Mapping Urban Structure Types Based on Remote Sensing Data—A Universal and Adaptable Framework for Spatial Analyses of Cities
Abstract
:1. Introduction
2. Review of Existing Frameworks
- Dependency: Is the concept dependent on a certain type of input data (1: specific data required) or is it universally applicable (5: any data)?
- Quantitative: Is the concept purely theoretical (1: concept only) or data-driven (5: fully quantitative)
- Transferability: Are the USTs linked to a certain city or region (1: locally valid) or is the concept transferable to any study area (5: fully transferable)
- Complexity: Is the delineation of USTs computationally complex (1: experts only) or can it be achieved by anyone (5: easy or adjustable implementation)
- Objectivity: Is the assignment of classes subject to interpretation (1: fully subjective) or is it defined objectively (5: automated or value-based assignment)?
- Level of detail: Is the inner-urban differentiation coarse (1: few classes) or detailed (5: many classes)?
2.1. Early Concepts and Spatial Theories on Morphology
2.2. Fundamental Remote Sensing-Based Studies
2.3. Concepts for Specific Purposes
3. Proposed Framework
3.1. Building Morphology
3.1.1. Official Building Data
3.1.2. Openly Available Building Footprints
3.1.3. Generation of Building Footprints
3.1.4. Proxy Datasets
3.2. Definition of a Mapping Unit (Block)
3.2.1. Administrative Boundaries
3.2.2. Mapping Units Derived from Spatial Data
3.2.3. Regular Spatial Divisions
3.2.4. Regular Spatial Divisions
3.3. Parameterization of the Mapping Units
3.3.1. Building-Related Parameters
3.3.2. Continuous Spatial Metrics
3.3.3. Classified Metrics
3.3.4. Local Parameters
- Cultural parameters: If the city has one or multiple important centers which are the historic or socio-economic origin of development, they can be implemented in the parameterization by calculating the Euclidean distance to such places. Aspects of centrality have already been acknowledged by Browning (1964), who identified systematic patterns in residential, industrial, commercial, public and transport-related phenomena in the city of Chicago with respect to their distance to the city center [175]. Also, Walde et al. (2013) used the city center for the definition of a distinct class of urban structures [45]. Similarly, the distance to the historic city center helped to distinguish between urban and rural residential areas in the city of Da Nang, Vietnam [176].
- Functional parameters: Similar to centers of cultural or socio-economic importance, the distance to infrastructures representing a certain service or which are linked to a higher quality of life can be included. As demonstrated by Jiang et al. (2021), not only the distances to the nearest urban center but also to the nearest metro station were significantly correlated with socio-economic data in Hong Kong [35]. Also, Warth et al. (2020) found that distances to the ring road and to the US embassy had high predictive value for the assignment of building types and socio-economics in Belmopan, Belize [111]. Further parameters are distances to schools or higher education places, malls and markets, business districts, or medical facilities and hospitals [177].
- Natural parameters: Especially in cities which are partly exposed to natural hazards, metrics can be used to make structural distinctions between neighborhoods of higher and lower exposition which undoubtedly interact with the development of a city’s morphologic and socio-economic structure. This can be the distance to the shoreline in settings affected by sea-level rise [178], or to major rivers which have central significance for the region [179,180], but also topographic parameters such as the slope of the terrain [181] or the height above the nearest river in all areas affected by fluvial flooding [182].
- Structural parameters: As indicated in Figure 9C, the prevalence of important structures can be distinctively expressed if they have a significant impact on the city’s morphology. For instance, Banzhaf and Höfer (2008) used building footprints as indicators for quarters dominated by different architectural phases (Wilhelminian style with courtyard buildings, row houses, or housing estates built after 1960) in the city of Leipzig, Germany [40]. Also, Downes (2022) used dominant building typologies within a block (shophouse, villa, apartment, business) as foundation for a detailed UST classification of Ho Chi Minh City, Vietnam [36].
3.4. Assignment of Classes
- Objectivity: A classification is considered fully objective if no decision was made by the user, starting from the use of a predefined class scheme (or, in the case of unsupervised approaches, using no scheme at all), followed by the data-driven definition of input parameters (e.g., by feature selection techniques [183]) and the automated assignment of classes to the blocks based on quantitative approaches. The opposite is a strongly user-driven selection of input variables, definition of class names, and classification of the blocks by means of manual assignment.
- Transferability: A classification which is applicable to cities across the entire globe is considered transferable and therefore suitable for comparative studies. It does not actively consider locally specific phenomena and produces results which are objectively reproducible and comparable in a spatial and temporal manner. In contrast to that, a low degree of transferability can be chosen in favor of a locally precise description of a single city for a single point in time.
3.4.1. Rule-Based Assignment
3.4.2. Unsupervised Clustering
3.4.3. Supervised Classification
- Redundancy: Can the classifier deal with partially correlated parameters (e.g., building height and building volume)? Is a preliminary feature analysis required to reduce redundancy in the feature space, for example, as presented by Tang et al. (2015) [192]?
- Complexity: Is the classifier well understood, including its advantages and shortcomings. Can its suitability for the classification task be objectively judged?
- Implementation: Is the classifier implemented by the preferred software package? Is it implemented by libraries of scripting languages for automated processing?
- Existing class schemes: The advantage of using an already existing class scheme is that results from different authors, studies, or regions can be compared. The currently most popular scheme is probably the Local Climate Zones (LCZ) introduced by Stewart and Oke (2012) [38], which has been adopted in numerous studies, and its prevalence over other spatial schemes on urban climate is increasing [194]. This concept stands out because of its clear and systematic class definition, its flexibility regarding input data and implementation, and its uptake by the scientific community. For instance, its computation has been made accessible via the World Urban Database (WUDAPT [195]) or within an ArcGIS toolbox [196]. Its suitability for multi-temporal analyses of urban structures has been demonstrated by Zhao et al. (2023), who used it to map the changes in the morphology of three Chinese cities between 2000, 2010, and 2020 [197].
- User-defined class schemes: There are good reasons for an a priori definition of classes which does not follow existing schemes, especially in cases when the city of interest is the only subject of the analysis, and no comparison with other cities is desired. It brings the advantage of a tailored legend which specifically facilitates the precise representation of structures which are required for subsequent steps (for example, informal settlements which are rarely subject to common class schemes [198], or city structures of a certain architectural period [40,83]). Furthermore, it is a question of input data: if no height information, as a central aspect of the LCZ scheme, is available, classes based on the vertical structure of the blocks cannot be addressed, and other morphologic classes have to be defined [194]. Eventually, the class scheme could be determined by the minimum data availability among several investigated cities (see Section 4).
3.5. Validation and Cartographic Representation
4. Application Example
4.1. Study Areas
4.2. UST Class Scheme
4.3. Results
4.3.1. Maps
4.3.2. Statistics
4.3.3. Evaluation
5. Final Remarks
5.1. Scientific Contribution
- Modularity and adaptability: The framework offers a modular structure that allows researchers to customize it based on their specific needs, spatial scales, and data availability. This adaptability ensures its relevance across a wide range of urban environments and research objectives.
- Parameterization: This framework promotes the objective definition and communication of parameters derived from remote sensing and geospatial data, reducing subjectivity in urban structure type classification. This objectivity enhances scientific transparency and exchange across different studies and locations.
- Transferability: Unlike some previous approaches that were limited to specific cities or regions, this framework is designed to be transferable to various urban contexts globally. Its city-independent nature facilitates its application in data-scarce regions, including those in the Global South.
- Scalability: This framework can scale to different levels of detail, from city-wide analyses to fine-grained neighborhood assessments. Researchers can adjust the level of granularity to suit their research objectives and the available data.
- Integration of data and methods: This framework incorporates multiple sources of data, including building footprints, satellite imagery, and digital surface models. This integration enriches the analysis and contributes to a comprehensive understanding of urban structures. At the same time, it is open to the implementation of newly emerging techniques, such as machine learning and automation, allowing for further refinement and automation of the classification process as these technologies evolve.
- Interdisciplinary Potential: This framework’s adaptability and modularity encourage collaboration among researchers from different disciplines, including remote sensing, urban planning, geography, and data science. This interdisciplinary approach can lead to innovative urban studies and solutions.
5.2. Conclusions and Outlook
- Investigations on urban form and architecture to uncover patterns and variations the prevalence of certain historical periods of urban morphogenesis and their representative structures.
- Creating and reproducing schemes of USTs to compare and monitor urban morphology at different points in time based on temporally explicit input data, for example multi-temporal quantification of informal settlements [26].
- Linking urban structures to socio-economic patterns observed from household surveys, for example with respect to the consumption of water, energy or other public services, and the production of waste, and the underlying potential for upscaling field observations [119].
