Coupling Coordination between Park Green Space (PGS) and Socioeconomic Deprivation (SED) in High-Density City Based on Multi-Scale: From Environmental Justice Perspective
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Framework
2.1.1. Study Scale and Study Unit of Analyses
2.1.2. Indexes Selection
2.2. Study Area and Data
2.3. Methods
2.3.1. Entropy-Weighted Method
2.3.2. Supply-Demand Matching Model
2.3.3. Coupling Coordination Model
2.3.4. Geographically Weighted Regression (GWR)
3. Results
3.1. Multi-Scale Park Green Space (PGS) Equity
3.2. High-Density Urban Socioeconomic Deprivation (SED)
3.3. PGS-SED Supply-Demand Matching
3.4. PGS-SED Coupling Coordination
3.5. Spatial Correlation between PGS and Coupling Coordination Degree
4. Discussion
4.1. Multi-Scale Coupling Coordination Model and Indexes Selection
4.2. Development Proposals for Spatial Equity of 3-Scale PGS
4.3. Limitations of the Study and Future Plans
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN-DESA. World Urbanization Prospects; Department of International Economic and Social Affairs: New York, NY, USA, 2018. [Google Scholar]
- Zhang, X.; Wan, G.; Luo, Z.; Wang, C. Explaining the East Asia miracle: The role of urbanization. Econ. Syst. 2019, 43, 100697. [Google Scholar] [CrossRef]
- Ming, C.; Fan, J. Carbon reduction in a high-density city: A case study of Langham Place Hotel Mongkok Hong Kong. Renew. Energy 2013, 50, 433–440. [Google Scholar]
- Wang, D.; Wang, P.; Chen, G.; Liu, Y. Ecological-social-economic system health diagnosis and sustainable design of high-density cities: An urban agglomeration perspective. Sustain. Cities Soc. 2022, 87, 104177. [Google Scholar] [CrossRef]
- Li Min, Y.C. Threshold standard and global distribution of high-density cities. World Reg. Stud. 2015, 1, 38–45. [Google Scholar]
- Mouratidis, K. Compact city, urban sprawl, and subjective well-being. Cities 2019, 92, 261–272. [Google Scholar] [CrossRef]
- Tian, Y.H.; Jim, C.Y.; Tao, Y. Challenges and Strategies for Greening the Compact City of Hong Kong. J. Urban Plan. Dev. 2012, 138, 101–109. [Google Scholar] [CrossRef]
- Liu, B.; Tian, Y.; Guo, M.; Tran, D.; Alwah, A.A.Q.; Xu, D. Evaluating the disparity between supply and demand of park green space using a multi-dimensional spatial equity evaluation framework. Cities 2022, 121, 103484. [Google Scholar] [CrossRef]
- Das, M.; Das, A.; Momin, S. Quantifying the cooling effect of urban green space: A case from urban parks in a tropical mega metropolitan area (India). Sustain. Cities Soc. 2022, 87, 104062. [Google Scholar] [CrossRef]
- Schäffer, B.; Brink, M.; Schlatter, F.; Vienneau, D.; Wunderli, J.M. Residential green is associated with reduced annoyance to road traffic and railway noise but increased annoyance to aircraft noise exposure. Environ. Int. 2020, 143, 105885. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, Y.; Ni, Z.; Chen, S.; Xia, B. Improving air quality in Guangzhou with urban green infrastructure planning: An i-Tree Eco model study. J. Clean. Prod. 2022, 369, 133372. [Google Scholar] [CrossRef]
