshwater and wastewater treatment systems. Springer Sci. Rev. 2017, 5, 19–30. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Y.; Sun, X.; Peng, Y.; Xiao, L. Mixing effect of polylactic acid microplastic and straw residue on soil property and ecological function. Chemosphere 2020, 243, 125271. [Google Scholar] [CrossRef] [PubMed]
- Corradini, F.; Meza, P.; Eguiluz, R.; Casado, F.; Huerta-Lwanga, E.; Geissen, V. Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Sci. Total Environ. 2019, 671, 411–420. [Google Scholar] [CrossRef]
- Schell, T.; Hurley, R.; Buenaventura, N.T.; Mauri, P.V.; Nizzetto, L.; Rico, A.; Vighi, M. Fate of microplastics in agricultural soils amended with sewage sludge: Is surface water runoff a relevant environmental pathway? Environ. Pollut. 2022, 293, 118520. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, Z.; Yan, C.; Chadwick, D.; Jones, D.L.; Liu, E.; Liu, Q.; Bai, R.; He, W. Kinetics of microplastic generation from different types of mulch films in agricultural soil. Sci. Total Environ. 2022, 814, 152572. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Reverón, R.; González-Sálamo, J.; Hernández-Sánchez, C.; González-Pleiter, M.; Hernández-Borges, J.; Díaz-Peña, F.J. Recycled wastewater as a potential source of microplastics in irrigated soils from an arid-insular territory (Fuerteventura, Spain). Sci. Total Environ. 2022, 817, 152830. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, Q.; Jia, W.; Yan, C.; Wang, J. Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environ. Pollut. 2020, 260, 114096. [Google Scholar] [CrossRef]
- Beriot, N.; Peek, J.; Zornoza, R.; Geissen, V.; Lwanga, E.H. Low density-microplastics detected in sheep faeces and soil: A case study from the intensive vegetable farming in Southeast Spain. Sci. Total Environ. 2020, 755, 142653. [Google Scholar] [CrossRef]
- Ren, Z.; Gui, X.; Xu, X.; Zhao, L.; Qiu, H.; Cao, X. Microplastics in the soil-groundwater environment: Aging, migration, and co-transport of contaminants—A critical review. J. Hazard. Mater. 2021, 419, 126455. [Google Scholar] [CrossRef]
- Caballero-Pedraza, A.; Romero-Díaz, A.; Espinosa-Soto, I. Landscape changes and environmental effects due to intensive agriculture in the Campo de Cartagena-Mar Menor (Murcia). Estud. Geográficos 2015, 279, 473–498. [Google Scholar] [CrossRef]
- Castillo-Díaz, F.J.; Belmonte-Ureña, L.J.; Camacho-Ferre, F.; Tello-Marquina, J.C. The Management of Agriculture Plastic Waste in the Framework of Circular Economy. Case of the Almeria Greenhouse (Spain). Int. J. Environ. Res. Public. Health 2021, 18, 12042. [Google Scholar] [CrossRef]
- García-Raya, P.; Ruiz-Olmos, C.; Marín-Guirao, J.I.; Asensio-Grima, C.; Tello-Marquina, J.C.; by Cara-García, M. Greenhouse soil biosolarization with tomato plant debris as a unique fertilizer for tomato crops. Int. J. Environ. Res. Public. Health 2019, 16, 279. [Google Scholar] [CrossRef]
- Sánchez-Navarro, A.; Jiménez-Ballesta, R.; Girona-Ruiz, A.; Alarcón-Vera, I.; Delgado-Iniesta, M.J. Rapid response indicators for predicting changes in soil properties due to solarization or biosolarization on an intensive horticultural crop in semiarid regions. Land 2022, 11, 64. [Google Scholar] [CrossRef]
- MAAMA: Survey on Surfaces and Crop Yields in Spain (ESYRCE); Ministry of Agriculture, Food and Environment: Madrid, Spain, 2013; 166p.