- Comparative studies between two or more cities, for example, a specific for a certain type of structure, their general composition, or potential vulnerabilities towards hazards.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN. World Population Prospects 2022: Summary of Results; Department of Economic and Social Affairs—Population Division: New York, NY, USA, 2022. [Google Scholar]
- Haase, D.; Güneralp, B.; Dahiya, B.; Bai, X.; Elmqvist, T. Global Urbanization—Perspective and trends. In Urban Planet: Knowledge Towards Sustainable Cities; Elmqvist, T., Ed.; Cambridge University Press: Cambridge, UK, 2018; pp. 19–44. ISBN 9781108186964. [Google Scholar]
- Kuddus, M.A.; Tynan, E.; McBryde, E. Urbanization: A problem for the rich and the poor? Public Health Rev. 2020, 41, 1. [Google Scholar] [CrossRef] [PubMed]
- Helbling, M.; Meierrieks, D. Global warming and urbanization. J. Popul. Econ. 2023, 36, 1187–1223. [Google Scholar] [CrossRef]
- Adger, W.N.; Crépin, A.-S.; Folke, C.; Ospina, D.; Chapin, F.S.; Segerson, K.; Seto, K.C.; Anderies, J.M.; Barrett, S.; Bennett, E.M.; et al. Urbanization, Migration, and Adaptation to Climate Change. One Earth 2020, 3, 396–399. [Google Scholar] [CrossRef]
- Williams, D.S.; Máñez Costa, M.; Sutherland, C.; Celliers, L.; Scheffran, J. Vulnerability of informal settlements in the context of rapid urbanization and climate change. Environ. Urban. 2019, 31, 157–176. [Google Scholar] [CrossRef]
- Chapman, S.; Watson, J.E.M.; Salazar, A.; Thatcher, M.; McAlpine, C.A. The impact of urbanization and climate change on urban temperatures: A systematic review. Landsc. Ecol. 2017, 32, 1921–1935. [Google Scholar] [CrossRef]
- Mouratidis, K. Urban planning and quality of life: A review of pathways linking the built environment to subjective well-being. Cities 2021, 115, 103229. [Google Scholar] [CrossRef]
- Sharifi, A.; Khavarian-Garmsir, A.R. The COVID-19 pandemic: Impacts on cities and major lessons for urban planning, design, and management. Sci. Total Environ. 2020, 749, 142391. [Google Scholar] [CrossRef] [PubMed]
- Engin, Z.; van Dijk, J.; Lan, T.; Longley, P.A.; Treleaven, P.; Batty, M.; Penn, A. Data-driven urban management: Mapping the landscape. J. Urban Manag. 2020, 9, 140–150. [Google Scholar] [CrossRef]
- Rathore, M.M.; Paul, A.; Hong, W.-H.; Seo, H.; Awan, I.; Saeed, S. Exploiting IoT and big data analytics: Defining Smart Digital City using real-time urban data. Sustain. Cities Soc. 2018, 40, 600–610. [Google Scholar] [CrossRef]
- Kaur, H.; Garg, P. Urban sustainability assessment tools: A review. J. Clean. Prod. 2019, 210, 146–158. [Google Scholar] [CrossRef]
- Luca, M.; Campedelli, G.M.; Centellegher, S.; Tizzoni, M.; Lepri, B. Crime, inequality and public health: A survey of emerging trends in urban data science. Front. Big Data 2023, 6, 1124526. [Google Scholar] [CrossRef] [PubMed]
- Prakash, M.; Ramage, S.; Kavvada, A.; Goodman, S. Open Earth Observations for Sustainable Urban Development. Remote Sens. 2020, 12, 1646. [Google Scholar] [CrossRef]
- Tonne, C.; Adair, L.; Adlakha, D.; Anguelovski, I.; Belesova, K.; Berger, M.; Brelsford, C.; Dadvand, P.; Dimitrova, A.; Giles-Corti, B.; et al. Defining pathways to healthy sustainable urban development. Environ. Int. 2021, 146, 106236. [Google Scholar] [CrossRef] [PubMed]
- Wellmann, T.; Lausch, A.; Andersson, E.; Knapp, S.; Cortinovis, C.; Jache, J.; Scheuer, S.; Kremer, P.; Mascarenhas, A.; Kraemer, R.; et al. Remote sensing in urban planning: Contributions towards ecologically sound policies? Landsc. Urban Plan. 2020, 204, 103921. [Google Scholar] [CrossRef]
- Yu, D.; Fang, C. Urban Remote Sensing with Spatial Big Data: A Review and Renewed Perspective of Urban Studies in Recent Decades. Remote Sens. 2023, 15, 1307. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhou, Y.; Seto, K.C.; Stokes, E.C.; Deng, C.; Pickett, S.T.; Taubenböck, H. Understanding an urbanizing planet: Strategic directions for remote sensing. Remote Sens. Environ. 2019, 228, 164–182. [Google Scholar] [CrossRef]
- Reba, M.; Seto, K.C. A systematic review and assessment of algorithms to detect, characterize, and monitor urban land change. Remote Sens. Environ. 2020, 242, 111739. [Google Scholar] [CrossRef]
- Ehrlich, D.; Freire, S.; Melchiorri, M.; Kemper, T. Open and Consistent Geospatial Data on Population Density, Built-Up and Settlements to Analyse Human Presence, Societal Impact and Sustainability: A Review of GHSL Applications. Sustainability 2021, 13, 7851. [Google Scholar] [CrossRef]
- Shahtahmassebi, A.R.; Li, C.; Fan, Y.; Wu, Y.; Lin, Y.; Gan, M.; Wang, K.; Malik, A.; Blackburn, G.A. Remote sensing of urban green spaces: A review. Urban For. Urban Green. 2021, 57, 126946. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, J.; Liu, M.; Yin, Z.; Liu, X.; Yin, L.; Zheng, W. Remote sensing and geostatistics in urban water-resource monitoring: A review. Mar. Freshw. Res. 2023, 74, 747–765. [Google Scholar] [CrossRef]
- Wang, Y.; Li, M. Urban Impervious Surface Detection From Remote Sensing Images: A review of the methods and challenges. IEEE Geosci. Remote Sens. Mag. 2019, 7, 64–93. [Google Scholar] [CrossRef]
- Brimble, P.; McSharry, P.; Bachofer, F.; Bower, J.; Braun, A. Using Machine Learning and Remote Sensing to Value Property in Rwanda; Working Paper; International Growth Centre: Kigali, Rwanda, 2020. [Google Scholar]
- Kim, S.W.; Brown, R.D. Urban heat island (UHI) variations within a city boundary: A systematic literature review. Renew. Sustain. Energy Rev. 2021, 148, 111256. [Google Scholar] [CrossRef]
- Hofmann, P.; Taubenböck, H.; Werthmann, C. Monitoring and modelling of informal settlements—A review on recent developments and challenges. In Proceedings of the 2015 Joint Urban Remote Sensing Event (JURSE), Lausanne, Switzerland, 30 March–1 April 2015; IEEE: Piscataway, NJ, USA, 2015. [Google Scholar]
- Albeverio, S.; Andrey, D.; Giordano, P.; Vancheri, A. (Eds.) The Dynamics of Complex Urban Systems: An Interdisciplinary Approach; Physica-Verlag HD: Heidelberg, Germany, 2007; ISBN 978-3-7908-1936-6. [Google Scholar]
- Hillier, B.; Hanson, J. The Social Logic of Space; Cambridge University Press: Cambrigde, UK, 1989; ISBN 9781139935685. [Google Scholar]
- Small, C.S. Mapping urban growth and development as continuous fields in space and time. Rev. Dep. Geogr. 2014, 155–179. [Google Scholar] [CrossRef]
- Ramadier, T. Transdisciplinarity and its challenges: The case of urban studies. Futures 2004, 36, 423–439. [Google Scholar] [CrossRef]
- Wickop, E.; Böhm, P.; Eitner, K.; Breuste, J. Qualitätszielkonzept für Stadtstrukturtypen am Beispiel der Stadt. Leipzig: Entwicklung einer Methodik zur Operationalisierung einer Nachhaltigen Stadtentwicklung auf der Ebene von Stadtstrukturen; UFZ: Leipzig, Germany, 1998. [Google Scholar]
- Taubenböck, H.; Wurm, M.; Setiadi, N.; Gebert, N.; Roth, A.; Strunz, G.; Birkmann, J.; Dech, S. Integrating remote sensing and social science. In Proceedings of the 2009 Joint Urban Remote Sensing Event (JURSE), Shanghai, China, 20–22 May 2009; IEEE: Piscataway, NJ, USA, 2009. [Google Scholar]
- Patino, J.E.; Duque, J.C.; Pardo-Pascual, J.E.; Ruiz, L.A. Using remote sensing to assess the relationship between crime and the urban layout. Appl. Geogr. 2014, 55, 48–60. [Google Scholar] [CrossRef]
- Dang, T.N.; Van, D.Q.; Kusaka, H.; Seposo, X.T.; Honda, Y. Green Space and Deaths Attributable to the Urban Heat Island Effect in Ho Chi Minh City. Am. J. Public Health 2018, 108, S137–S143. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Shen, K.; Sullivan, W.C.; Yang, Y.; Liu, X.; Lu, Y. A natural experiment reveals impacts of built environment on suicide rate: Developing an environmental theory of suicide. Sci. Total Environ. 2021, 776, 145750. [Google Scholar] [CrossRef]
