Spatiotemporal Study of Park Sentiments at Metropolitan Scale Using Multiple Social Media Data
Abstract
:1. Introduction
2. Study Site
3. Material and Methods
4. Results
4.1. Park Sentiment Overview
4.2. Temporal and Spatial Park Sentiment Patterns
4.2.1. Temporal Sentiment Patterns
4.2.2. Spatial Sentiment Patterns
4.2.3. Spatiotemporal Sentiment Patterns
4.3. Relations between Park Sentiment Patterns and Related Factors
4.4. Comparisons between Different SMD Sets
5. Discussions
5.1. Park Sentiment Patterns
5.2. SMD Comparisons
5.3. Related Factors and Relations to Visitation
5.4. The Method Innovations and Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Zhu, Z.; Xu, M.; Qureshi, S. Fine-grained assessment of greenspace satisfaction at regional scale using content analysis of social media and machine learning. Sci. Total Environ. 2021, 776, 145908. [Google Scholar] [CrossRef] [PubMed]
- Ugolini, F.; Massetti, L.; Pearlmutter, D.; Sanesi, G. Usage of urban green space and related feelings of deprivation during the COVID-19 lockdown: Lessons learned from an Italian case study. Land Use Policy 2021, 105, 105437. [Google Scholar] [CrossRef]
- Poortinga, W.; Bird, N.; Hallingberg, B.; Phillips, R.; Williams, D. The role of perceived public and private green space in subjective health and wellbeing during and after the first peak of the COVID-19 outbreak. Landsc. Urban Plan. 2021, 211, 104092. [Google Scholar] [CrossRef]
- Pratiwi, P.I.; Xiang, Q.; Furuya, K. Physiological and Psychological Effects of Viewing Urban Parks in Different Seasons in Adults. Int. J. Environ. Res. Public Health 2019, 16, 4279. [Google Scholar] [CrossRef] [PubMed]
- Plunz, R.; Zhou, Y.; Carrasco Vintimilla, M.I.; McKeown, K.; Yu, T.; Uguccioni, L.; Sutto, M.P. Twitter sentiment in New York City parks as measure of well-being. Landsc. Urban Plan. 2019, 189, 235–246. [Google Scholar] [CrossRef]
- Park, S.B.; Kim, J.; Lee, Y.K.; Ok, C.M. Visualizing theme park visitors’ emotions using social media analytics and geospatial analytics. Tour. Manag. 2020, 80, 17. [Google Scholar] [CrossRef]
- Song, X.P.; Richards, D.R.; He, P.; Tan, P.Y. Does geo-located social media reflect the visit frequency of urban parks? A city-wide analysis using the count and content of photographs. Landsc. Urban Plan. 2020, 203, 103908. [Google Scholar] [CrossRef]
- Liang, H.; Zhang, Q. Do social media data indicate visits to tourist attractions? A case study of Shanghai, China. Open House Int. 2022, 47, 17–35. [Google Scholar] [CrossRef]
- Fang, L.; Zhang, D.; Liu, T.; Yao, S.; Fan, Z.; Xie, Y.; Wang, X.; Li, X. A multi-level investigation of environmental justice on cultural ecosystem services at a national scale based on social media data: A case of accessibility to Five—A ecological attractions in China. J. Clean. Prod. 2021, 286, 124923. [Google Scholar] [CrossRef]
- Gosal, A.S.; Ziv, G. Landscape aesthetics: Spatial modelling and mapping using social media images and machine learning. Ecol. Indic. 2020, 117, 106638. [Google Scholar] [CrossRef]
- Sun, Y.; Shao, Y. Measuring visitor satisfaction toward peri-urban green and open spaces based on social media data. Urban For. Urban Green. 2020, 53, 126709. [Google Scholar] [CrossRef]