- Pouso, S.; Borja, Á.; Fleming, L.E.; Gómez-Baggethun, E.; White, M.P.; Uyarra, M.C. Contact with blue-green spaces during the COVID-19 pandemic lockdown beneficial for mental health. Sci. Total Environ. 2021, 756, 143984. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Lu, Y.; Jiang, B. Population-weighted exposure to green spaces tied to lower COVID-19 mortality rates: A nationwide dose-response study in the USA. Sci. Total Environ. 2022, 851, 158333. [Google Scholar] [CrossRef] [PubMed]
- Bustamante, G.; Guzman, V.; Kobayashi, L.C.; Finlay, J. Mental health and well-being in times of COVID-19: A mixed-methods study of the role of neighborhood parks, outdoor spaces, and nature among US older adults. Health Place 2022, 76, 102813. [Google Scholar] [CrossRef] [PubMed]
- Wade, R. Dumping in Dixie: Race, Class and Environmental Quality.by Robert D. Bullard. Contemp. Sociol. 1991, 20, 911–912. [Google Scholar] [CrossRef]
- Burke, L.M. Race and Environmental Equity: A Geographic Analysis in Los Angeles. Geogr. Inf. Syst. 1993, 3, 44–50. [Google Scholar]
- Bullard, R. Dumping in Dixie: Race, Class, and Environmental Quality; Westview Press: Boulder, US, 2000. [Google Scholar]
- Alessandro Rigolon, M.F.B.H. An Ecological Model of Environmental Justice for Recreation. Leis. Serv. 2022, 44, 655–676. [Google Scholar] [CrossRef]
- Guo, S.; Song, C.; Pei, T.; Liu, Y.; Ma, T.; Du, Y.; Chen, J.; Fan, Z.; Tang, X.; Peng, Y.; et al. Accessibility to urban parks for elderly residents: Perspectives from mobile phone data. Landsc. Urban Plan. 2019, 191, 103642. [Google Scholar] [CrossRef]
- Fe, A.; Nka, B. Urban green spaces for the social interaction, health and well-being of older people—An integrated view of urban ecosystem services and socio-environmental justice—ScienceDirect. Environ. Sci. Policy 2020, 109, 36–44. [Google Scholar]
- Zhang, J.; Yu, Z.; Cheng, Y.; Chen, C.; Wan, Y.; Zhao, B.; Vejre, H. Evaluating the disparities in urban green space provision in communities with diverse built environments: The case of a rapidly urbanizing Chinese city. Build. Environ. 2020, 183, 107170. [Google Scholar] [CrossRef]
- Hoffimann, E.; Barros, H.; Ribeiro, A. Socioeconomic Inequalities in Green Space Quality and Accessibility—Evidence from a Southern European City. Int. J. Environ. Res. Public Health 2017, 14, 916. [Google Scholar] [CrossRef]
- Wu, L.; Kim, S.K.; Lin, C. Socioeconomic groups and their green spaces availability in urban areas of China: A distributional justice perspective. Environ. Sci. Policy 2022, 131, 26–35. [Google Scholar] [CrossRef]
- Shadman, S.; Ahanaf Khalid, P.; Hanafiah, M.M.; Koyande, A.K.; Islam, M.A.; Bhuiyan, S.A.; Sin Woon, K.; Show, P. The carbon sequestration potential of urban public parks of densely populated cities to improve environmental sustainability. Sustain. Energy Technol. Assess. 2022, 52, 102064. [Google Scholar] [CrossRef]
- Du, S.; He, H.; Liu, Y.; Xing, L. Identifying Key Factors Associated with Green Justice in Accessibility: A Gradient Boosting Decision Tree Analysis. Int. J. Environ. Res. Public Health 2022, 19, 10357. [Google Scholar] [CrossRef] [PubMed]
- Dai, D. Racial/ethnic and socioeconomic disparities in urban green space accessibility: Where to intervene? Landsc. Urban Plan. 2011, 102, 234–244. [Google Scholar] [CrossRef]
- Wolch, J.R.; Byrne, J.; Newell, J.P. Urban green space, public health, and environmental justice: The challenge of making cities ‘just green enough’. Landsc. Urban Plan. 2014, 125, 234–244. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, C.-Q.; Cheng, W.; Lai, P.C.; Schüz, B. The neighborhood socioeconomic inequalities in urban parks in a High-density City: An environmental justice perspective. Landsc. Urban Plan. 2021, 211, 104099. [Google Scholar] [CrossRef]