- Downes, N.K. Linking Dynamic Urban Settlement Patterns to Environmental Infrastructure Needs: The Case of Da Nang City, Vietnam. In ICSCEA 2021, Proceedings of the Second International Conference on Sustainable Civil Engineering and Architecture, Ho Chi Minh City, Vietnam, 30 October 2021; Reddy, J.N., Wang, C.M., Luong, V.H., Le, A.T., Eds.; Springer: Singapore, 2022; pp. 133–139. ISBN 978-981-19-3302-8. [Google Scholar]
- Blum, A.; Gruhler, K. Typologies of the Built Environment and the Example of Urban Vulnerability Assessment. In German Annual of Spatial Research and Policy 2010; Müller, B., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 147–150. ISBN 978-3-642-12784-7. [Google Scholar]
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Quan, S.J.; Bansal, P. A systematic review of GIS-based local climate zone mapping studies. Build. Environ. 2021, 196, 107791. [Google Scholar] [CrossRef]
- Banzhaf, E.; Hofer, R. Monitoring Urban Structure Types as Spatial Indicators With CIR Aerial Photographs for a More Effective Urban Environmental Management. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2008, 1, 129–138. [Google Scholar] [CrossRef]
- Bowker, G.C.; Star, S.L. Sorting Things Out: Classification and Its Consequences; The MIT Press: Cambridge, MA, USA, 1999; ISBN 0-262-02461-6. [Google Scholar]
- Hillson, R.; Alejandre, J.D.; Jacobsen, K.H.; Ansumana, R.; Bockarie, A.S.; Bangura, U.; Lamin, J.M.; Stenger, D.A. Stratified Sampling of Neighborhood Sections for Population Estimation: A Case Study of Bo City, Sierra Leone. PLoS ONE 2015, 10, e0132850. [Google Scholar] [CrossRef]
- Voltersen, M.; Berger, C.; Hese, S.; Schmullius, C. Object-based land cover mapping and comprehensive feature calculation for an automated derivation of urban structure types at block level. Remote Sens. Environ. 2014, 154, 192–201. [Google Scholar] [CrossRef]
- Lehner, A.; Blaschke, T. A Generic Classification Scheme for Urban Structure Types. Remote Sens. 2019, 11, 173. [Google Scholar] [CrossRef]
- Walde, I.; Hese, S.; Berger, C.; Schmullius, C. From land cover-graphs to urban structure types. Int. J. Geogr. Inf. Sci. 2014, 28, 584–609. [Google Scholar] [CrossRef]
- Auerbach, A.M.; LeBas, A.; Post, A.E.; Weitz-Shapiro, R. State, Society, and Informality in Cities of the Global South. St. Comp. Int. Dev. 2018, 53, 261–280. [Google Scholar] [CrossRef]
- Scott, G.; Rajabifard, A. Sustainable development and geospatial information: A strategic framework for integrating a global policy agenda into national geospatial capabilities. Geo-Spat. Inf. Sci. 2017, 20, 59–76. [Google Scholar] [CrossRef]
- Akbar, A.; Flacke, J.; Martinez, J.; Aguilar, R.; van Maarseveen, M. Knowing My Village from the Sky: A Collaborative Spatial Learning Framework to Integrate Spatial Knowledge of Stakeholders in Achieving Sustainable Development Goals. ISPRS Int. J. Geo-Inf. 2020, 9, 515. [Google Scholar] [CrossRef]
- Garschagen, M.; Doshi, D.; Reith, J.; Hagenlocher, M. Global patterns of disaster and climate risk—An analysis of the consistency of leading index-based assessments and their results. Clim. Chang. 2021, 169, 11. [Google Scholar] [CrossRef]
- Melchiorri, M.; Pesaresi, M.; Florczyk, A.; Corbane, C.; Kemper, T. Principles and Applications of the Global Human Settlement Layer as Baseline for the Land Use Efficiency Indicator—SDG 11.3.1. ISPRS Int. J. Geo-Inf. 2019, 8, 96. [Google Scholar] [CrossRef]
- Marconcini, M.; Metz-Marconcini, A.; Üreyen, S.; Palacios-Lopez, D.; Hanke, W.; Bachofer, F.; Zeidler, J.; Esch, T.; Gorelick, N.; Kakarla, A.; et al. Outlining where humans live, the World Settlement Footprint 2015. Sci. Data 2020, 7, 242. [Google Scholar] [CrossRef]
- Tatem, A.J. WorldPop, open data for spatial demography. Sci. Data 2017, 4, 170004. [Google Scholar] [CrossRef] [PubMed]
- García-Álvarez, D.; Lara Hinojosa, J.; Jurado Pérez, F.J. Global Thematic Land Use Cover Datasets Characterizing Artificial Covers, 1st ed. In Land Use Cover Datasets and Validation Tools: Validation Practices with QGIS.; García-Álvarez, D., Camacho Olmedo, M.T., Paegelow, M., Mas, J.F., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 419–442. ISBN 978-3-030-90997-0. [Google Scholar]
- Uhl, J.H.; Leyk, S. A scale-sensitive framework for the spatially explicit accuracy assessment of binary built-up surface layers. Remote Sens. Environ. 2022, 279, 113117. [Google Scholar] [CrossRef]
- van den Hoek, J.; Friedrich, H.K. Satellite-Based Human Settlement Datasets Inadequately Detect Refugee Settlements: A Critical Assessment at Thirty Refugee Settlements in Uganda. Remote Sens. 2021, 13, 3574. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, X.; Yao, S.; Wu, J.; Xia, H. How Good Are Global Layers for Mapping Rural Settlements? Evidence from China. Land 2022, 11, 1308. [Google Scholar] [CrossRef]
- Hutchings, P.; Willcock, S.; Lynch, K.; Bundhoo, D.; Brewer, T.; Cooper, S.; Keech, D.; Mekala, S.; Mishra, P.P.; Parker, A.; et al. Understanding rural–urban transitions in the Global South through peri-urban turbulence. Nat. Sustain. 2022, 5, 924–930. [Google Scholar] [CrossRef]
- Qviström, M.; Bengtsson, J. What Kind of Transit-Oriented Development? Using Planning History to Differentiate a Model for Sustainable Development. Eur. Plan. Stud. 2015, 23, 2516–2534. [Google Scholar] [CrossRef]
- Downes, N.K. Climate Adaptation Planning: An Urban Structure Type Approach for Understanding the Spatiotemporal Dynamics of Risks in Ho Chi Minh City, Vietnam. Ph.D. Thesis, Technische Universität Cottbus-Senftenberg, Cottbus, Germany, 2019. [Google Scholar]
- Wang, X.; Shi, R.; Zhou, Y. Dynamics of urban sprawl and sustainable development in China. Socio-Econ. Plan. Sci. 2020, 70, 100736. [Google Scholar] [CrossRef]
- Almusaed, A.; Almssad, A. City Phenomenon between Urban Structure and Composition. In Sustainability in Urban Planning and Design; Almusaed, A., Almssad, A., Truong-Hong, L., Eds.; IntechOpen: London, UK, 2020; pp. 3–32. ISBN 9781838803520. [Google Scholar]
- Tennøy, A.; Gundersen, F.; Øksenholt, K.V. Urban structure and sustainable modes’ competitiveness in small and medium-sized Norwegian cities. Transp. Res. Part D Transp. Environ. 2022, 105, 103225. [Google Scholar] [CrossRef]
- Lagonigro, D.; Cazzati, V.; Viggiano, N.; Andrulli, G.; Gatto, R.V.; Mininni, M.; Scorza, F. Downscaling NUA: Matera New Urban Structure. In Computational Science and Its Applications, Proceedings of the ICCSA 2023 Workshops, Athens, Greece, 3–6 July 2023, Proceedings, Part. VII, 1st ed.; Gervasi, O., Murgante, B., Rocha, A.M.A.C., Garau, C., Scorza, F., Karaca, Y., Torre, C.M., Eds.; Springer Nature: Cham, Switzerland, 2023; pp. 14–24. ISBN 978-3-031-37122-6. [Google Scholar]
- Gu, K. Urban Morphological Regions: Development of an Idea. In J. W. R. Whitehand and the Historico-Geographical Approach to Urban Morphology; Oliveira, V., Ed.; Springer: Cham, Switzerland, 2019; pp. 33–46. ISBN 978-3-030-00619-8. [Google Scholar]
- Kiet, A. Arab Culture and Urban Form. Focus 2011, 8, 10. [Google Scholar] [CrossRef]
- Fekete, A.; Damm, M.; Birkmann, J. Scales as a challenge for vulnerability assessment. Nat. Hazards 2010, 55, 729–747. [Google Scholar] [CrossRef]
- Freire, S.; Schiavina, M.; Florczyk, A.J.; MacManus, K.; Pesaresi, M.; Corbane, C.; Borkovska, O.; Mills, J.; Pistolesi, L.; Squires, J.; et al. Enhanced data and methods for improving open and free global population grids: Putting ‘leaving no one behind’ into practice. Int. J. Digit. Earth 2020, 13, 61–77. [Google Scholar] [CrossRef]
- Ghisleni, C. Types of Urban Blocks: Different Ways of Occupying the City. Available online: https://www.archdaily.com/962819/types-of-urban-blocks-different-ways-of-occupying-the-city (accessed on 17 August 2023).
- Anderson, J.R.; Hardy, E.E.; Roach, J.T.; Witmer, R.E. Professional Paper; United States Government Printing Office: Washington, DC, USA, 1976.
- UN Habitat. National Sample of Cities: A Model Approach to Monitoring and Reporting Performance of Cities at National level. Urban Indicators Database. Available online: https://data.unhabitat.org/pages/national-sample-of-cities (accessed on 15 August 2023).