- Zhang, H.; Van Berkel, D.; Howe, P.D.; Miller, Z.D.; Smith, J.W. Using social media to measure and map visitation to public lands in Utah. Appl. Geogr. 2021, 128, 102389. [Google Scholar] [CrossRef]
- Teles Da Mota, V.; Pickering, C. Using social media to assess nature-based tourism: Current research and future trends. J. Outdoor Recreat. Tour. 2020, 30, 100295. [Google Scholar] [CrossRef]
- Toivonen, T.; Heikinheimo, V.; Fink, C.; Hausmann, A.; Hiippala, T.; Järv, O.; Tenkanen, H.; Di Minin, E. Social media data for conservation science: A methodological overview. Biol. Conserv. 2019, 233, 298–315. [Google Scholar] [CrossRef]
- Heikinheimo, V.; Tenkanen, H.; Bergroth, C.; Järv, O.; Hiippala, T.; Toivonen, T. Understanding the use of urban green spaces from user-generated geographic information. Landsc. Urban Plan. 2020, 201, 103845. [Google Scholar] [CrossRef]
- Sinclair, M.; Mayer, M.; Woltering, M.; Ghermandi, A. Using social media to estimate visitor provenance and patterns of recreation in Germany’s national parks. J. Environ. Manag. 2020, 263, 110418. [Google Scholar] [CrossRef] [PubMed]
- Li, J.J.; Xu, L.Z.; Tang, L.; Wang, S.Y.; Li, L. Big data in tourism research: A literature review. Tour. Manag. 2018, 68, 301–323. [Google Scholar] [CrossRef]
- Mangachena, J.R.; Pickering, C.M. Implications of social media discourse for managing national parks in South Africa. J. Environ. Manag. 2021, 285, 112159. [Google Scholar] [CrossRef]
- Ilieva, R.T.; McPhearson, T. Social-media data for urban sustainability. Nat. Sustain. 2018, 1, 553–565. [Google Scholar] [CrossRef]
- Zhu, X.; Gao, M.; Zhang, R.; Zhang, B. Quantifying emotional differences in urban green spaces extracted from photos on social networking sites: A study of 34 parks in three cities in northern China. Urban For. Urban Green. 2021, 62, 127133. [Google Scholar] [CrossRef]
- Wang, J.; Feng, Y.; Naghizade, E.; Rashidi, L.; Lim, K.H.; Lee, K. Happiness is a Choice: Sentiment and Activity-Aware Location Recommendation. In Companion Proceedings of the Web Conference 2018, Lyon, France, 23–27 April 2018; International World Wide Web Conferences Steering Committee: Geneva, Switzerland, 2018; pp. 1401–1405. [Google Scholar]
- Serrano-Guerrero, J.; Olivas, J.A.; Romero, F.P.; Herrera-Viedma, E. Sentiment analysis: A review and comparative analysis of web services. Inf. Sci. 2015, 311, 18–38. [Google Scholar] [CrossRef]
- Su, S.; He, S.; Sun, C.; Zhang, H.; Hu, L.; Kang, M. Do landscape amenities impact private housing rental prices? A hierarchical hedonic modeling approach based on semantic and sentimental analysis of online housing advertisements across five Chinese megacities. Urban For. Urban Green. 2021, 58, 126968. [Google Scholar] [CrossRef]
- Widmar, N.O.; Bir, C.; Clifford, M.; Slipchenko, N. Social media sentimentas an additional performance measure? Examples from iconic theme park destinations. J. Retail. Consum. Serv. 2020, 56, 102157. [Google Scholar] [CrossRef]
- Zhu, J.; Xu, C. Sina microblog sentiment in Beijing city parks as measure of demand for urban green space during the COVID-19. Urban For. Urban Green. 2021, 58, 126913. [Google Scholar] [CrossRef]