- Rillig, M.C.; Ingraffia, R.; de Souza, A.A. Microplastic incorporation into soil in agroecosystems. Front. Plant Sci. 2017, 8, 1805. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Li, R.; Zhou, Q.; Li, L.; Li, Y.; Tu, C.; Zhao, X.; Xiong, K.; Christie, P.; Luo, Y. Abundance and morphology of microplastics in an agricultural soil following long-term repeated application of pig manure. Environ. Pollut. 2020, 272, 116028. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Li, L.; Li, R.; Xu, L.; Shen, Y.; Li, S.; Tu, C.; Wu, L.; Christie, P.; Luo, Y. Microplastics in an agricultural soil following repeated application of three types of sewage sludge: A field study. Environ. Pollut. 2021, 289, 117943. [Google Scholar] [CrossRef]
- Guo, J.-J.; Huang, X.-P.; Xiang, L.; Wang, Y.-Z.; Li, Y.-W.; Li, H.; Cai, Q.-Y.; Mo, C.-H.; Wong, M. Source, migration and toxicology of microplastics in soil. Environ. Int. 2020, 137, 105263. [Google Scholar] [PubMed]
- Weithmann, N.; Möller, J.N.; Löder, M.G.J.; Piehl, S.; Laforsch, C.; Freitag, R. Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci. Adv. 2018, 4, eaap8060. [Google Scholar] [CrossRef]
- Gui, J.; Sun, Y.; Wang, J.; Chen, X.; Zhang, S.; Wu, D. Microplastics in composting of rural domestic waste: Abundance, characteristics, and release from the surface of macroplastics. Environ. Pollut. 2021, 274, 116553. [Google Scholar] [CrossRef]
- Edo, C.; González-Pleiter, M.; Leganés, F.; Fernández-Piñas, F.; Rosal, R. Fate of microplastics in wastewater treatment plants and their environmental dispersion with effluent and sludge. Environ. Pollut. 2019, 259, 113837. [Google Scholar] [CrossRef]
- Castilla, N. Greenhouse Technology and Management, 2nd ed.; CABI: Wallingford, UK, 2013; pp. 1–335. [Google Scholar]
- Cabrera, A.; Uclés, D.; Aguera, T.; de la Cruz, E. Analysis of the Fruit and Vegetable Campaign in Almería: 2016/2017 Campaign; Editorial Fundación Cajamar: London, UK, 2017; Volume 1, pp. 1–59. [Google Scholar]
- García-Rodriguez, A.; Forteza-Bonin, A.; Lorenzo-Martín, L.F.; Najac-Ballesteros, N.; Cuadrado-Sanchez, S.; Ingelmo-Sanchez, F.; Hernandez-Pombero, J.; Garcia-Rodriguez, M.P.; Prat-Perez, L.; Muñez-Leon, M.C.; et al. Mapa de Suelos de Castilla y León. Escala 1:500.000; Dirección General de Medio Ambiente y Urbanismo. Servicio de Ordenación del Territorio y Cartografía; Junta de Castilla y León: Valladolid, Spain, 1998. [Google Scholar]
- Da Costa, J.P.; Da Costa, J.P.; Paço, A.; Paço, A.; Santos, P.; Santos, P.; Duarte, A.C.; Duarte, A.C.; Rocha-Santos, T.; Rocha-Santos, T. Microplastics in soils: Assessment, analytics and risks. Environ. Chem. 2019, 16, 18. [Google Scholar] [CrossRef]
- Harms, I.K.; Diekötter, T.; Troegel, S.; Lenz, M. Amount, distribution and composition of large microplastics in typical agricultural soils in Northern Germany. Sci. Total Environ. 2020, 758, 143615. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Jinjin, C.; Ji, R.; Ma, Y.; Yu, X. Microplastics in agricultural soils: Sources, effects, and their fate. Current Opinion in Environmental. Science and Health. 2022, 25, 100311. [Google Scholar]
- Corradini, F.; Casado, F.; Leiva, V.; Huerta-Lwanga, E.; Geissen, V. Microplastics occurrence and frequency in soils under different land uses on a regional scale. Sci. Total Environ. 2020, 752, 141917. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Statistics. Amount of Waste Generated by Autonomous Community, EWC Categories and Economic Sectors; INE: London, UK, 2023; Available online: https://www.ine.es/jaxi/Datos.htm?path=/t26/p067/p02/residuos/a2006/l0/&file=02001.px (accessed on 14 July 2023).