- Arnold, S.; Smith, G.; Hazeu, G.; Kosztra, B.; Perger, C.; Banko, G.; Soukup, T.; Strand, G.-H.; Sanz, N.V.; Bock, M. The EAGLE concept: A paradigm shift in land monitoring. In Land Use and Land Cover Semantics: Principles, Best Practices, and Prospects; Ahlqvist, O., Ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 108–144. ISBN 1-351-22859-5. [Google Scholar]
- Çalışkan, O.; Mashhoodi, B. Urban coherence: A morphological definition. Urban Morphol. 2017, 21, 123–141. [Google Scholar] [CrossRef]
- Schirmer, P.M.; Axhausen, K.W. A multiscale classification of urban morphology. J. Transp. Land. Use 2015, 9, 101–130. [Google Scholar] [CrossRef]
- Schirmer, P.M.; Axhausen, K.W. A Multiscale Clustering of the Urban Morphology for Use in Quantitative Models. In The Mathematics of Urban Morphology; D’Acci, L., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 355–382. ISBN 978-3-030-12380-2. [Google Scholar]
- Wurm, M.; Taubenbock, H.; Roth, A.; Dech, S. Urban structuring using multisensoral remote sensing data: By the example of the German cities Cologne and Dresden. In Proceedings of the 2009 Joint Urban Remote Sensing Event (JURSE), Shanghai, China, 20–22 May 2009; IEEE: Piscataway, NJ, USA, 2009. [Google Scholar]
- Wurm, M.; Taubenböck, H.; Dech, S. Quantification of urban structure on building block level utilizing multisensoral remote sensing data. In Proceedings of the Earth Resources and Environmental Remote Sensing/GIS Applications, Remote Sensing, Toulouse, France, 20 September 2010; Michel, U., Civco, D.L., Eds.; SPIE: Paris, France, 2010; p. 78310H. [Google Scholar]
- Heiden, U.; Heldens, W.; Roessner, S.; Segl, K.; Esch, T.; Mueller, A. Urban structure type characterization using hyperspectral remote sensing and height information. Landsc. Urban Plan. 2012, 105, 361–375. [Google Scholar] [CrossRef]
- Zhu, X.X.; Qiu, C.; Hu, J.; Shi, Y.; Wang, Y.; Schmitt, M.; Taubenböck, H. The urban morphology on our planet—Global perspectives from space. Remote Sens. Environ. 2022, 269, 112794. [Google Scholar] [CrossRef]
- Sapena, M.; Wurm, M.; Taubenböck, H.; Tuia, D.; Ruiz, L.A. Estimating quality of life dimensions from urban spatial pattern metrics. Comput. Environ. Urban Syst. 2021, 85, 101549. [Google Scholar] [CrossRef]
- Bechtel, B.; Alexander, P.; Böhner, J.; Ching, J.; Conrad, O.; Feddema, J.; Mills, G.; See, L.; Stewart, I. Mapping Local Climate Zones for a Worldwide Database of the Form and Function of Cities. ISPRS Int. J. Geo-Inf. 2015, 4, 199–219. [Google Scholar] [CrossRef]
- Rosentreter, J.; Hagensieker, R.; Waske, B. Towards large-scale mapping of local climate zones using multitemporal Sentinel 2 data and convolutional neural networks. Remote Sens. Environ. 2020, 237, 111472. [Google Scholar] [CrossRef]
- Downes, N.K.; Storch, H.; Schmidt, M.; van Nguyen, T.C.; Dinh, L.C.; Tran, T.N.; Hoa, L.T. Understanding Ho Chi Minh City’s Urban Structures for Urban Land-Use Monitoring and Risk-Adapted Land-Use Planning. In Sustainable Ho Chi Minh City: Climate Policies for Emerging Mega Cities; Katzschner, A., Waibel, M., Schwede, D., Katzschner, L., Schmidt, M., Storch, H., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 89–116. ISBN 978-3-319-04614-3. [Google Scholar]
- Wendnagel-Beck, A.; Ravan, M.; Iqbal, N.; Birkmann, J.; Somarakis, G.; Hertwig, D.; Chrysoulakis, N.; Grimmond, S. Characterizing Physical and Social Compositions of Cities to Inform Climate Adaptation: Case Studies in Germany. Urban Plan. 2021, 6, 321–337. [Google Scholar] [CrossRef]
- Biljecki, F.; Chew, L.Z.X.; Milojevic-Dupont, N.; Creutzig, F. Open government geospatial data on buildings for planning sustainable and resilient cities. arXiv 2021, arXiv:2107.04023. [Google Scholar]
- Zhou, Y.; Li, X.; Chen, W.; Meng, L.; Wu, Q.; Gong, P.; Seto, K.C. Satellite mapping of urban built-up heights reveals extreme infrastructure gaps and inequalities in the Global South. Proc. Natl. Acad. Sci. USA 2022, 119, e2214813119. [Google Scholar] [CrossRef] [PubMed]
- Taubenböck, H.; Standfuß, I.; Wurm, M.; Krehl, A.; Siedentop, S. Measuring morphological polycentricity—A comparative analysis of urban mass concentrations using remote sensing data. Comput. Environ. Urban Syst. 2017, 64, 42–56. [Google Scholar] [CrossRef]
- INSPIRE Thematic Working Group Buildings. Data Specification on Buildings—Draft Guidelines: D2.8.III.2. Available online: https://inspire.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecification_BU_v3.0rc2.pdf (accessed on 19 August 2023).
- Minghini, M.; Cetl, V.; Kotsev, A.; Tomas, R.; Lutz, M. INSPIRE: The Entry Point to Europe’s Big Geospatial Data Infrastructure. In Handbook of Big Geospatial Data; Werner, M., Chiang, Y.-Y., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 619–641. ISBN 978-3-030-55461-3. [Google Scholar]
- OSM. OpenStreetMap—The Free Wiki World Map. Available online: https://www.openstreetmap.org (accessed on 18 May 2023).
- Brovelli, M.; Zamboni, G. A New Method for the Assessment of Spatial Accuracy and Completeness of OpenStreetMap Building Footprints. ISPRS Int. J. Geo-Inf. 2018, 7, 289. [Google Scholar] [CrossRef]
- Fan, H.; Zipf, A.; Fu, Q.; Neis, P. Quality assessment for building footprints data on OpenStreetMap. Int. J. Geogr. Inf. Sci. 2014, 28, 700–719. [Google Scholar] [CrossRef]
- Lorei, H.; Westerholt, R.; Zipf, A. Characterizing player types in gamified geodata acquisition—An exploratory analysis of StreetComplete. In Proceedings of the Academic Track at the State of the Map 2019, Heidelberg, Germany, 21–23 September 2019; pp. 33–34. [Google Scholar]
- Ullah, T.; Lautenbach, S.; Herfort, B.; Reinmuth, M.; Schorlemmer, D. Assessing Completeness of OpenStreetMap Building Footprints Using MapSwipe. ISPRS Int. J. Geo-Inf. 2023, 12, 143. [Google Scholar] [CrossRef]
- Quill, T.M. Humanitarian Mapping as Library Outreach: A Case for Community-Oriented Mapathons. J. Web Librariansh. 2018, 12, 160–168. [Google Scholar] [CrossRef]
- Schröder-Bergen, S.; Glasze, G.; Michel, B.; Dammann, F. De/colonizing OpenStreetMap? Local mappers, humanitarian and commercial actors and the changing modes of collaborative mapping. GeoJournal 2022, 87, 5051–5066. [Google Scholar] [CrossRef]
- Vargas-Munoz, J.E.; Srivastava, S.; Tuia, D.; Falcao, A.X. OpenStreetMap: Challenges and Opportunities in Machine Learning and Remote Sensing. IEEE Geosci. Remote Sens. Mag. 2021, 9, 184–199. [Google Scholar] [CrossRef]
- Li, H.; Herfort, B.; Lautenbach, S.; Chen, J.; Zipf, A. Improving OpenStreetMap missing building detection using few-shot transfer learning in sub-Saharan Africa. Trans. GIS 2022, 26, 3125–3146. [Google Scholar] [CrossRef]
- Frassinelli, F. Is OSM Up-to-Date: Version 2.2. GNU General Public License. Available online: https://wiki.openstreetmap.org/wiki/Is_OSM_up-to-date (accessed on 10 August 2023).
- Sirko, W.; Kashubin, S.; Ritter, M.; Annkah, A.; Bouchareb, Y.S.E.; Dauphin, Y.; Keysers, D.; Neumann, M.; Cisse, M.; Quinn, J. Continental-Scale Building Detection from High Resolution Satellite Imagery. arXiv 2021, arXiv:2107.12283. [Google Scholar]
- Milojevic-Dupont, N.; Wagner, F.; Nachtigall, F.; Hu, J.; Brüser, G.B.; Zumwald, M.; Biljecki, F.; Heeren, N.; Kaack, L.H.; Pichler, P.-P.; et al. EUBUCCO v0.1: European building stock characteristics in a common and open database for 200+ million individual buildings. Sci. Data 2023, 10, 147. [Google Scholar] [CrossRef] [PubMed]
- Florio, P.; Giovando, C.; Goch, K.; Pesaresi, M.; Politis, P.; Martinez, A. Towards a pan-EU building footprint map based on the hierarchical conflation of open datasets: The digital building stock model—DBSM. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Prizren, Kosovo, 26 June–2 July 2023; Volume XLVIII-4/W7-2023, pp. 47–52. [Google Scholar] [CrossRef]
- Uhl, J.H.; Leyk, S. MTBF-33: A multi-temporal building footprint dataset for 33 counties in the United States (1900–2015). Data Brief 2022, 43, 108369. [Google Scholar] [CrossRef] [PubMed]
- Microsoft. Building Footprints: An AI-Assisted Mapping Deliverable with the Capability to Solve for Many Scenarios. Available online: https://www.microsoft.com/en-us/maps/building-footprints (accessed on 10 August 2023).