- You, H. Characterizing the inequalities in urban public green space provision in Shenzhen, China. Habitat Int. 2016, 56, 176–180. [Google Scholar] [CrossRef]
- Townsend, P.; Phillimore, P.; Beattie, A. Health and Deprivation: Inequality and the North; Croom Helm: Wolfeboro, London, 1988. [Google Scholar]
- Yang, G.; Zhao, Y.; Xing, H.; Fu, Y.; Liu, G.; Kang, X.; Mai, X. Understanding the changes in spatial fairness of urban greenery using time-series remote sensing images: A case study of Guangdong-Hong Kong-Macao Greater Bay. Sci. Total Environ. 2020, 715, 136763. [Google Scholar] [CrossRef]
- Li, X.; Huang, Y.; Ma, X. Evaluation of the accessible urban public green space at the community-scale with the consideration of temporal accessibility and quality. Ecol. Indic. 2021, 131, 108231. [Google Scholar] [CrossRef]
- Zheng, Z.; Shen, W.; Li, Y.; Qin, Y.; Wang, L. Spatial equity of park green space using KD2SFCA and web map API: A case study of zhengzhou, China. Appl. Geogr. 2020, 123, 102310. [Google Scholar] [CrossRef]
- Zhang, S.; Yu, P.; Chen, Y.; Jing, Y.; Zeng, F. Accessibility of Park Green Space in Wuhan, China: Implications for Spatial Equity in the Post-COVID-19 Era. Int. J. Environ. Res. Public Health 2022, 19, 5440. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Liu, J. Sustainable port cities with coupling coordination and environmental efficiency. Ocean Coast. Manag. 2021, 205, 105534. [Google Scholar] [CrossRef]
- Fu, B.; Meadows, M.E.; Zhao, W. Geography in the Anthropocene: Transforming our world for sustainable development. Geogr. Sustain. 2022, 3, 1–6. [Google Scholar] [CrossRef]
- Tang, F.; Wang, L.; Guo, Y.; Fu, M.; Huang, N.; Duan, W.; Luo, M.; Zhang, J.; Li, W.; Song, W. Spatio-temporal variation and coupling coordination relationship between urbanisation and habitat quality in the Grand Canal, China. Land Use Policy 2022, 117, 106119. [Google Scholar] [CrossRef]
- Bian, D.; Yang, X.; Xiang, W.; Sun, B.; Chen, Y.; Babuna, P.; Li, M.; Yuan, Z. A new model to evaluate water resource spatial equilibrium based on the game theory coupling weight method and the coupling coordination degree. J. Clean. Prod. 2022, 366, 132907. [Google Scholar] [CrossRef]
- Zhang, Q.; Shen, J.; Sun, F. Spatiotemporal differentiation of coupling coordination degree between economic development and water environment and its influencing factors using GWR in China’s province. Ecol. Model. 2021, 462, 109794. [Google Scholar] [CrossRef]
- Liang, L.; Zhang, F.; Wu, F.; Chen, Y.; Qin, K. Coupling coordination degree spatial analysis and driving factor between socio-economic and eco-environment in northern China. Ecol. Indic. 2022, 135, 108555. [Google Scholar]
- Liu, F.; Wang, C.; Luo, M.; Zhou, S.; Liu, C. An investigation of the coupling coordination of a regional agricultural economics-ecology-society composite based on a data-driven approach. Ecol. Indic. 2022, 143, 109363. [Google Scholar] [CrossRef]
- Ma, M.; Tang, J. Interactive coercive relationship and spatio-temporal coupling coordination degree between tourism urbanization and eco-environment: A case study in Western China. Ecol. Indic. 2022, 142, 109149. [Google Scholar] [CrossRef]