- Castellano, S.; Di Palma, A.; Germinara, G.S.; Lippolis, M.; Starace, G.; Scarascia-Mugnozza, G. Experimental nets for a protection system against the vectors of Xylella fastidiosa. Agriculture 2019, 9, 32. [Google Scholar] [CrossRef]
- Statuto, D.; Abdel-ghany, A.M.; Starace, G.; Arrigoni, P.; Picuno, P. Comparison of the efficiency of plastic nets for shading greenhouse in different climates. In Proceedings of the International Mid-Term Conference of the Italian Association of Agricultural Engineering, Matera, Italy, 12–13 September 2019. [Google Scholar]
- Liang, Y.; Lehmann, A.; Ballhausen, M.B.; Muller, L.; Rillig, M.C. Increasing temperature and microplastic fibers jointly influence soil aggregation by saprobic fungi. Front. Microbiol. 2019, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, A.; Leifheit, E.F.; Feng, L.; Bergmann, J.; Wulf, A.; Rillig, M.C. Microplastic fiber and drought effects on plants and soil are only slightly modified by arbuscular mycorrhizal fungi. Soil Ecol. Lett. 2020, 4, 32–44. [Google Scholar] [CrossRef]
- Xu, B.; Liu, F.; Cryder, Z.; Huang, D.; Lu, Z.; He, Y.; Wang, H.; Lu, Z.; Brookes, P.C.; Tang, C.; et al. Microplastics in the soil environment: Occurrence, risks, interactions and fate—A review. Crit. Rev. Environ. Sci. Technol. 2020, 50, 2175–2222. [Google Scholar] [CrossRef]
- Yi, M.; Zhou, S.; Zhang, L.; Ding, S. The effects of three different microplastics on enzyme activities and microbial communities in soil. Water Environ. Res. 2021, 93, 24–32. [Google Scholar] [CrossRef]
- Qi, Y.; Yang, X.; Pelaez, A.M.; Lwanga, E.H.; Beriot, N.; Gertsen, H.; Garbeva, P.; Geissen, V. Macro- and micro-plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Sci. Total Environ. 2018, 645, 1048–1056. [Google Scholar] [CrossRef]
- Pathan, S.I.; Arfaioli, P.; Bardelli, T.; Ceccherini, M.T.; Nannipieri, P.; Pietramellara, G. Soil pollution from micro- and nanoplastic debris: A hidden and unknown biohazard. Sustainability 2020, 12, 7255. [Google Scholar] [CrossRef]
- Dris, R.; Gasperi, J.; Rocher, V.; Saad, M.; Renault, N.; Tassin, B. Microplastic contamination in an urban area: A case study in Greater Paris. Environ. Chem. 2015, 12, 592–599. [Google Scholar] [CrossRef]
- Ren, X.; Tang, J.; Wang, L.; Liu, Q. Microplastics in soil-plant system: Effects of nano/microplastics on plant photosynthesis, rhizosphere microbes and soil properties in soil with different residues. Plant Soil 2021, 462, 561–576. [Google Scholar] [CrossRef]
- De Souza, A.A.; Lau, C.W.; Kloas, W.; Bergmann, J.; Bachelier, J.B.; Faltin, E.; Becker, R.; Gorlich, A.S.; Rillig, M.C. Microplastics can change soil properties and affect plant performance. Environ. Sci. Technol. 2019, 53, 6044–6052. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wu, W.; Bolan, M.N.S.; Tsang, D.C.W.; Li, Y.; Qin, M.; Hou, D. Environmental fate, toxicity and risk management strategies of nanoplastics in the environment: Current status and future perspectives. Hazar. Mat. 2020, 401, 123415. [Google Scholar]
- Zhang, X.; Li, Y.; Ouyang, D.; Lei, J.; Tan, Q.; Xie, L.; Li, Z.; Liu, T.; Xiao, Y.; Farooq, T.H.; et al. Systematical review of interactions between microplastics and microorganisms in the soil environment. J. Hazard. Mater. 2021, 418, 126288. [Google Scholar] [CrossRef]