- Feng, L.; Xu, P.; Tang, H.; Liu, Z.; Hou, P. National-scale mapping of building footprints using feature super-resolution semantic segmentation of Sentinel-2 images. GIScience Remote Sens. 2023, 60, 2196154. [Google Scholar] [CrossRef]
- Pfeifer, N.; Rutzinger, M.; Rottensteiner, F.; Muecke, W.; Hollaus, M. Extraction of building footprints from airborne laser scanning: Comparison and validation techniques. In Proceedings of the Urban Remote Sensing Joint Event 2007, Paris, France, 11–13 April 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 1–9, ISBN 1-4244-0711-7. [Google Scholar]
- Minghini, M.; Antoniou, V.; Fonte, C.C.; Estima, J.; Olteanu-Raimond, A.M.; See, L.; Laasko, M.; Skopeliti, A.; Mooney, P.; Arsanjani, J.J.; et al. The Relevance of Protocols for VGI Collection. In Mapping and the Citizen Sensor; Foody, G., See, L., Fritz, S., Mooney, P., Olteanu-Raimond, A.-M., Fonte, C.C., Antoniou, V., Eds.; Ubiquity Press: London, UK, 2017; pp. 223–247. ISBN 9781911529163. [Google Scholar]
- Li, J.; Huang, X.; Tu, L.; Zhang, T.; Wang, L. A review of building detection from very high resolution optical remote sensing images. GISci. Remote Sens. 2022, 59, 1199–1225. [Google Scholar] [CrossRef]
- Haala, N.; Kada, M. An update on automatic 3D building reconstruction. ISPRS J. Photogramm. Remote Sens. 2010, 65, 570–580. [Google Scholar] [CrossRef]
- Jiang, S.; Jiang, W.; Wang, L. Unmanned Aerial Vehicle-Based Photogrammetric 3D Mapping: A survey of techniques, applications, and challenges. IEEE Geosci. Remote Sens. Mag. 2022, 10, 135–171. [Google Scholar] [CrossRef]
- Tomljenovic, I.; Höfle, B.; Tiede, D.; Blaschke, T. Building Extraction from Airborne Laser Scanning Data: An Analysis of the State of the Art. Remote Sens. 2015, 7, 3826–3862. [Google Scholar] [CrossRef]
- Warth, G.; Braun, A.; Assmann, O.; Fleckenstein, K.; Hochschild, V. Prediction of Socio-Economic Indicators for Urban Planning Using VHR Satellite Imagery and Spatial Analysis. Remote Sens. 2020, 12, 1730. [Google Scholar] [CrossRef]
- Warth, G.; Braun, A.; Bödinger, C.; Hochschild, V.; Bachofer, F. DSM-based identification of changes in highly dynamic urban agglomerations. Eur. J. Remote Sens. 2019, 52, 322–334. [Google Scholar] [CrossRef]
- Bachofer, F. A SVM-based approach to extract building footprints from Pléiades satellite imagery. In Proceedings of the GeoTechRwanda, Kigali, Rwanda, 18–20 November 2015; pp. 1–4. [Google Scholar]
- Shahzad, M.; Maurer, M.; Fraundorfer, F.; Wang, Y.; Zhu, X.X. Buildings Detection in VHR SAR Images Using Fully Convolution Neural Networks. IEEE Trans. Geosci. Remote Sens. 2019, 57, 1100–1116. [Google Scholar] [CrossRef]
- Meinel, G.; Hecht, R.; Herold, H. Analyzing building stock using topographic maps and GIS. Build. Res. Inf. 2009, 37, 468–482. [Google Scholar] [CrossRef]
- Blaschke, T.; Lang, S.; Hay, G.J. Object-Based Image Analysis: Spatial Concepts for Knowledge-Driven Remote Sensing Applications; Springer: Berlin/Heidelberg, Germany, 2008; ISBN 978-3-540-77057-2. [Google Scholar]
- Luo, L.; Li, P.; Yan, X. Deep Learning-Based Building Extraction from Remote Sensing Images: A Comprehensive Review. Energies 2021, 14, 7982. [Google Scholar] [CrossRef]
- Lang, S.; Baraldi, A.; Tiede, D.; Hay, G.; Blaschke, T. Towards a (GE) OBIA 2.0 manifesto—Achievements and open challenges in information & knowledge extraction from big Earth data. In Proceedings of the GEOBIA 2018, Montpellier, France, 8–22 June 2018; pp. 18–22. [Google Scholar]
- Vetter-Gindele, J.; Braun, A.; Warth, G.; Bui, T.T.Q.; Bachofer, F.; Eltrop, L. Assessment of Household Solid Waste Generation and Composition by Building Type in Da Nang, Vietnam. Resources 2019, 8, 171. [Google Scholar] [CrossRef]
- Bachofer, F.; Braun, A.; Adamietz, F.; Murray, S.; d’Angelo, P.; Kyazze, E.; Mumuhire, A.P.; Bower, J. Building Stock and Building Typology of Kigali, Rwanda. Data 2019, 4, 105. [Google Scholar] [CrossRef]
- Wang, J.; Georganos, S.; Kuffer, M.; Abascal, A.; Vanhuysse, S. On the knowledge gain of urban morphology from space. Comput. Environ. Urban Syst. 2022, 95, 101831. [Google Scholar] [CrossRef]
- Pesaresi, M.; Huadong, G.; Blaes, X.; Ehrlich, D.; Ferri, S.; Gueguen, L.; Halkia, M.; Kauffmann, M.; Kemper, T.; Lu, L.; et al. A Global Human Settlement Layer From Optical HR/VHR RS Data: Concept and First Results. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2102–2131. [Google Scholar] [CrossRef]
- European Commission. GHSL Data Package. 2023. Available online: https://ghsl.jrc.ec.europa.eu/documents/GHSL_Data_Package_2023.pdf?t=1683540422 (accessed on 15 August 2023).
- Esch, T.; Heldens, W.; Hirner, A.; Keil, M.; Marconcini, M.; Roth, A.; Zeidler, J.; Dech, S.; Strano, E. Breaking new ground in mapping human settlements from space—The Global Urban Footprint. ISPRS J. Photogramm. Remote Sens. 2017, 134, 30–42. [Google Scholar] [CrossRef]
- Frantz, D.; Schug, F.; Okujeni, A.; Navacchi, C.; Wagner, W.; van der Linden, S.; Hostert, P. National-scale mapping of building height using Sentinel-1 and Sentinel-2 time series. Remote Sens. Environ. 2021, 252, 112128. [Google Scholar] [CrossRef]
- Corbane, C.; Sabo, F. European Settlement Map from Copernicus Very High Resolution Data for Reference Year 2015, Public Release 2019; European Commission: Luxembourg, 2019.
- Pesaresi, M.; Politis, P. GHS-BUILT-S R2023A—GHS Built-Up Surface Grid, Derived from Sentinel2 Composite and Landsat, Multitemporal (1975–2030); European Commission: Luxembourg, 2023.
- Pesaresi, M.; Politis, P. GHS-BUILT-H R2023A—GHS Building Height, Derived from AW3D30, SRTM30, and Sentinel2 Composite (2018); European Commission: Luxembourg, 2018.
- Pesaresi, M.; Politis, P. GHS-BUILT-V R2023A—GHS Built-Up Volume Grid, Derived from GHS-BUILT-S-R2023A and GHS-BUILT-H-R2023A, Multi-Temporal (1975–2030); European Commission: Luxembourg, 2023.
- Pesaresi, M.; Politis, P. GHS-BUILT-C R2023A—GHS Settlement Characteristics, Derived from Sentinel2 Composite (2018) and Other GHS R2023A Data; European Commission: Luxembourg, 2023.
- Pesaresi, M.; Politis, P. GHS-POP R2023A—GHS Population Grid Multitemporal (1975–2030); European Commission: Luxembourg, 2023.
- Marconcini, M.; Gorelick, N.; Metz-Marconcini, A.; Esch, T. Mapping the Global Settlement Growth from 1985 to 2015—The World Settlement Footprint Evolution Dataset. AGU Fall Meet. Abstr. 2018, 2018, IN44A-06. [Google Scholar]
- Esch, T.; Brzoska, E.; Dech, S.; Leutner, B.; Palacios-Lopez, D.; Metz-Marconcini, A.; Marconcini, M.; Roth, A.; Zeidler, J. World Settlement Footprint 3D—A first three-dimensional survey of the global building stock. Remote Sens. Environ. 2022, 270, 112877. [Google Scholar] [CrossRef]
- Li, M.; Wang, Y.; Rosier, J.F.; Verburg, P.H.; van Vliet, J. Global maps of 3D built-up patterns for urban morphological analysis. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103048. [Google Scholar] [CrossRef]
- European Environment Agency. Urban Atlas—Building Height 2012; European Environment Agency: Copenhagen, Denmark, 2012.
- McCall, M.K. Seeking good governance in participatory-GIS: A review of processes and governance dimensions in applying GIS to participatory spatial planning. Habitat Int. 2003, 27, 549–573. [Google Scholar] [CrossRef]
- GADM. GADM Database of Global Administrative Areas: Version 4.1. Available online: https://gadm.org (accessed on 20 January 2023).
