Antecedent Soil Moisture Conditions Influenced Vertical Dust Flux: A Case Study in Iran Using WRF-Chem Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. WRF-Chem Model and GOCART Dust Emission Scheme
2.3. GLDAS Reanalysis Database Soil Moisture Data
3. Results
3.1. Spatial and Temporal Pattern of Dust Flux Using GOCART
3.2. Validation of GOCART Scheme Results by Station PM10 Values and MERRA2 Re-Analysis
3.3. GLDAS Soil Moisture
3.4. The Correlation of Vertical Dust Flux and Soil Moisture
3.4.1. Correlation Coefficient
3.4.2. Linear and Nonlinear Regression
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | GFS: Global Forecast System. |
References
- Stafoggia, M.; Zauli-Sajani, S.; Pey, J.; Samoli, E.; Alessandrini, E.; Basagaña, X.; Cernigliaro, A.; Chiusolo, M.; DeMaria, M.; Díaz, J.; et al. Desert dust outbreaks in Southern Europe: Contribution to daily PM10 concentrations and short-term associations with mortality and hospital admissions. Environ. Health Perspect. 2016, 124, 413–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnaba, F.; Bolignano, A.; Di Liberto, L.; Morelli, M.; Lucarelli, F.; Nava, S.; Perrino, C.; Canepari, S.; Basart, S.; Costabile, F.; et al. Desert dust contribution to PM10 loads in Italy: Methods and recommendations addressing the relevant European Commission Guidelines in support to the Air Quality Directive 2008/50. Atmos. Environ. 2017, 161, 288–305. [Google Scholar] [CrossRef]
- Kim, D.; Chin, M.; Kemp, E.M.; Tao, Z.; Peters-Lidard, C.D.; Ginoux, P. Development of high-resolution dynamic dust source function-A case study with a strong dust storm in a regional model. Atmos. Environ. 2017, 159, 11–25. [Google Scholar] [CrossRef] [PubMed]
- Pey, J.; Querol, X.; Alastuey, A.; Forastiere, F.; Stafoggia, M. African dust outbreaks over the mediterranean basin during 2001e2011: Pm 10 concentrations, phenomenology and trends, and its relation with synoptic and mesoscale meteorology. Atmos. Chem. Phys. 2013, 13, e1395–e1410. [Google Scholar] [CrossRef] [Green Version]
- Bozlaker, A.; Prospero, J.M.; Fraser, M.P.; Chellam, S. Quantifying the contribution of long-range saharan dust transport on particulate matter concentrations in houston, texas, using detailed elemental analysis. Environ. Sci. Technol. 2013, 47, 10179–10187. [Google Scholar] [CrossRef]
- Laken, B.A.; Parviainen, H.; Pallé, E.; Shahbaz, T. Saharan mineral dust outbreaks observed over the North Atlantic island of La Palma in summertime between 1984 and 2012. Q. J. R. Meteorol. Soc. 2013, 140, 1058–1068. [Google Scholar] [CrossRef] [Green Version]
- Huneeus, N.; Chevallier, F.; Boucher, O. Estimating aerosol emissions by assimilating observed aerosol optical depth in a global aerosol model. Atmos. Chem. Phys. 2012, 12, 4585–4606. [Google Scholar] [CrossRef] [Green Version]
- Evan, A.T.; Flamant, C.; Fiedler, S.; Doherty, O. An analysis of aeolian dust in climate models. Geophys. Res. Lett. 2014, 41, 5996–6001. [Google Scholar] [CrossRef]
- Rezazadeh, M.; Irannejad, P.; Shao, Y. Climatology of the Middle East dust events. Aeolian Res. 2013, 10, 103–109. [Google Scholar] [CrossRef]
- Ginoux, P.; Chin, M.; Tegen, I.; Prospero, J.M.; Holben, B.; Dubovik, O.; Lin, S.-J. Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res. Atmos. 2001, 106, 20255–20273. [Google Scholar] [CrossRef]
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- Klose, M.; Shao, Y. Stochastic parameterization of dust emission and application to convective atmospheric conditions. Atmos. Chem. Phys. 2012, 12, 7309–7320. [Google Scholar] [CrossRef] [Green Version]