- Hu, Y.; Sinnott, O.R. Big Data Analytics Exploration of Green Space and Mental Health in Melbourne. In Proceedings of the 2019 19th Ieee/Acm International Symposium on Cluster, Cloud and Grid Computing, New York, NY, USA, 14–17 May 2019; pp. 648–657. [Google Scholar]
- Liu, R.; Xiao, J. Factors Affecting Users’ Satisfaction with Urban Parks through Online Comments Data: Evidence from Shenzhen, China. Int. J. Environ. Res. Public Health 2021, 18, 253. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, E.J.; Wood, S.A.; Smith, J.W. Uses and Limitations of Social Media to Inform Visitor Use Management in Parks and Protected Areas: A Systematic Review. Environ. Manag. 2021, 67, 120–132. [Google Scholar] [CrossRef]
- Padilla, J.J.; Kavak, H.; Lynch, C.J.; Gore, R.J.; Diallo, S.Y. Temporal and spatiotemporal investigation of tourist attraction visit sentiment on Twitter. PLoS ONE 2018, 13, e0198857. [Google Scholar] [CrossRef]
- Schwartz, A.J.; Dodds, P.S.; O’Neil-Dunne, J.P.M.; Danforth, C.M.; Ricketts, T.H. Visitors to urban greenspace have higher sentiment and lower negativity on Twitter. People Nat. 2019, 1, 476–485. [Google Scholar] [CrossRef]
- Sim, J.; Miller, P.; Swarup, S. Tweeting the High Line Life: A Social Media Lens on Urban Green Spaces. Sustainability 2020, 12, 8895. [Google Scholar] [CrossRef]
- Roberts, H.; Sadler, J.; Chapman, L. The value of Twitter data for determining the emotional responses of people to urban green spaces: A case study and critical evaluation. Urban Stud. 2019, 56, 818–835. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Kim, H.J.; Ok, C. Linking emotion and place on Twitter at Disneyland. J. Travel Tour. Mark. 2018, 35, 664–677. [Google Scholar] [CrossRef]
- Kovacs-Györi, A.; Ristea, A.; Kolcsar, R.; Resch, B.; Crivellari, A.; Blaschke, T. Beyond Spatial Proximity—Classifying Parks and Their Visitors in London Based on Spatiotemporal and Sentiment Analysis of Twitter Data. Int. J. Geo-Inf. 2018, 7, 378. [Google Scholar] [CrossRef]
- Ghermandi, A.; Sinclair, M. Passive crowdsourcing of social media in environmental research: A systematic map. Glob. Environ. Chang. 2019, 55, 36–47. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, R.; Zhang, Y.; Buhalis, D. Cultural ecosystem services evaluation using geolocated social media data: A review. Tour. Geogr. 2020, 22, 1–23. [Google Scholar] [CrossRef]
- Dai, P.; Zhang, S.; Chen, Z.; Gong, Y.; Hou, H. Perceptions of Cultural Ecosystem Services in Urban Parks Based on Social Network Data. Sustainability 2019, 11, 5386. [Google Scholar] [CrossRef]
- Lyu, F.; Zhang, L. Using multi-source big data to understand the factors affecting urban park use in Wuhan. Urban For. Urban Green. 2019, 43, 126367. [Google Scholar] [CrossRef]
- Wang, Z.; Jin, Y.; Liu, Y.; Li, D.; Zhang, B. Comparing social media data and survey data in assessing the attractiveness of Beijing Olympic Forest Park. Sustainability 2018, 10, 382. [Google Scholar] [CrossRef]
- Shan, S.; Peng, J.; Wei, Y. Environmental Sustainability assessment 2.0: The value of social media data for determining the emotional responses of people to river pollution—A case study of Weibo (Chinese Twitter). Socio-Econ. Plan. Sci. 2021, 75, 100868. [Google Scholar] [CrossRef]