- Fotheringham, A.S.; Wong, D.W.S. The Modifiable Areal Unit Problem in Multivariate Statistical Analysis. Environ. Plan. A 1991, 23, 1025–1044. [Google Scholar] [CrossRef]
- Zhang, M.; Kukadia, N. Metrics of Urban Form and the Modifiable Areal Unit Problem. Transp. Res. Rec. 2005, 1902, 71–79. [Google Scholar] [CrossRef]
- Zhong, Y.; Su, Y.; Wu, S.; Zheng, Z.; Zhao, J.; Ma, A.; Zhu, Q.; Ye, R.; Li, X.; Pellikka, P.; et al. Open-source data-driven urban land-use mapping integrating point-line-polygon semantic objects: A case study of Chinese cities. Remote Sens. Environ. 2020, 247, 111838. [Google Scholar] [CrossRef]
- Boeing, G. OSMnx: New methods for acquiring, constructing, analyzing, and visualizing complex street networks. Comput. Environ. Urban Syst. 2017, 65, 126–139. [Google Scholar] [CrossRef]
- Lämmer, S.; Gehlsen, B.; Helbing, D. Scaling laws in the spatial structure of urban road networks. Phys. A Stat. Mech. Its Appl. 2006, 363, 89–95. [Google Scholar] [CrossRef]
- Grippa, T.; Georganos, S.; Zarougui, S.; Bognounou, P.; Diboulo, E.; Forget, Y.; Lennert, M.; Vanhuysse, S.; Mboga, N.; Wolff, E. Mapping Urban Land Use at Street Block Level Using OpenStreetMap, Remote Sensing Data, and Spatial Metrics. ISPRS Int. J. Geo-Inf. 2018, 7, 246. [Google Scholar] [CrossRef]
- Fleischmann, M. momepy: Urban Morphology Measuring Toolkit. J. Open Source Softw. 2019, 4, 1807. [Google Scholar] [CrossRef]
- Graser, A. Tessellating Urban Space based on Street Intersections and Barriers to Movement. Giforum 2017, 1, 114–125. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, R.; van Nes, R.; He, S.; Yin, W. Identifying Urban Structure Based on Transit-Oriented Development. Sustainability 2019, 11, 7241. [Google Scholar] [CrossRef]
- Birch, C.P.; Oom, S.P.; Beecham, J.A. Rectangular and hexagonal grids used for observation, experiment and simulation in ecology. Ecol. Model. 2007, 206, 347–359. [Google Scholar] [CrossRef]
- Karsznia, I.; Gołębiowska, I.M.; Korycka-Skorupa, J.; Nowacki, T. Searching for an Optimal Hexagonal Shaped Enumeration Unit Size for Effective Spatial Pattern Recognition in Choropleth Maps. ISPRS Int. J. Geo-Inf. 2021, 10, 576. [Google Scholar] [CrossRef]
- Jackson, T.L.; Feddema, J.J.; Oleson, K.W.; Bonan, G.B.; Bauer, J.T. Parameterization of Urban Characteristics for Global Climate Modeling. Ann. Assoc. Am. Geogr. 2010, 100, 848–865. [Google Scholar] [CrossRef]
- Feder, J. The Perimeter-Area Relation. In Fractals; Feder, J., Ed.; Springer: Boston, MA, USA, 1988; pp. 200–211. ISBN 978-1-4899-2126-0. [Google Scholar]
- Lang, S.; Blaschke, T. Landschaftsanalyse MIT GIS, 1. Aufl.; UTB GmbH; Ulmer: Stuttgart, Germany, 2007; ISBN 9783838583471. [Google Scholar]
- Forman, R.T.T.; Godron, M. Landscape Ecology; Wiley: New York, NY, USA, 1986; ISBN 978-0-471-87037-1. [Google Scholar]
- Conrad, O. Tool Polygon Shape Indices: SAGA-GIS Tool Library Documentation (v7.2.0). Available online: https://saga-gis.sourceforge.io/saga_tool_doc/7.2.0/shapes_polygons_7.html (accessed on 10 August 2023).
- Basaraner, M.; Cetinkaya, S. Performance of shape indices and classification schemes for characterising perceptual shape complexity of building footprints in GIS. Int. J. Geogr. Inf. Sci. 2017, 31, 1952–1977. [Google Scholar] [CrossRef]
- Bachofer, F. Assessment of building heights from pléiades satellite imagery for the Nyarugenge sector, Kigali, Rwanda. Rwanda J. 2017, 1, 1–15. [Google Scholar] [CrossRef]
- Wang, R.; Peethambaran, J.; Chen, D. LiDAR Point Clouds to 3-D Urban Models$:$ A Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 606–627. [Google Scholar] [CrossRef]
- Yao, S.; Shahzad, M.; Zhu, X.X. Building height estimation in single SAR image using OSM building footprints. In Proceedings of the 2017 Joint Urban Remote Sensing Event (JURSE), Dubai, United Arab Emirates, 6–8 March 2017; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar]
- Zhao, H.; Liu, Y.; Xu, P.; Yang, S. Research Progress of High Resolution SAR Image Building Height Extraction. Remote Sens. Sci. 2017, 5. [Google Scholar]
- Ghanea, M.; Moallem, P.; Momeni, M. Building extraction from high-resolution satellite images in urban areas: Recent methods and strategies against significant challenges. Int. J. Remote Sens. 2016, 37, 5234–5248. [Google Scholar] [CrossRef]
- Bryceson, D.F.; Bradbury, A.; Bradbury, T. Roads to Poverty Reduction? Exploring Rural Roads’ Impact on Mobility in Africa and Asia. Dev. Policy Rev. 2008, 26, 459–482. [Google Scholar] [CrossRef]
- Lin, A.; Sun, X.; Wu, H.; Luo, W.; Wang, D.; Zhong, D.; Wang, Z.; Zhao, L.; Zhu, J. Identifying Urban Building Function by Integrating Remote Sensing Imagery and POI Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8864–8875. [Google Scholar] [CrossRef]
- Zhang, P.; Ghosh, D.; Park, S. Spatial measures and methods in sustainable urban morphology: A systematic review. Landsc. Urban Plan. 2023, 237, 104776. [Google Scholar] [CrossRef]
- Jochem, W.C.; Tatem, A.J. Tools for mapping multi-scale settlement patterns of building footprints: An introduction to the R package foot. PLoS ONE 2021, 16, e0247535. [Google Scholar] [CrossRef]
- Mahajan, S. greenR: An Open-Source Framework for Quantifying Urban Greenness: Preprint. 2023. Available online: https://github.com/sachit27/greenR (accessed on 1 July 2023).
- Scheer, B.C. The epistemology of urban morphology. J. Urban Morphol. 2015, 20, 5–17. [Google Scholar] [CrossRef]
- Braun, A.; Warth, G.; Bachofer, F.; Hochschild, V. Identification of roof materials in high-resolution multispectral images for urban planning and monitoring. In Proceedings of the 2019 Joint Urban Remote Sensing Event (JURSE), Vannes, France, 22–24 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–4, ISBN 978-1-7281-0009-8. [Google Scholar]
- Matabishi, J.G.; Braun, A.; Warth, G. Multiple endmember spectral mixture analysis of desis image to identify rooftops in Kigali. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Virtual, 28 September–1 October 2022; Volume XLVI-1/W1-2021, pp. 39–47. [Google Scholar] [CrossRef]
- Reyes-Riveros, R.; Altamirano, A.; de La Barrera, F.; Rozas-Vásquez, D.; Vieli, L.; Meli, P. Linking public urban green spaces and human well-being: A systematic review. Urban For. Urban Green. 2021, 61, 127105. [Google Scholar] [CrossRef]
- Lipson, M.J.; Nazarian, N.; Hart, M.A.; Nice, K.A.; Conroy, B. A Transformation in City-Descriptive Input Data for Urban Climate Models. Front. Environ. Sci. 2022, 10, 866398. [Google Scholar] [CrossRef]
- Neyns, R.; Canters, F. Mapping of Urban Vegetation with High-Resolution Remote Sensing: A Review. Remote Sens. 2022, 14, 1031. [Google Scholar] [CrossRef]
- European Environment Agency. Street Tree Layer (STL). 2018. Available online: https://land.copernicus.eu/local/urban-atlas/street-tree-layer-stl-2018 (accessed on 20 August 2023).
- Zanaga, D.; van de Kerchove, R.; Daems, D.; de Keersmaecker, W.; Brockmann, C.; Kirches, G.; Wevers, J.; Cartus, O.; Santoro, M.; Fritz, S.; et al. ESA WorldCover 10 m 2021 v200. Available online: https://pure.iiasa.ac.at/id/eprint/18478/ (accessed on 4 October 2023).