- Klose, M.; Shao, Y. A numerical study on dust devils with implications to global dust budget estimates. Aeolian Res. 2016, 22, 47–58. [Google Scholar] [CrossRef]
- Park, S.H.; Gong, S.L.; Zhao, T.L.; Vet, R.J.; Bouchet, V.S.; Gong, W.; Makar, P.A.; Moran, M.D.; Stroud, C.; Zhang, J. Simulation of entrainment and transport of dust particles within North America in April 2001 (“Red Dust Episode”). J. Geophys. Res. 2007, 112, D20209. [Google Scholar] [CrossRef]
- Zender, C.S.; Bian, H.; Newman, D. Mineral Dust Entrainment and Deposition (DEAD) Model: Description and 1990s dust climatology. J. Geophys. Res. 2003, 108, 4416. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Westphal, D.L.; Walker, A.L.; Holt, T.R.; Richardson, K.A.; Miller, S.D. COAMPS Real-Time Dust Storm Forecasting during Operation Iraqi Freedom. Weather Forecast. 2007, 22, 192–206. [Google Scholar] [CrossRef]
- Wang, Z.; Ueda, H.; Huang, M. A deflation module for use in modeling long-range transport of yellow sand over East Asia. J. Geophys. Res. 2000, 105, 26947–26959. [Google Scholar] [CrossRef] [Green Version]
- Woodward, S. Modeling the atmospheric. life cycle and radiative impact of mineral dust in the Hadley Centre climate model. J. Geophys. Res. 2001, 106, 18155–18166. [Google Scholar] [CrossRef] [Green Version]
- Nickovic, S.; Kallos, G.; Papadopoulos, A.; Kakaliagou, O. A model for prediction of desert dust cycle in the atmosphere. J. Geophys. Res. Atmos. 2001, 106, 18113–18129. [Google Scholar] [CrossRef] [Green Version]
- Tegen, I.; Fung, I. Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness. J. Geophys. Res. Atmos. 1994, 99, 22897–22914. [Google Scholar] [CrossRef]
- Marticorena, B.; Bergametti, G. Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J. Geophys. Res. Atmos. 1995, 100, 16415–16430. [Google Scholar] [CrossRef] [Green Version]
- Marticorena, B.; Bergametti, G.; Aumont, B.; Callot, Y.; N’doumé, C.; Legrand, M. Modeling the atmospheric dust cycle: 2. Simulation of Saharan dust sources. J. Geophys. Res. Atmos. 1997, 102, 4387–4404. [Google Scholar] [CrossRef]
- Chin, M.; Savoie, D.L.; Huebert, B.J.; Bandy, A.R.; Thornton, D.C.; Bates, T.S.; Quinn, P.K.; Saltzman, E.S.; De Bruyn, W.J. Atmospheric sulfur cycle simulated in the global model GOCART: Comparison with field observations and regional budgets. J. Geophys. Res. Atmos. 2000, 105, 24689–24712. [Google Scholar] [CrossRef] [Green Version]
- Fast, J.D.; Gustafson, W.I., Jr.; Easter, R.C.; Zaveri, R.A.; Barnard, J.C.; Chapman, E.G.; Grell, G.A.; Peckham, S.E. Evolution of ozone, particulates, and aerosol direct forcing in an urban area using a new fully-coupled meteorology, chemistry, and aerosol model. J. Geophys. Res. 2006, 111, D21305. [Google Scholar] [CrossRef]
- Graf, A.; Bogena, H.R.; Dr¨ue, C.; Hardelauf, H.; P¨utz, T.; Heinemann, G.; Vereecken, H. Spatiotemporal relations between water budget components and soil water content in a forested tributary catchment. Water Resour. Res. 2014, 50, 4837–4857. [Google Scholar] [CrossRef] [Green Version]
- Peckham, S.E.; Fast, J.; Schmitz, R.; Grell, G.A.; Gustafson, W.I.; McKeen, S.A.; Ghan, S.J.; Zaveri, R.; Easter, R.C.; Barnard, J.; et al. WRF/Chem Version 3.3 User’s Guide, NOAA Technical Memo, 2011. Available online: https://repository.library.noaa.gov/view/noaa/11119 (accessed on 18 July 2011).