- Zhang, X.; Zhong, L.; Yu, H. Sustainability assessment of tourism in protected areas: A relational perspective. Glob. Ecol. Conserv. 2022, 35, e2074. [Google Scholar] [CrossRef]
- Tian, Y.; Zhou, D.; Jiang, G. Conflict or Coordination? Multiscale assessment of the spatio-temporal coupling relationship between urbanization and ecosystem services: The case of the Jingjinji Region, China. Ecol. Indic. 2020, 117, 106543. [Google Scholar] [CrossRef]
- Xin, R.; Skov-Petersen, H.; Zeng, J.; Zhou, J.; Wang, Q. Identifying key areas of imbalanced supply and demand of ecosystem services at the urban agglomeration scale: A case study of the Fujian Delta in China. Sci. Total Environ. 2021, 791, 148173. [Google Scholar] [CrossRef] [PubMed]
- Zeng, P.; Wei, X.; Duan, Z. Coupling and coordination analysis in urban agglomerations of China: Urbanization and ecological security perspectives. J. Clean. Prod. 2022, 365, 132730. [Google Scholar] [CrossRef]
- Luo, L.; Wang, Y.; Liu, Y.; Zhang, X.; Fang, X. Where is the pathway to sustainable urban development? Coupling coordination evaluation and configuration analysis between low-carbon development and eco-environment: A case study of the Yellow River Basin, China. Ecol. Indic. 2022, 144, 109473. [Google Scholar] [CrossRef]
- Li, K.; Li, C.; Liu, M.; Hu, Y.; Wang, H.; Wu, W. Multiscale analysis of the effects of urban green infrastructure landscape patterns on PM2.5 concentrations in an area of rapid urbanization. J. Clean. Prod. 2021, 325, 129324. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, T.; Sun, J. Effects of urban form on air quality: A case study from China comparing years with normal and reduced human activity due to the COVID-19 pandemic. Cities 2022, 131, 104040. [Google Scholar] [CrossRef]
- Sumaiya Siddique, M.M.U. Green space dynamics in response to rapid urbanization: Patterns, transformations and topographic influence in Chattogram city, Bangladesh. Land Use Policy 2022, 114, 105974. [Google Scholar] [CrossRef]
- Meng, Q.S. Information Theory; Xi’an Jiaotong University Press: Xi’an, China, 1987. [Google Scholar]
- Farhad, H.R.F. Imprecise Shannon’s Entropy and Multi Attribute Decision Making. Entropy 2010, 12, 53–62. [Google Scholar]
- Liu, Z.; Huang, Q.; Yang, H. Supply-demand spatial patterns of park cultural services in megalopolis area of Shenzhen, China. Ecol. Indic. 2021, 121, 107066. [Google Scholar] [CrossRef]
- Deng, C.; Liu, J.; Liu, Y.; Li, Z.; Nie, X.; Hu, X.; Wang, L.; Zhang, Y.; Zhang, G.; Zhu, D.; et al. Spatiotemporal dislocation of urbanization and ecological construction increased the ecosystem service supply and demand imbalance. J. Environ. Manag. 2021, 288, 112478. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, H.; Bi, G.; Su, K.; Wang, L.; Chen, H.; Yang, Q. Multiscale perspective research on the evolution characteristics of the ecosystem services supply-demand relationship in the chongqing section of the three gorges reservoir area. Ecol. Indic. 2022, 142, 109227. [Google Scholar] [CrossRef]