- Ding, J.; Liu, C.; Chen, Q.; Zhang, Z.; Han, J.; Liang, A.; Zhu, D.; Wang, H.; Lv, M.; Chen, L. Extractable additives in microplastics: A hidden threat to soil fauna. Environ. Pollut. 2021, 294, 118647. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, Z.; Chen, L.; Cui, Q.; Cui, Y.; Song, D.; Fang, L. Review on migration, transformation and ecological impacts of microplastics in soil. Appl. Soil Ecol. 2022, 176, 104486. [Google Scholar]
- Jin, T.; Tang, J.; Lyu, H.; Wang, L.; Gillmore, A.B.; Schaeffer, S.M. Activities of microplastics (MPs) in agricultural soil: A review of MPs pollution from the perspective of agricultural ecosystems. J. Agric. Food Chem. 2022, 70, 4182–4201. [Google Scholar] [CrossRef]
- Wen, X.; Yin, L.; Zhou, Z.; Kang, Z.; Sun, Q.; Zhang, Y.; Long, Y.; Nie, X.; Wu, Z.; Jiang, C. Microplastics can affect soil properties and chemical speciation of metals in yellow-brown soil. Ecotoxicol. Environ. Saf. 2022, 243, 113958. [Google Scholar] [CrossRef]
- Kaur, P.; Singh, K.; Singh, B. Microplastics in soil: Impacts and microbial diversity and degradation. Pedosphere 2021, 32, 49–60. [Google Scholar] [CrossRef]
- Liu, H.; Yang, X.; Liu, G.; Liang, C.; Xue, S.; Chen, H.; Ritsema, C.J.; Geissen, V. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil. Chemosphere 2017, 185, 907–917. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Leng, Y.; Liu, X.; Wang, J. Microplastic pollution in vegetable farmlands of suburb Wuhan, central China. Environ. Pollut. 2020, 257, 113449. [Google Scholar] [CrossRef] [PubMed]
- Khalid, N.; Aqeel, M.; Noman, A. Microplastics could be a threat to plants in terrestrial systems directly or indirectly. Environ. Pollut. 2020, 267, 115653. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Li, P.; Yang, X.; Wang, Z.; Lu, B.; Chen, W.; Wu, Y.; Li, G.; Zhao, Z.; Liu, G. Soil texture is an important factor determining how microplastics affect soil hydraulic characteristics. Environ. Int. 2022, 165, 107293. [Google Scholar] [CrossRef] [PubMed]
- Seeley, M.E.; Song, B.; Passie, R.; Hale, R.C. Microplastics affect sedimentary microbial communities and nitrogen cycling. Nat. Commun. 2020, 11, 2372. [Google Scholar] [CrossRef]
- Xiao, M.; Shahbaz, M.; Liang, Y.; Yang, J.; Wang, S.; Chadwicka, D.R.; Jones, D.; Chen, J.; Ge, T. Effect of microplastics on organic matter decomposition in paddy soil amended with crop residues and labile C: A three-source-partitioning study. J. Hazard. Mater. 2021, 416, 126221. [Google Scholar] [CrossRef]
- Feng, S.; Lu, H.; Liu, Y. The occurrence of microplastics in farmland and grassland soils in the Qinghai-Tibet plateau: Different land use and mulching time in facility. Environ. Pollut. 2021, 279, 116939. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, J.; Liu, Y.; Chen, L.; Tao, S.; Liu, W. Distribution characteristics of microplastics in agricultural soils from the largest vegetable production base in China. Sci. Total Environ. 2021, 756, 143860. [Google Scholar] [CrossRef]
- Ren, S.Y.; Kong, S.F.; Ni, H.G. Contribution of mulch film to microplastics in agricultural soil and surface water in China. Environ. Pollut. 2021, 291, 118227. [Google Scholar] [CrossRef]
- Zhang, G.S.; Zhang, F.X.; Li, X.T. Effects of polyester microfibers on soil physical properties: Perception from a field and a pot experiment. Sci. Total Environ. 2019, 670, 1–7. [Google Scholar] [CrossRef]