- Shao, Z.; Cheng, T.; Fu, H.; Li, D.; Huang, X. Emerging Issues in Mapping Urban Impervious Surfaces Using High-Resolution Remote Sensing Images. Remote Sens. 2023, 15, 2562. [Google Scholar] [CrossRef]
- Antipova, A.; Momeni, E.; Banai, R. Analysis of Urban Sprawl and Blight Using Shannon Entropy Index: A Case Study of Memphis, Tennessee. In Advances in Urbanism, Smart Cities, and Sustainability; Chatterjee, U., Biswas, A., Mukherjee, J., Majumdar, S., Eds.; CRC Press: Boca Raton, FL, USA, 2022; pp. 299–322. ISBN 9781003126195. [Google Scholar]
- Browning, C.E. Selected Aspects of Land Use and Distance From The City Center: The Case of Chicago. Southeast. Geogr. 1964, 4, 29–40. [Google Scholar] [CrossRef]
- Braun, A.; Warth, G.; Bachofer, F.; Quynh Bui, T.T.; Tran, H.; Hochschild, V. Changes in the Building Stock of Da Nang between 2015 and 2017. Data 2020, 5, 42. [Google Scholar] [CrossRef]
- Xiao, H.; Lin, X.; Chowell, G.; Huang, C.; Gao, L.; Chen, B.; Wang, Z.; Zhou, L.; He, X.; Liu, H.; et al. Urban structure and the risk of influenza A (H1N1) outbreaks in municipal districts. Chin. Sci. Bull. 2014, 59, 554–562. [Google Scholar] [CrossRef]
- Corodescu, E.; Ciamianu, C. Assessing The Spatial Differences Among Some Urban Expansion Driving Forces In Constanța Metropolitan Area (Romania). Sci. Ann. “Alexandru Ioan Cuza” Univ. Iasi 2012, 2, 1–19. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, H.; Feng, J.; Wang, Y.; Liu, K. Evaluation of Social Values for Ecosystem Services in Urban Riverfront Space Based on the SolVES Model: A Case Study of the Fenghe River, Xi’an, China. Int. J. Environ. Res. Public Health 2021, 18, 2765. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, V.; Aithal, B.H.; Bharath, S.; Kumar, U. Exposition of Urban Structure and Dynamics through Gradient Landscape Metrics for Sustainable Management of Greater Bangalore. FIIB Bus. Rev. 2011, 1, 54–67. [Google Scholar] [CrossRef]
- Müller, I.; Taubenböck, H.; Kuffer, M.; Wurm, M. Misperceptions of Predominant Slum Locations? Spatial Analysis of Slum Locations in Terms of Topography Based on Earth Observation Data. Remote Sens. 2020, 12, 2474. [Google Scholar] [CrossRef]
- Bhatt, C.M.; Srinivasa Rao, G. HAND (height above nearest drainage) tool and satellite-based geospatial analysis of Hyderabad (India) urban floods, September 2016. Arab. J. Geosci. 2018, 11, 600. [Google Scholar] [CrossRef]
- Georganos, S.; Grippa, T.; Vanhuysse, S.; Lennert, M.; Shimoni, M.; Kalogirou, S.; Wolff, E. Less is more: Optimizing classification performance through feature selection in a very-high-resolution remote sensing object-based urban application. GIScience Remote Sens. 2018, 55, 221–242. [Google Scholar] [CrossRef]
- Geiß, C.; Leichtle, T.; Wurm, M.; Pelizari, P.A.; Standfus, I.; Zhu, X.X.; So, E.; Siedentop, S.; Esch, T.; Taubenbock, H. Large-Area Characterization of Urban Morphology: Mapping of Built-Up Height and Density Using TanDEM-X and Sentinel-2 Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2912–2927. [Google Scholar] [CrossRef]
- Heinzel, J.; Kemper, T. Automated metric characterization of urban structure using building decomposition from very high resolution imagery. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 151–160. [Google Scholar] [CrossRef]
- Wang, J.; Biljecki, F. Unsupervised machine learning in urban studies: A systematic review of applications. Cities 2022, 129, 103925. [Google Scholar] [CrossRef]
- Thorndike, R.L. Who belongs in the family? Psychometrika 1953, 18, 267–276. [Google Scholar] [CrossRef]
- Arndt, J.; Lunga, D. Large-Scale Classification of Urban Structural Units From Remote Sensing Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2634–2648. [Google Scholar] [CrossRef]
- Lunetta, R.; Congalton, R.G.; Fenstermaker, L.K.; Jensen, J.R.; McGwire, K.C.; Tinney, L.R. Remote sensing and Geographic Information System data integration: Error sources and research issues. Photogramm. Eng. Remote Sens. 1991, 57, 677–687. [Google Scholar]
- Maselli, L.Z.; Negri, R.G. Urban structure type mapping method using spatial metrics and remote sensing imagery classification. Earth Sci. Inf. Inform. 2021, 14, 2357–2372. [Google Scholar] [CrossRef]
- Wu, X.; Kumar, V.; Ross Quinlan, J.; Ghosh, J.; Yang, Q.; Motoda, H.; McLachlan, G.J.; Ng, A.; Liu, B.; Yu, P.S.; et al. Top 10 algorithms in data mining. Knowl. Inf. Syst. 2008, 14, 1–37. [Google Scholar] [CrossRef]
- Tang, J.; Alelyani, S.; Li, H. Feature selection for classification: A review. In Data classification: Algorithms and Applications; Aggarwal, C.C., Ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 37–64. ISBN 9781466586758. [Google Scholar]
- Fernández-Delgado, M.; Cernadas, E.; Barro, S.; Amorim, D. Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 2014, 15, 3133–3181. [Google Scholar]
- Huang, F.; Jiang, S.; Zhan, W.; Bechtel, B.; Liu, Z.; Demuzere, M.; Huang, Y.; Xu, Y.; Ma, L.; Xia, W.; et al. Mapping local climate zones for cities: A large review. Remote Sens. Environ. 2023, 292, 113573. [Google Scholar] [CrossRef]
- Demuzere, M.; Kittner, J.; Bechtel, B. LCZ Generator: A Web Application to Create Local Climate Zone Maps. Front. Environ. Sci. 2021, 9, 637455. [Google Scholar] [CrossRef]
- Oliveira, A.; Lopes, A.; Niza, S. Local climate zones classification method from Copernicus land monitoring service datasets: An ArcGIS-based toolbox. MethodsX 2020, 7, 101150. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, G.; Le, Y.; Ren, C.; Xie, J.; Chung, L.; Ni, H.; Gong, P. Mapping urban morphology changes in the last two decades based on local climate zone scheme: A case study of three major urban agglomerations in China. Urban Clim. 2023, 47, 101391. [Google Scholar] [CrossRef]
- Taubenböck, H.; Kraff, N.J. The physical face of slums: A structural comparison of slums in Mumbai, India, based on remotely sensed data. J. Hous. Built Environ. 2014, 29, 15–38. [Google Scholar] [CrossRef]
- Ross, S.L. Dimensions of Urban Structure: An Example of Construct Validation. Urban Stud. 1993, 30, 1109–1128. [Google Scholar] [CrossRef]
- Baffoe, G.; Malonza, J.; Manirakiza, V.; Mugabe, L. Understanding the Concept of Neighbourhood in Kigali City, Rwanda. Sustainability 2020, 12, 1555. [Google Scholar] [CrossRef]
- Gerl, T.; Bochow, M.; Kreibich, H. Flood Damage Modeling on the Basis of Urban Structure Mapping Using High-Resolution Remote Sensing Data. Water 2014, 6, 2367–2393. [Google Scholar] [CrossRef]
- Quan, J. Enhanced geographic information system-based mapping of local climate zones in Beijing, China. Sci. China Technol. Sci. 2019, 62, 2243–2260. [Google Scholar] [CrossRef]
- Kotharkar, R.; Ghosh, A.; Kotharkar, V. Estimating summertime heat stress in a tropical Indian city using Local Climate Zone (LCZ) framework. Urban Clim. 2021, 36, 100784. [Google Scholar] [CrossRef]
- Pothuganti, S. Review on over-fitting and under-fitting problems in Machine Learning and solutions. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 2018, 7, 3692–3695. [Google Scholar] [CrossRef]
- Pinho, P.; Oliveira, V. Cartographic analysis in urban morphology. Environ. Plann. B 2009, 36, 107–127. [Google Scholar] [CrossRef]
- Anderson, C.L.; Robinson, A.C. Affective Congruence in Visualization Design: Influences on Reading Categorical Maps. IEEE Trans. Vis. Comput. Graph. 2022, 28, 2867–2878. [Google Scholar] [CrossRef]
- Johnson, J.M. Mapping Ethnicity: Color Use in Depicting Ethnic Distribution. Cartogr. Perspect. 2001, 40, 12–31. [Google Scholar] [CrossRef]
- Larsen, T.S.; Delica, K.N. The production of territorial stigmatisation. City 2019, 23, 540–563. [Google Scholar] [CrossRef]
- Scarwell, H.-J.; Leducq, D. DaNang, a secondary city subject to aspirational urbanism. Cities 2021, 118, 103271. [Google Scholar] [CrossRef]
- Hildebrandt, T.; Isaac, R. The Tourism Structures in Central Vietnam: Towards a Destination Management Organisation. Tour. Plan. Dev. 2015, 12, 463–478. [Google Scholar] [CrossRef]
- Baffoe, G.; Ahmad, S.; Bhandari, R. The road to sustainable Kigali: A contextualized analysis of the challenges. Cities 2020, 105, 102838. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Ebdon, D. Statistics in Geography Second Edition: A Practical Approach, 2nd ed.; Blackwell Publishing: Hoboken, NJ, USA, 1985. [Google Scholar]
- Patterson, T.; Kelso, N.V. Hal Shelton revisited: Designing and producing natural-color maps with satellite land cover data. Cartogr. Perspect. 2004, 47, 28–55. [Google Scholar] [CrossRef]
- USGS. Landsat 8 Collection 1 Tier 1 8-Day TOA Reflectance Composite: Earth Engine Data Catalog. Available online: https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C01_T1_8DAY_TOA (accessed on 6 August 2023).