- Ballard, K.; Bone, C. Exploring spatially varying relationships between Lyme disease and land cover with geographically weighted regression. Appl. Geogr. 2021, 127, 102383. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, M.; Bai, W.; Jin, Y.; Ren, J. Measuring coupling coordination between urban economic development and air quality based on the Fuzzy BWM and improved CCD model. Sustain. Cities Soc. 2021, 75, 103283. [Google Scholar] [CrossRef]
- Zhang, Y.; Khan, S.U.; Swallow, B.; Liu, W.; Zhao, M. Coupling coordination analysis of China’s water resources utilization efficiency and economic development level. J. Clean. Prod. 2022, 373, 133874. [Google Scholar] [CrossRef]
- Gollini, I.; Lu, B.B.; Charlton, M.; Brunsdon, C.; Harris, P. GWmodel: An R Package for Exploring Spatial Heterogeneity Using Geographically Weighted Models. J. Stat. Softw. 2015, 63, 1–50. [Google Scholar] [CrossRef]
- Sun, P.; Lu, W. Environmental inequity in hilly neighborhood using multi-source data from a health promotion view. Environ. Res. 2022, 204, 111983. [Google Scholar] [CrossRef]
- Kabisch, N.; Haase, D. Green justice or just green? Provision of urban green spaces in Berlin, Germany. Landsc. Urban Plan. 2014, 122, 129–139. [Google Scholar] [CrossRef]
- Mears, M.; Brindley, P. Measuring Urban Greenspace Distribution Equity: The Importance of Appropriate Methodological Approaches. Int. J. Geo-Inf. 2019, 8, 286. [Google Scholar] [CrossRef]
- Schrammeijer, E.A.; Malek, Ž.; Verburg, P.H. Mapping demand and supply of functional niches of urban green space. Ecol. Indic. 2022, 140, 109031. [Google Scholar] [CrossRef]
- Ma, F. Spatial equity analysis of urban green space based on spatial design network analysis (sDNA): A case study of central Jinan, China. Sustain. Cities Soc. 2020, 60, 102256. [Google Scholar] [CrossRef]
- Wang, S.; Wang, M.; Liu, Y. Access to urban parks: Comparing spatial accessibility measures using three GIS-based approaches. Comput. Environ. Urban Syst. 2021, 90, 101713. [Google Scholar] [CrossRef]
- Zhang, R.; Sun, F.; Shen, Y.; Peng, S.; Che, Y. Accessibility of urban park benefits with different spatial coverage: Spatial and social inequity. Appl. Geogr. 2021, 135, 102555. [Google Scholar] [CrossRef]
- Lin, Y.; Zhou, Y.; Lin, M.; Wu, S.; Li, B. Exploring the disparities in park accessibility through mobile phone data: Evidence from Fuzhou of China. J. Environ. Manag. 2021, 281, 111849. [Google Scholar] [CrossRef]
- Li, Z.; Fan, Z.; Song, Y.; Chai, Y. Assessing equity in park accessibility using a travel behavior-based G2SFCA method in Nanjing, China. J. Transp. Geogr. 2021, 96, 103179. [Google Scholar] [CrossRef]
Type | Number | Area (hm2) | Service Radius (m) | Appropriate Scale (hm2) |
---|---|---|---|---|
Pocket PGS | 94 | 40.99 | 300 | ≤1.0 |
Community PGS | 55 | 120.26 | 500 | 1.0–5.0 |
13 | 91.16 | 800 | 5.0–10.0 | |
Comprehensive PGS | 6 | 91.76 | 1200 | 10.0–20.0 |
5 | 1401.58 | 2000 | ≥20.0 | |
Total | 173 | 1745.75 | - | - |
Target Layer | Subsystem Layer | Index Layer | Description | Properties |
---|---|---|---|---|
PGS | Number of configuration | Green space service coverage rate | The proportion of service radius of green space resources in different grids | + |
Green space recreation opportunity index | Mean number of accessible green spaces within the service radius | + | ||
Spatial arrangement | Per capita green space location entropy | Ratio of total green space per capita in the grid to the study area | + | |