- Liang, Y.; Lehmann, A.; Yang, G.; Leifheit, E.F.; Rillig, M.C. Effects of microplastic fibers on soil aggregation and enzyme activities are organic matter dependent. Front. Environ. Sci. 2021, 9, 650155. [Google Scholar] [CrossRef]
- Feng, X.; Wang, Q.; Sun, Y.; Zhang, S.; Wang, F. Microplastics change soil properties, heavy metal availability and bacterial community in a Pb-Zn-contaminated soil. J. Hazard. Mater. 2021, 424, 127364. [Google Scholar] [CrossRef] [PubMed]
- Li, H.Z.; Zhu, D.; Lindhardt, J.H.; Lin, S.M.; Ke, X.; Cui, L. Long-term fertilization history alters effects of microplastics on soil properties, microbial communities, and functions in diverse farmland ecosystem. Environ. Sci. Technol. 2021, 55, 4658–4668. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishna, A.; Tam, H.M.; Wani, S.P.; Long, T.D. Effect of mulch on soil temperature, moisture, weed infestation and yield of groundnut in Northern Vietnam. Field Crops Res. 2006, 95, 115–125. [Google Scholar] [CrossRef]
- Lamont, W.J., Jr. Plastic Mulches for the Production of Vegetable Crops. In A Guide to the Manufacture, Performance, and Potential of Plastics in Agriculture; Orzolek, M.D., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; Chapter 3; pp. 45–60. [Google Scholar]
- Tofanelli, M.B.D.; Wortman, S.E. Benchmarking the agronomic performance of biodegradable mulches against polyethylene mulch film: A meta-analysis. Agronomy 2020, 10, 1618. [Google Scholar] [CrossRef]
- Pramanik, P.; Bandyopadhyay, K.K.; Bhaduri, D.; Bhattacharyya, R.; Aggarwal, P. Effect of mulch on soil thermal regimes—A review. Int. J. Agric. Environ. Biotechnol. 2015, 8, 645–658. [Google Scholar] [CrossRef]
- Weber, C.J.; Weihrauch, C.; Opp, C.; Chifflard, P. Investigating microplastic dynamics in soils: Orientation for sampling strategies and sample pre–procession. Land. Degrad. Dev. 2021, 32, 270–284. [Google Scholar] [CrossRef]
- FAO. Guidelines for Soil Description, 4th ed.; FAO/UNESCO: Rome, Italy, 2006; p. 108. [Google Scholar]
- Gee, G.W.; Bauder, J.W. Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods, 2nd ed.; ASA-SSSA: Madison, WI, USA, 1986; pp. 383–411. [Google Scholar]
- Bremner, J.M.; Mulvaney, C.S. Nitrogen total. In Methods of Soil Analysis Part 2, Chemical and Microbiological Properties; ASA-SSSA: Madison, WI, USA, 1982; pp. 621–622. [Google Scholar]
- Thomas, G.W. Exchangeable Cations. In Methods of Soil Analysis Part 2, Chemical and Microbiological Properties; ASA-SSSA: Madison, WI, USA, 1982; pp. 159–165. [Google Scholar]
- Blake, G.R.; Hartge, K.H. Bulk density. In Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods; ASA-SSSA: Madison, WI, USA, 1986; pp. 363–382. [Google Scholar]
- Lian, J.; Liu, W.; Meng, L.; Wu, J.; Zeb, A.; Cheng, L.; Lian, Y.; Sun, H. Effects of microplastics derived from polymer-coated fertilizer on maize growth, rhizosphere, and soil properties. J. Clean. Prod. 2021, 318, 128571. [Google Scholar] [CrossRef]
- Rillig, M.C.; Leifheit, E.; Lehmann, J. Microplastic effects on carbon cycling processes in soils. PLoS Biol. 2021, 19, e3001130. [Google Scholar] [CrossRef]
- Ingraffia, R.; Amato, G.; Bagarello, V.; Carollo, F.G.; Giambalvo, D.; Iovino, M.; Lehmann, A.; Rillig, M.C.; Frenda, A.S. Polyester microplastic fibers affect soil physical properties and erosion as a function of soil type. Soil 2022, 8, 421–435. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 13th ed.; USDA Natural Resources Conservation Service: Washington, DC, USA, 2022; 402p.