- Liang, H.; Li, W.; Zhang, Q.; Zhu, W.; Chen, D.; Liu, J.; Shu, T. Using unmanned aerial vehicle data to assess the three-dimension green quantity of urban green space: A case study in Shanghai, China. Landsc. Urban Plan. 2017, 164, 81–90. [Google Scholar] [CrossRef]
- Liang, H.; Chen, D.; Zhang, Q. Assessing Urban Green Space distribution in a compact megacity by landscape metrics. J. Environ. Eng. Landsc. Manag. 2017, 25, 64–74. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.; Zhang, Q. Assessing the public transport service to urban parks on the basis of spatial accessibility for citizens in the compact megacity of Shanghai, China. Urban Stud. 2018, 55, 1983–1999. [Google Scholar] [CrossRef]
- Liang, H.; Zhang, Q. Temporal and spatial assessment of urban park visits from multiple social media data sets: A case study of Shanghai, China. J. Clean. Prod. 2021, 297, 1–14. [Google Scholar] [CrossRef]
- Yan, M.; Sang, J.; Xu, C.; Hossain, M.S. YouTube Video Promotion by Cross-Network Association: @Britney to Advertise Gangnam Style. IEEE Trans. Multimed. 2015, 17, 1248–1261. [Google Scholar] [CrossRef]
- Brown, G.; Schebella, M.F.; Weber, D. Using participatory GIS to measure physical activity and urban park benefits. Landsc. Urban Plan. 2014, 121, 34–44. [Google Scholar] [CrossRef]
- Chen, J.; Becken, S.; Stantic, B. Lexicon based Chinese language sentiment analysis method. Comput. Sci. Inf. Syst. 2019, 16, 639–655. [Google Scholar] [CrossRef]
- Fan, Z.; Duan, J.; Lu, Y.; Zou, W.; Lan, W. A Geographical Detector Study on Factors Influencing Urban Park Use in Nanjing, China. Urban For. Urban Green. 2021, 126996. [Google Scholar] [CrossRef]
- Guo, S.; Yang, G.; Pei, T.; Ma, T.; Song, C.; Shu, H.; Du, Y.; Zhou, C. Analysis of factors affecting urban park service area in Beijing: Perspectives from multi-source geographic data. Landsc. Urban Plan. 2019, 181, 103–117. [Google Scholar] [CrossRef]
- Liang, H.; Chen, D.; Zhang, Q. Walking accessibility of urban parks in a compact megacity. Proc. Inst. Civ. Eng. Urban Des. Plan. 2017, 170, 59–71. [Google Scholar] [CrossRef]
- Ma, Y.; Ling, C.; Wu, J. Exploring the Spatial Distribution Characteristics of Emotions of Weibo Users in Wuhan Waterfront Based on Gender Differences Using Social Media Texts. Int. J. Geo-Inf. 2020, 9, 465. [Google Scholar] [CrossRef]
- Ren, G.; Hong, T. Investigating Online Destination Images Using a Topic-Based Sentiment Analysis Approach. Sustainability 2017, 9, 18. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Zhou, W. Recreational visits to urban parks and factors affecting park visits: Evidence from geotagged social media data. Landsc. Urban Plan. 2018, 180, 27–35. [Google Scholar] [CrossRef]
SMD | Time Category | Time Period | SSPSVD/SSPWVD | Park Count (%) | ||
---|---|---|---|---|---|---|
Mean | Std. Dev. | <Mean | ≧Mean | |||
DZDP | Season | Spring | 4.35 | 1.93 | 40.87 | 59.13 |
Summer | 4.10 | 3.48 | 62.61 | 37.39 | ||
Autumn | 4.11 | 2.29 | 59.13 | 40.87 | ||
Winter | 4.50 | 2.59 | 55.65 | 44.35 | ||
Workday/Non-workday | Workday | 4.42 | 1.79 | 40.87 | 59.10 | |
Non-workday | 4.37 | 2.16 | 59.10 | 40.87 | ||