Per capita green space service location entropy | The ratio of the total green space accessible to each person in the grid and the study area within 15 min of living circle | + | ||
Accessibility | Density of roads | The proportion of service radius of green space resources in different grids | + | |
Density of public transportation station | Mean number of accessible green spaces within the service radius | + | ||
SED | Density of population | Intensity of population activity | Total number of POI points in grid/grid area | + |
Grid density of population | Total elderly and child population in grid/grid area | + | ||
Land use | Intensity of land use | In-grid GDP raster data gross/grid area | + | |
Proportion of ecological land | Total ecological land area in grid/grid area | − | ||
Building blocks | Density of buildings | Building base area/grid area in the grid | + | |
Plot ratio | Total building area in grid/grid area | + |
Class | Classification Basis | Description | |
---|---|---|---|
Supply-demand mismatching | PGS supply advanced | Second quadrant | The PGS supply is higher than SED, and exceeds residents’ total demand for PGS. |
PGS supply lagged | Fourth quadrant | The PGS supply is lower than SED, and cannot meet residents’ total demand for PGS. | |
supply-demand matching | Low balanced | Third quadrant | PGS supply matched with SED demand, and both of them were low. |
High balanced | First quadrant | PGS supply matched with SED demand, and both of them were high. |
Classification | Scoring Standard | |
---|---|---|
Uncoordinated class | Extreme uncoordinated | [0.0, 0.1) |
Serious uncoordinated | [0.1, 0.2) | |
Moderate uncoordinated | [0.2, 0.3) | |
Mild uncoordinated | [0.3, 0.4) | |
Transitional class | Near uncoordinated | [0.4, 0.5) |
Near coordination | [0.5, 0.6) | |
Coordinated class | Mild coordination | [0.6, 0.7) |
Moderate Coordination | [0.7, 0.8) | |
Serious coordination | [0.8, 0.9) | |
Extreme coordination | [0.9, 1.0) |
Target Layer | Subsystem Layer | Index Layer | Pocket PGS | Community PGS | Comprehensive PGS | |||
---|---|---|---|---|---|---|---|---|
Weight | Supply | Weight | Supply | Weight | Supply | |||
PGS | Number of configuration | Green space service coverage Index (X1) | 0.21 | 74.64 | 0.18 | 73.12 | 0.18 | 85.50 |
Green space recreation opportunity Index (X2) | 0.21 | 0.20 | 0.20 | |||||
Spatial arrangement | Per capita green space location entropy (X3) | 0.25 | 0.24 | 0.17 | ||||
Per capita green space service location entropy (X4) | 0.16 | 0.21 | 0.31 | |||||
Accessibility | Density of roads (X5) | 0.04 | 0.04 | 0.03 | ||||
Density of public transportation station(X6) | 0.13 | 0.13 | 0.11 |
Target Layer | Subsystem | Index Layer | Weight | Demand |
---|---|---|---|---|
SED | Density of population | Intensity of population activity | 0.26 | 295.57 |
Grid density of population | 0.12 | |||
Land use | Intensity of land use | 0.04 | ||
Proportion of ecological land | 0.08 | |||
Building blocks | Density of buildings | 0.23 | ||
Plot ratio | 0.27 |
Classification | Pocket PGSProportion(%) | Community PGS Proportion(%) | Comprehensive PGS Proportion(%) | ||||
---|---|---|---|---|---|---|---|
Supply-demand mismatching | PGS supply advanced | 3.01 | 30.03 | 4.57 | 30.18 | 12.38 | 44.11 |
PGS supply lagged | 27.02 | 25.61 | 31.73 | ||||
supply-demand matching | Low balanced | 54.10 | 69.97 | 52.54 | 69.82 | 44.73 | 55.89 |