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Uteau, D.; Kouso, S.; Peth, S.; Horn, R. Root and time dependent soil structure formation and its influence on gas transport in the subsoil. Soil Tillage Res. 2013, 132, 69–76. [Google Scholar] [CrossRef]
- Hahladakis, J.N.; Velis, C.A.; Weber, R.; Iacovidou, E.; Purnell, P. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 2018, 344, 179–199. [Google Scholar] [PubMed]
Region | Plastic Waste Production (Thousands t) |
---|---|
Andalucía | 31.02 |
Aragón | 0.42 |
Principado de Asturias | 0.03 |
Islas Baleares | 0.04 |
Islas Canarias | 0.81 |
Cantabria | 0.10 |
Castilla y León | 0.77 |
Castilla-La Mancha | 0.74 |
Cataluña | 1.46 |
Comunidad Valenciana | 0.85 |
Extremadura | 0.44 |
Galicia | 0.50 |
Comunidad de Madrid | 1.05 |
Región de Murcia | 8.51 |
Comunidad Foral de Navarra | 1.04 |
País Vasco | 0.07 |
La Rioja | 1.29 |
Total Spain | 49.13 |
Typic Calcixeroll (La Bureba, Burgos) | Typic Dystroxerept (Casavieja, Ávila) | ||||||
---|---|---|---|---|---|---|---|
Ah1 | Ah2 | Ck | Ah | Bw | C | ||
Site Coordinates UTM (30S) | 478,189; 4,712,461 | 348,799; 4,460,559 | |||||
Depth (cm) | 0–18 | 18–69 | >69 | 0–21 | 21–89 | >99 | |
Coarse elements (%) | 8.9 | 6.7 | 3.2 | 24.0 | 11.4 | 12.7 | |
Sand (%) | 50.7 | 55.1 | 44.7 | 74.2 | 81.7 | 79.7 | |
Silt (%) | 25.0 | 20.6 | 30.5 | 16.5 | 11.0 | 14.0 | |
Clay (%) | 24.3 | 24.3 | 24.8 | 9.3 | 7.3 | 6.3 | |
Texture | Sandy Clay Loam | Sandy Clay Loam | Loam | Sandy Loam | Loam Sandy | Sandy Loam | |
Organic Matter (%) | 4.8 | 3.7 | 0.1 | 1.2 | 0.4 | 0.1 | |
P (mg/kg) | 14.4 | 10.6 | 4.2 | 9.5 | 6.8 | 0 | |
Total Nitrogen (%) | 0.15 | 0.16 | 0.10 | 0.04 | 0.02 | 0 | |
C/N ratio | 18.6 | 13.4 | 0.5 | 17.25 | 11.5 | n.d. | |
pH (water 1:2.5) | 7.6 | 7.7 | 8.4 | 6.0 | 6.1 | 5.5 | |
Electrical conductivity (dS/m) | 0.23 | 0.27 | 0.22 | 0.12 | 0.13 | 0.07 | |
CaCO3 Content (%) | 28.0 | 23.0 | 44.0 | 0 | 0 | 0 | |
Bulk density (g/cc) | 0.9 | 0.8 | 1.5 | 1.3 | 1.6 | 1.7 | |
Cation Exchange Complex (cmol+/kg) | Ca2+ | 38.3 | 44.0 | 47.2 | 2.6 | 1.8 | 1.2 |
Mg2+ | 1.7 | 1.5 | 1.1 | 0.7 | 1.3 | 1.3 | |
K+ | 0.1 | 0.1 | 0.1 | 0.2 | 0.1 | 0.1 | |
Na+ | 0.1 | 0.1 | 0.2 | 0.1 | 0.1 | 0.1 | |
CEC | 38.7 | 43.4 | 35.2 | 18.9 | 24.0 | 16.0 | |
S (Sum of cations) | 40.2 | 45.7 | 36.6. | 3.6 | 4.3 | 3.7 | |
Base saturation (%) | 100 | 100 | 100 | 19.0 | 17.9 | 23.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mongil-Manso, J.; Jiménez-Ballesta, R.; Trujillo-González, J.M.; San José Wery, A.; Díez Méndez, A. A Comprehensive Review of Plastics in Agricultural Soils: A Case Study of Castilla y León (Spain) Farmlands. Land 2023, 12, 1888. https://doi.org/10.3390/land12101888
Mongil-Manso J, Jiménez-Ballesta R, Trujillo-González JM, San José Wery A, Díez Méndez A. A Comprehensive Review of Plastics in Agricultural Soils: A Case Study of Castilla y León (Spain) Farmlands. Land. 2023; 12(10):1888. https://doi.org/10.3390/land12101888
Chicago/Turabian StyleMongil-Manso, Jorge, Raimundo Jiménez-Ballesta, Juan Manuel Trujillo-González, Ana San José Wery, and Alexandra Díez Méndez. 2023. "A Comprehensive Review of Plastics in Agricultural Soils: A Case Study of Castilla y León (Spain) Farmlands" Land 12, no. 10: 1888. https://doi.org/10.3390/land12101888
APA StyleMongil-Manso, J., Jiménez-Ballesta, R., Trujillo-González, J. M., San José Wery, A., & Díez Méndez, A. (2023). A Comprehensive Review of Plastics in Agricultural Soils: A Case Study of Castilla y León (Spain) Farmlands. Land, 12(10), 1888. https://doi.org/10.3390/land12101888