- Lưu, T.H.; Đinh, N.Đ. The impacts of urban morphology on outdoor air temperature case study: The center area of Hoi An city, Vietnam. UD-JST 2022, 11, 107–114. [Google Scholar]
Dataset | Coverage | Comments | Data Available at |
---|---|---|---|
Open Street Map [89] | Global | Largely manually digitized, but partly inhomogeneous and incomplete | https://download.geofabrik.de, accessed on 15 August 2023. https://overpass-turbo.eu, accessed on 15 August 2023. https://docs.3liz.org/QuickOSM/, accessed on 15 August 2023. |
Open Buildings [99] | Africa, Asia (partly), Latin America, Caribbean | Only data source for many covered regions, machine-generated, regional differences regarding quality | https://sites.research.google/open-buildings/, accessed on 15 August 2023. |
EUBUCCO [100] | European Union countries and Switzerland | 378 European regions and 40,829 cities, height, year and type partly available. | https://eubucco.com, accessed on 15 August 2023. |
DBSM [101] | Europe | Developed by the Joint Research Centre (JRC) of the European Commission | Not yet, but first information given here: https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficient-buildings/eu-building-stock-observatory_en, accessed on 15 August 2023. |
MTBF-33 [102] | USA | Building data of 33 counties including year of construction | https://data.mendeley.com/datasets/w33vbvjtdy, accessed on 15 August 2023. |
Microsoft Building Footprints [103] | Parts of the US, Canada, South America, Africa, Australia | Extracted from satellite imagery, coverage and quality has regional differences | https://www.microsoft.com/en-us/maps/building-footprints, accessed on 15 August 2023. |
China 2019 [104] | China | Accessible via the Google Earth Engine | https://code.earthengine.google.com/?asset=users/flower/2019_China, accessed on 15 August 2023. |
Dataset/Institution/Author | Description | Spatial Resolution and Years of Availability |
---|---|---|
GHSL (JRC [126]): European Settlement map | Binary raster of built-up areas | 2 m and 10 m (2015), Europe only |
GHSL (JRC [127]): Built-up surface | Number of square meters of built-up surfaces per pixel | 10 m (2018 only); 100 m and 1 km for all epochs (1975–2030 at intervals of 5 years) |
GHSL (JRC [128]): Built-up height | Average height of built-up surfaces per pixel | 100 m (2018 only) |
GHSL (JRC [129]): Built-up volume | Number of cubic meters of built-up surface per pixel | 100 m and 1 km for all epochs (1975–2030 at intervals of 5 years) |
GHSL (JRC [130]): Built-up characteristics | Morphological settlement zone delineation and inner classification, categorical | 10 m (2018) |
GHSL (JRC [131]): Population grid | Absolute number of inhabitants per pixel | 100 m, 1 km, 3 arcsec and 30 arcsec for all epochs (1975–2030 at intervals of 5 years) |
Global Urban Footprint (DLR [124]): GUF2012 | Binary raster of built-up areas | 12 m and 84 m, largely based on imagery from 2011 to 2012 |
Global Urban Footprint (DLR [124]): GUF-DenS2012 | Degree of imperviousness of urban areas | 30 m (2012) |
WSF (DLR [51]) | Binary raster of built-up areas | 30 m (2015) and 10 m (2019) |
WSF Evolution (DLR [132]) | Extent of built-up areas for selected years | 30 m (1984–2020 at annual intervals) |
WSF 3D (DLR [133] | Built-up volume | 90 m, largely based on imagery from 2011 to 2012 |
Global 3D (Li et al., 2022 [134]) | Global 3-dimensional building structure data | 1 km (2015), global coverage |
Building Height 2012 (EEA [135]) | Average building height per pixel | 10 m, largely based on data from 2011 to 2014, Europe only |
Building heights (Frantz et al., 2021 [125]) | Average building height per pixel | 10 m (2017), Germany only |
Data Source for Urban Morphology | Quality | Temporal Effort | Computational Effort | Transferability (between Cities) | Data Maintenance (Updating) |
---|---|---|---|---|---|
Official building footprints provided by city administrations | high | none | none | low | slow for administrative data |
Openly available spatial data | strongly varying | little | little | high for globally available data | potentially high |
Derivation from satellite imagery or DSMs | medium, depending on data source | medium | high | high | high potential for automation |
Manual digitization by visual inspection | potentially very high | very high | none | high | easy but slow |
Use of proxies (e.g., binary raster data) | medium, depending on data source | low to medium | little | potentially high | potentially high |
Spatial Aggregation | Advantages | Disadvantages |
---|---|---|
Administrative boundaries (neighborhood-scale) | High chance of availability Closely related to urban planning and decision-making | Can be strongly inhomogeneous regarding size Comparability between cities can be critical Can be too coarse for the differentiation within small cities |
Administrative boundaries (property scale) | Parcel data are precise and allows a detailed description of changes in the building density within small intervals | Parcels might be too small Low chance of public availability |
Road network | High chance of availability Availability of packages for automated delineation of blocks (e.g., OSMnx [141]) | Can be strongly inhomogeneous resulting in larger blocks in areas of lower road density [142]. Pre-processing required |
Automated tessellation based on buildings | Availability of packages for automated delineation of blocks (e.g., Momepy [144]) | Result can contain irregular shapes or artefacts based on extreme geometries or suboptimal spatial distributions. |
Regular divisions, e.g., hexagonal grids | Equal spatial units, reduced sampling bias Regular and highly objective | Hard to determine the ideal scale [148] Might suppress patterns at higher or lower scales |
Manual division | Integration of expert knowledge Preservation of locally specific patterns | Highly subjective, limited transferability Time-consuming for large cities |
Type | Parameters | Block-Level Features |
---|---|---|
Building-related | Basic: area, perimeter, perimeter-area-ratio, compactness, orientation, elongation, eccentricity, sphericity, shape index… Advanced: height, volume | Sum, mean, median, minimum, maximum, standard deviation, percentiles (e.g., 5%, 95%) |
Continuous spatial metrics | Density: Buildings, roads, Distances: Between buildings, to roads and infrastructures DSM-based: terrain roughness, skyview factor, canyon aspect… | |
Local parameters | Distance to the city center or cultural places of interest, Shape of specific building types within a block | |
Classified | Building type, roof material, land-use types vegetation, impervious surfaces | Mode, class diversity, percentage of each class, share of total block area |
Da Nang | Hoi An | Kigali | |
---|---|---|---|
City boundary | Da Nang province | Urban district Hoi An | Kigali province |
Size | 91,325 ha | 3635 ha | 70,405 ha |
Analysis unit (blocks) [number] | Building blocks provided by the Urban Planning Institute (UPI) (n = 33,807) | Derivation from VHR image and OSM data (n = 1395) | Cadastral dataset provided by the city administration (n = 8499) |
Satellite mission | Pléiades | WorldView-3 | Pléiades |
Acquisition date | 13 August 2017 | 6 March 2021 | 19 August 2015 |
Building footprints | Extraction from VHR image with OBIA, manually refined [119,176] | Extraction from VHR image with OBIA, manually refined | Extraction from VHR image with OBIA, manually refined [120] |
Selected block parameters (same for all three cities) | Building density (number of buildings per block area), absolute and per type (if available) Mean building size Mean and standard deviation distance between buildings Nearest Neighbor index (observed vs. expected mean distance between buildings) [213] Ground space index (share of built-up area in relation to block area), Green cover ratio (share of vegetation cover of the block area) Accessibility (mean, standard deviation, and minimum distance to the closest road) | ||
Classifier | Random forest classifier | Rule-based | Random forest classifier |
Name/Color | Description | Da Nang | Hoi An | Kigali |
---|---|---|---|---|
Compact large #970000 | Large buildings densely built, typically in residential areas with multi-family houses | |||
Compact mid-size #e30000 | Buildings of average size and high density, often in the city center and business areas | |||
Compact small #bd4444 | Small buildings closely built together, typically (but not generally) associated with lower socio-economic status | |||
Open large #dd6f14 | Primarily large buildings with a higher share of green spaces, partially hotels and important administrative buildings | not occurring in Hoi An | ||
Open mid-size #b2b74c | Buildings of medium size with larger spaces in between, either occupied by gardens or undeveloped land within the city | |||
Open small #fffba3 | Small buildings in urban areas of low building density | |||
Industrial #bcbcbc | Very large buildings of different spacing, but mostly surrounded by impervious surfaces and very few green spaces | |||
Rural #00c043 | Buildings of different sizes but high spaces in between and high amount of vegetation, largely scattered architecture, mostly in peri-urban areas | |||
Unbuilt #006206 | No to nearly no buildings of different land use |
City | Number of Mapped UST Units (Blocks) | Area Proportions of Mapped UST Units |
---|---|---|
Da Nang | ||
Hoi An | ||
Kigali | ||
Legend |
City | Population | Land Surface Temperature |
---|---|---|
Da Nang | ||
Hoi An | ||
Kigali |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Braun, A.; Warth, G.; Bachofer, F.; Schultz, M.; Hochschild, V. Mapping Urban Structure Types Based on Remote Sensing Data—A Universal and Adaptable Framework for Spatial Analyses of Cities. Land 2023, 12, 1885. https://doi.org/10.3390/land12101885
Braun A, Warth G, Bachofer F, Schultz M, Hochschild V. Mapping Urban Structure Types Based on Remote Sensing Data—A Universal and Adaptable Framework for Spatial Analyses of Cities. Land. 2023; 12(10):1885. https://doi.org/10.3390/land12101885
Chicago/Turabian StyleBraun, Andreas, Gebhard Warth, Felix Bachofer, Michael Schultz, and Volker Hochschild. 2023. "Mapping Urban Structure Types Based on Remote Sensing Data—A Universal and Adaptable Framework for Spatial Analyses of Cities" Land 12, no. 10: 1885. https://doi.org/10.3390/land12101885