- Su, L.; Fung, J.C.H. Sensitivities of WRF-Chem to dust emission schemes and land surface properties in simulating dust cycles during springtime over East Asia. J. Geophys. Res. Atmos. 2015, 120, 11215–11230. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Han, Y.; Liu, Z. Temporal and spatial characteristics of dust devils and their contribution to the aerosol budget in East Asia—An analysis using a new parameterization scheme for dust devils. Atmos. Environ. 2018, 182, 225–233. [Google Scholar] [CrossRef]
- Chen, S.; Yuan, T.; Zhang, X.; Zhang, G.; Feng, T.; Zhao, D.; Zang, Z.; Liao, X.; Ma, X.; Jiang, N.; et al. Dust modeling over East Asia during the summer of 2010 using the WRF-Chem model. J. Quant. Spectrosc. Radiat. Transf. 2018, 213, 1–12. [Google Scholar] [CrossRef]
- Shao, Y.P.; Lu, H. A simple expression for wind erosion threshold friction velocity. J. Geophys. Res. Atmos. 2000, 105, 22437–22443. [Google Scholar] [CrossRef]
- Gillette, D.A. Fine particulate emission due to wind erosion. Trans. ASAE 1977, 20, 890–897. [Google Scholar] [CrossRef]
- Alfaro, S.C.; Gomes, L. Modeling mineral aerosol production by wind erosion: Emission intensities and aerosol size distributions in source areas. J. Geophys. Res. Atmos. 2001, 106, 18075–18084. [Google Scholar] [CrossRef]
- Li, J.R.; Okin, G.S.; Herrick, J.E.; Belnap, J.; Munson, S.M.; Miller, M.E. A simple method to estimate threshold friction velocity of wind erosion in the field. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Belnap, J.; Gillette, D.A. Vulnerability of desert biological soil crusts to wind erosion: The influences of crust development, soil texture, and disturbance. J. Arid Environ. 1998, 39, 133–142. [Google Scholar] [CrossRef]
- Gillette, D.A.; Adams, J.; Endo, A.; Smith, D.; Kihl, R. Threshold velocities for input of soil particles into the air by desert soils. J. Geophys. Res. Ocean. 1980, 85, 5621–5630. [Google Scholar] [CrossRef]
- Kimura, R.; Shinoda, M. Spatial distribution of threshold wind speeds for dust outbreaks in northeast Asia. Geomorphology 2010, 114, 319–325. [Google Scholar] [CrossRef]
- Sharratt, B.S.; Vaddella, V. Threshold friction velocity of crusted windblown soils in the Columbia Plateau. Aeolian Res. 2014, 15, 227–234. [Google Scholar] [CrossRef]
- Kok, J.F.; Mahowald, N.M.; Fratini, G.; Gillies, J.A.; Ishizuka, M.; Leys, J.F.; Mikami, M.; Park, M.-S.; Park, S.-U.; Van Pelt, R.S.; et al. An improved dust emission model–Part 1: Model description and comparison against measurements. Atmos. Chem. Phys. 2014, 14, 13023–13041. [Google Scholar] [CrossRef] [Green Version]
- Xi, X.; Sokolik, I.N. Seasonal dynamics of threshold friction velocity and dust emission in Central Asia. J. Geophys. Res. Atmos. 2015, 120, 1536–1564. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.C.; Chen, W.P.; Ma, C.; Zhan, S.F. Modeling the effect of humidity on the threshold friction velocity of coal particles. Atmos. Environ. 2012, 56, 154–160. [Google Scholar] [CrossRef]
- Sowers, J.; Vengosh, A.; Weinthal, E. Climate change, water resources, and the politics of adaptation in the Middle East and North Africa. Clim. Chang. 2011, 104, 599–627. [Google Scholar] [CrossRef]