High balanced | 15.87 | 17.28 | 11.16 |
Classification | CCD | Pocket PGSProportion | Pommunity PGS Proportion | Comprehensive PGS Proportion | |
---|---|---|---|---|---|
Uncoordinatedclass | Extreme uncoordinated | [0.0, 0.1) | 95.01% | 95.48% | 97.27% |
Serious uncoordinated | [0.1, 0.2) | ||||
Moderate uncoordinated | [0.2, 0.3) | ||||
Mild uncoordinated | [0.3, 0.4) | ||||
Transitionalclass | Near uncoordinated | [0.4, 0.5) | 4.94% | 4.43% | 2.73% |
Near coordination | [0.5, 0.6) | ||||
Coordinated class | Mild coordination | [0.6, 0.7) | 0.05% | 0.09% | 0.00% |
Moderate Coordination | [0.7, 0.8) | ||||
Serious coordination | [0.8, 0.9) | ||||
Extreme coordination | [0.9, 1.0) |
Independent Variables | Dependent Variables | ||||||
---|---|---|---|---|---|---|---|
CCD of PGS (M) | CCD of Community PGS (S) | CCD of Comprehensive PGS (Z) | |||||
Number of configuration | Green space service coverage Index (X1) | XM1 | XM12 | XS1 | XS12 | XZ1 | XZ12 |
Green space recreation opportunity Index (X2) | XM2 | XS2 | XZ2 | ||||
Spatial arrangement | Per capita green space location entropy (X3) | XM3 | XM34 | XS3 | XS34 | XZ3 | XZ34 |
Per capita green space service location entropy (X4) | XM4 | XS4 | XZ4 | ||||
Accessibility | Density of roads (X5) | XM5 | XM56 | XS5 | XS56 | XZ5 | XZ56 |
Green space service coverage Index (X6) | XM6 | XS6 | XZ6 |
Pocket PGS | Community PGS | Comprehensive PGS | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 AVI | 2 R | 3 GAV | 4 PV | 5 NV | AVI | R | GAV | PV | NV | AVI | R | GAV | PV | NV | ||
Number of configuration | X1 | 0.47 | 4 | 1.94 | 100% | 0% | 0.53 | 4 | 2.14 | 100% | 0% | 0.85 | 4 | 4.74 | 100% | 0% |
X2 | 1.47 | 1 | 0% | 100% | 1.60 | 2 | 27% | 73% | 3.88 | 1 | 13% | 87% | ||||
Spatial arrangement | X3 | 0.72 | 3 | 1.90 | 100% | 0% | 0.58 | 3 | 8.94 | 100% | 0% | 1.27 | 3 | 4.29 | 98% | 2% |
X4 | 1.18 | 2 | 100% | 0% | 8.36 | 1 | 100% | 0% | 3.02 | 2 | 61% | 39% | ||||
Accessibility | X5 | 0.39 | 6 | 0.84 | 100% | 0% | 0.38 | 5 | 0.76 | 100% | 0% | 0.33 | 5 | 0.61 | 100% | 0% |
X6 | 0.44 | 5 | 100% | 0% | 0.37 | 6 | 100% | 0% | 0.28 | 6 | 100% | 0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.; Wang, C.; Deng, M.; Chen, Y. Coupling Coordination between Park Green Space (PGS) and Socioeconomic Deprivation (SED) in High-Density City Based on Multi-Scale: From Environmental Justice Perspective. Land 2023, 12, 82. https://doi.org/10.3390/land12010082
Huang S, Wang C, Deng M, Chen Y. Coupling Coordination between Park Green Space (PGS) and Socioeconomic Deprivation (SED) in High-Density City Based on Multi-Scale: From Environmental Justice Perspective. Land. 2023; 12(1):82. https://doi.org/10.3390/land12010082
Chicago/Turabian StyleHuang, Shuyu, Chunxiao Wang, Mengting Deng, and Yuxi Chen. 2023. "Coupling Coordination between Park Green Space (PGS) and Socioeconomic Deprivation (SED) in High-Density City Based on Multi-Scale: From Environmental Justice Perspective" Land 12, no. 1: 82. https://doi.org/10.3390/land12010082
APA StyleHuang, S., Wang, C., Deng, M., & Chen, Y. (2023). Coupling Coordination between Park Green Space (PGS) and Socioeconomic Deprivation (SED) in High-Density City Based on Multi-Scale: From Environmental Justice Perspective. Land, 12(1), 82. https://doi.org/10.3390/land12010082