Ctrip | Season | Spring | 2.42 | 1.76 | 47.83 | 52.17 |
Summer | 2.75 | 4.91 | 60.87 | 39.13 | ||
Autumn | 2.72 | 6.84 | 58.26 | 41.74 | ||
Winter | 2.35 | 2.90 | 60.00 | 40.00 | ||
Workday/Non-workday | Workday | 2.83 | 2.46 | 43.48 | 56.52 | |
Non-workday | 2.77 | 3.28 | 56.52 | 43.48 | ||
Season | Spring | 0.36 | 0.61 | 56.52 | 43.48 | |
Summer | 0.19 | 0.94 | 54.78 | 45.22 | ||
Autumn | 0.44 | 0.71 | 46.96 | 53.04 | ||
Winter | 0.34 | 0.75 | 58.26 | 41.74 | ||
Workday/Non-workday | Workday | 0.35 | 0.45 | 54.78 | 45.22 | |
Non-workday | 0.37 | 0.51 | 44.35 | 55.65 |
Variable | DZDP | Ctrip | |||||||
---|---|---|---|---|---|---|---|---|---|
Cof. | Std. Cof. | VIF | Cof. | Std. Cof. | VIF | Cof. | Std. Cof. | VIF | |
Size | 0.20 * | 0.12 * | 2.32 | 0.05 | 0.04 | 2.01 | −0.04 | −0.08 | 2.10 |
Scenic spots count | −0.01 *** | −0.45 *** | 4.21 | 0.00 | 0.09 | 3.99 | 0.01 | 0.11 | 4.02 |
Star rating | 0.03 | 0.05 | 1.63 | −0.06 * | −0.10 * | 1.63 | 0.00 | 0.02 | 1.74 |
Tourist attraction level | 0.17 *** | 0.36 *** | 2.20 | 0.07 * | 0.17 * | 2.09 | 0.02 * | 0.16 * | 2.59 |
Visit number | −5.39 × 10−5 | −0.07 | 4.61 | 0.00 * | −0.20 * | 2.60 | 0.00 * | 0.17 * | 2.99 |
Visit density | 7.00 × 10−6 * | 0.13 * | 1.35 | −4.04 × 10−6 | −0.11 | 1.48 | 4.23 × 10−6 * | 0.10 * | 1.50 |
Entrance fee | −0.02 | −0.04 | 3.13 | −0.00 | −0.05 | 2.94 | −0.00 | 0.00 | 2.41 |
Online reputation | 1.04 *** | 0.44 *** | 1.46 | 0.74 *** | 0.39 *** | 1.43 | −0.09 * | −0.13 * | 1.45 |
Distance from the urban center | 1.12 × 10−5 ** | 0.18 ** | 1.55 | 8.53 × 10−6 ** | 0.17 ** | 1.45 | 5.98 × 10−7 | 0.03 | 1.68 |
Residential places | −9.30 × 10−5 | −0.07 | 1.63 | 0.00 ** | −0.24 ** | 1.55 | 2.13 × 10−6 | 0.01 | 1.73 |
Employment places | 0.00 * | 0.11 * | 1.47 | 0.00 * | 0.13 * | 1.44 | −1.03 × 10−5 | −0.01 | 1.51 |
Variable | Time Class | Time Unit | Rs | ||
---|---|---|---|---|---|
DZDP vs. Ctrip | DZDP vs. Weibo | Ctrip vs. Weibo | |||
SSPVD | - | - | 0.539 ** | 0.069 | 0.158 |
SSPSVD | Season | Spring | 0.401 ** | 0.122 | 0.111 |
Summer | 0.119 | −0.011 | 0.074 | ||
Autumn | 0.228 * | 0.114 | 0.006 | ||
Winter | 0.172 | 0.037 | 0.124 | ||
SSPWVD | Workday/Non-workday | Workday | 0.393 ** | 0.052 | −0.119 |
Non-workday | 0.251 ** | 0.027 | 0.031 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, H.; Yan, Q.; Yan, Y.; Zhang, L.; Zhang, Q. Spatiotemporal Study of Park Sentiments at Metropolitan Scale Using Multiple Social Media Data. Land 2022, 11, 1497. https://doi.org/10.3390/land11091497
Liang H, Yan Q, Yan Y, Zhang L, Zhang Q. Spatiotemporal Study of Park Sentiments at Metropolitan Scale Using Multiple Social Media Data. Land. 2022; 11(9):1497. https://doi.org/10.3390/land11091497
Chicago/Turabian StyleLiang, Huilin, Qi Yan, Yujia Yan, Lang Zhang, and Qingping Zhang. 2022. "Spatiotemporal Study of Park Sentiments at Metropolitan Scale Using Multiple Social Media Data" Land 11, no. 9: 1497. https://doi.org/10.3390/land11091497
APA StyleLiang, H., Yan, Q., Yan, Y., Zhang, L., & Zhang, Q. (2022). Spatiotemporal Study of Park Sentiments at Metropolitan Scale Using Multiple Social Media Data. Land, 11(9), 1497. https://doi.org/10.3390/land11091497