- Tielbörger, K.; Bilton, M.C.; Metz, J.; Holzapfel, C.; Trejos, E.; Kigel, J.; Konsenss, I.; Parag, H.; Sternber, M. Middle-Eastern plant communities tolerate 9 years of drought in a multi-site climate manipulation experiment. Nat. Commun. 2014, 5, 5102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tigkas, D.; Tsakiris, G. Early estimation of drought impacts on rainfed wheat yield inMediterranean climate. Environ. Process. 2014, 2, 97–114. [Google Scholar] [CrossRef] [Green Version]
- Dean, J.F.; Camporese, M.; Webb, J.A.; Grover, S.P.; Dresel, P.E.; Daly, E. Water balance complexities in ephemeral catchments with different land uses: Insights from monitoring and distributed hydrologic modeling. Water Resour. Res. 2016, 52, 4713–4729. [Google Scholar] [CrossRef] [Green Version]
- Fang, Z.; Bogena, H.; Kollet, S.; Koch, J.; Vereecken, H. Spatio-temporal validation of long-term 3D hydrological simulations of a forested catchment using empirical orthogonal functions and wavelet coherence analysis. J. Hydrol. 2015, 529, 1754–1767. [Google Scholar] [CrossRef]
- Feng, G.; Sharratt, B. Sensitivity analysis of soil and PM10 loss in WEPS using the LHS-OAT method. Trans. ASAE 2005, 48, 1409–1420. [Google Scholar] [CrossRef] [Green Version]
- Cornelis, W.M.; Gabriels, D.; Hartmann, R. A parameterization for the threshold shear velocity to initiate deflation of dry and wet sediment. Geomorphology 2004, 59, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Pierre, C.; Bergametti, G.; Marticorena, B.; Mougin, E.; Bouet, C.; Schmechtig, C. Impact of vegetation and soil moisture seasonal dynamics on dust emissions over the Sahel. J. Geophys. Res. Atmos. 2012, 117, D06114. [Google Scholar] [CrossRef] [Green Version]
- Li, X.L.; Zhang, H.S. Soil moisture effects on sand saltation and dust emission observed over the Horqin Sandy Land area in China. J. Meteorol. Res. 2014, 28, 444–452. [Google Scholar] [CrossRef]
- Walker, P.J.; Houser, R.P. Requirements of a global near-surface soil moisture mission: Accuracy repeat time and spatial resolution. Adv. Water Resour. 2004, 27, 785–801. [Google Scholar] [CrossRef]
- Mesbahzadeh, T.; Salajeghe, A.; Sardoo, F.S.; Zehtabian, G.; Ranjbar, A.; Miglietta, M.M.; Karami, S.; Krakauer, N.Y. Spatial-Temporal Variation Characteristics of Vertical Dust Flux Simulated by WRF-Chem Model with GOCART and AFWA Dust Emission Schemes (Case Study: Central Plateau of Iran). Appl. Sci. 2020, 10, 4536. [Google Scholar] [CrossRef]
- Azadi, S.; Soltani Kopaei, S.; Faramarzi, M.; Soltani Tudeshki, A.; Pourmanafi, S. Evaluation of the Palmer Drought Index in Central Iran. JWSS Isfahan Univ. Technol. 2015, 19, 305–318. [Google Scholar] [CrossRef]
- Naderi, M.; Raeisi, E. Climate change in a region with altitude differences and with recipitation from various sources, South-Central Iran. Theor. Appl. Climatol. J. 2015, 3, 529–540. [Google Scholar]
- Gillette, D.A.; Passi, R. Modeling dust emission caused by wind erosion. J. Geophys. Res. Atmos. 1988, 93, 14233–14242. [Google Scholar] [CrossRef] [Green Version]
- Bagnold, A.R. The Physics of Blown Sand and Desert Dunes; William Morrow and Company: New York, NY, USA, 1941. [Google Scholar]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Farhadipoor, S.; Azadi, M.; Ali Akbari Bidokhti, A.; Alizadeh Choobari, A.; Sayari, H. Dust storms in the western and southwestern regions of Iran and their impact on radiant fluids. Iran. J. Geophys. 2017, 11, 75–89. [Google Scholar]
- Ju, T.; Li, X.; Zhang, H.; Cai, X.; Song, Y. Comparison of two different dust emission mechanisms over the Horqin Sandy Land area: Aerosols contribution and size distributions. Atmos. Environ. 2018, 176, 82–90. [Google Scholar] [CrossRef]
WRF Single-Moment 5-Class | Micro-Scale Physics |
---|---|
RRTM (Mlawer, 1997) | Long wave radiation |
Goddard shortwave (Chou, 1998) | Shortwave radiation |
Noah Land Surface Model (Chen, 1996) | Surface Physics |
YSU (Noh et al., 2002) | Boundary layer |
Grell 3D (Grell, 1993) | Cumulus Convection |
Water and Energy Components | Contents |
---|---|
60° S to 90° N | Geographical latitude |
180° W to 180° W | Geographical longitude |
1°, 0.25° and 0.12° | Spatial Resolution |
3 h & monthly mean | Temporal resolution |
GLDAS 2.0 January 1948–2021 December 2010 | Time cover |
GLDAS 2.1 1 March 2001 to present | |
360 × 150 for data with 1° resolution; 1440 × 600 for data 0.25° resolution | Dimensions |
CLM 2.0 | Earth surface models |
MOSAIC | |
NOAH 2.7.1 | |
VIC water balance |
Description | Code | Description | Code |
---|---|---|---|
Rig Zarin Desert | 4811 | Kavir plain | 4701 |
Semnan Desert | 4702 | Choopanan City | 4710 |
Terood Area | 4731 | Jandagh City | 4711 |
Biarjemana Area | 4732 | Khoor-Farokhi Area | 4712 |
Khartoran Desert | 4733 | Biazeh Area | 4713 |
Dagh Kavir | 4605 | Robat-Khan Area | 4714 |
Red Dagh | 4804 | Dastgardan Area | 4715 |
Correlation Coefficient | Year | Scheme |
---|---|---|
0.79 | 2012 | GOCART |
0.79 | 2013 | |
0.81 | 2014 | |
0.80 | 2015 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soleimani Sardoo, F.; Mesbahzadeh, T.; Salajeghe, A.; Zehtabian, G.; Ranjbar, A.; Miglietta, M.M.; Krakauer, N. Antecedent Soil Moisture Conditions Influenced Vertical Dust Flux: A Case Study in Iran Using WRF-Chem Model. Land 2022, 11, 819. https://doi.org/10.3390/land11060819
Soleimani Sardoo F, Mesbahzadeh T, Salajeghe A, Zehtabian G, Ranjbar A, Miglietta MM, Krakauer N. Antecedent Soil Moisture Conditions Influenced Vertical Dust Flux: A Case Study in Iran Using WRF-Chem Model. Land. 2022; 11(6):819. https://doi.org/10.3390/land11060819
Chicago/Turabian StyleSoleimani Sardoo, Farshad, Tayyebeh Mesbahzadeh, Ali Salajeghe, Gholamreza Zehtabian, Abbas Ranjbar, Mario Marcello Miglietta, and Nir Krakauer. 2022. "Antecedent Soil Moisture Conditions Influenced Vertical Dust Flux: A Case Study in Iran Using WRF-Chem Model" Land 11, no. 6: 819. https://doi.org/10.3390/land11060819
APA StyleSoleimani Sardoo, F., Mesbahzadeh, T., Salajeghe, A., Zehtabian, G., Ranjbar, A., Miglietta, M. M., & Krakauer, N. (2022). Antecedent Soil Moisture Conditions Influenced Vertical Dust Flux: A Case Study in Iran Using WRF-Chem Model. Land, 11(6), 819. https://doi.org/10.3390/land11060819