Fire Occurrence in Hemi-Boreal Forests: Exploring Natural and Cultural Scots Pine Fire Regimes Using Dendrochronology in Lithuania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Framework and Study Area
2.2. Applying the ASIO Model to Lithuania
2.3. Dendrochronology Fire History and Climate Analysis in Dzūkija
2.3.1. Fire History Reconstruction
2.3.2. Climate Variation Analysis
Precipitation Prior to Key Fire Events
Growth–Climate Correlation Analysis
3. Results
3.1. ASIO Fire Frequency Model Applied to Lithuania
3.2. Fire History Reconstruction in Dzūkija
3.3. Dendrochronology
3.3.1. Precipitation Prior to Key Fire Events
3.3.2. Growth–Climate Correlation Analysis
4. Discussion
4.1. ASIO towards a Cultural Landscape
4.2. Cultural Influence on Fire history in Lithuania
4.3. Dendrochronology, Climate Change and Fire Risk
4.4. Barriers and Bridges towards Emulating Fire in Scots Pine Forests
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Esseen, P.-A.; Ehnström, B.; Ericson, L.; Sjöberg, K. Boreal Forests. Ecol. Bull. 1997, 46, 16–47. [Google Scholar]
- Johnson, E.A. Fire and Vegetation Dynamics: Studies from the North American Boreal Forest; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Angelstam, P.; Kuuluvainen, T. Boreal Forest Disturbance Regimes, Successional Dynamics and Landscape Structures: A European Perspective. Ecol. Bull. 2004, 51, 17–36. [Google Scholar]
- Petrokas, R.; Baliuckas, V.; Manton, M. Successional Categorization of European Hemi-Boreal Forest Tree Species. Plants 2020, 9, 1381. [Google Scholar] [CrossRef] [PubMed]
- Whelan, R.J. The Ecology of Fire; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Zackrisson, O. Influence of Forest Fires on the North Swedish Boreal Forest. Oikos 1977, 29, 22–32. [Google Scholar] [CrossRef]
- Granström, A. Spatial and Temporal Variation in Lightning Ignitions in Sweden. J. Veg. Sci. 1993, 4, 737–744. [Google Scholar] [CrossRef]
- Niklasson, M.; Zin, E.; Zielonka, T.; Feijen, M.; Korczyk, A.F.; Churski, M.; Samojlik, T.; Jędrzejewska, B.; Gutowski, J.M.; Brzeziecki, B. A 350-Year Tree-Ring Fire Record from Białowieża Primeval Forest, Poland: Implications for Central European Lowland Fire History. J. Ecol. 2010, 98, 1319–1329. [Google Scholar] [CrossRef]
- Kitenberga, M.; Drobyshev, I.; Elferts, D.; Matisons, R.; Adamovics, A.; Katrevics, J.; Niklasson, M.; Jansons, A. A Mixture of Human and Climatic Effects Shapes the 250-Year Long Fire History of a Semi-Natural Pine Dominated Landscape of Northern Latvia. For. Ecol. Manag. 2019, 441, 192–201. [Google Scholar] [CrossRef]
- Segerström, U. Long-Term Dynamics of Vegetation and Disturbance of a Southern Boreal Spruce Swamp Forest. J. Veg. Sci. 1997, 8, 295–306. [Google Scholar] [CrossRef]
- Granström, A.; Niklasson, M. Potentials and Limitations for Human Control over Historic Fire Regimes in the Boreal Forest. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 2351–2356. [Google Scholar] [CrossRef] [Green Version]
- Berglund, H.; Kuuluvainen, T. Representative Boreal Forest Habitats in Northern Europe, and a Revised Model for Ecosystem Management and Biodiversity Conservation. AMBIO 2021, 50, 1003–1017. [Google Scholar] [CrossRef]
- Kuuluvainen, T.; Angelstam, P.; Frelich, L.; Jõgiste, K.; Koivula, M.; Kubota, Y.; Lafleur, B.; MacDonald, E. Natural Disturbance-Based Forest Management: Moving Beyond Retention and Continuous-Cover Forestry. Front. For. Glob. Chang. 2021, 4, 24. [Google Scholar] [CrossRef]
- Angelstam, P. Landscape Analysis as a Tool for the Scientific Management of Biodiversity. Ecol. Bull. 1997, 46, 140–170. [Google Scholar]
- Hunter, M.L.; Schmiegelow, F. Wildlife, Forests, and Forestry: Principles of Managing Forests for Biological Diversity, 2nd ed.; Prentice Hall: New York, NY, USA, 2011. [Google Scholar]
- Angelstam, P. Maintaining and Restoring Biodiversity in European Boreal Forests by Developing Natural Disturbance Regimes. J. Veg. Sci. 1998, 9, 593–602. [Google Scholar] [CrossRef]
- Johnson, E.A.; Van Wagner, C.E. The Theory and Use of Two Fire History Models. Can. J. For. Res. 1985, 15, 214–220. [Google Scholar] [CrossRef]
- Shorohova, E.; Kuuluvainen, T.; Kangur, A.; Jõgiste, K. Natural Stand Structures, Disturbance Regimes and Successional Dynamics in the Eurasian Boreal Forests: A Review with Special Reference to Russian Studies. Ann. For. Sci. 2009, 66, 201. [Google Scholar] [CrossRef] [Green Version]
- Angelstam, P.; Manton, M.; Yamelynets, T.; Fedoriak, M.; Albulescu, A.-C.; Bravo, F.; Cruz, F.; Jaroszewicz, B.; Kavtarishvili, M.; Muñoz-Rojas, J.; et al. Maintaining Natural and Traditional Cultural Green Infrastructures across Europe: Learning from Historic and Current Landscape Transformations. Landsc. Ecol. 2021, 36, 637–663. [Google Scholar] [CrossRef]
- Jõgiste, K.; Frelich, L.E.; Laarmann, D.; Vodde, F.; Baders, E.; Donis, J.; Jansons, A.; Kangur, A.; Korjus, H.; Köster, K.; et al. Imprints of management history on hemiboreal forest ecosystems in the Baltic States. Ecosphere 2018, 9, e02503. [Google Scholar] [CrossRef] [Green Version]
- Potapov, P.; Yaroshenko, A.; Turubanova, S.; Dubinin, M.; Laestadius, L.; Thies, C.; Aksenov, D.; Egorov, A.; Yesipova, Y.; Glushkov, I.; et al. Mapping the World’s Intact Forest Landscapes by Remote Sensing. Ecol. Soc. 2008, 13, 51. [Google Scholar] [CrossRef] [Green Version]
- Gauthier, S.; Bernier, P.; Kuuluvainen, T.; Shvidenko, A.Z.; Schepaschenko, D.G. Boreal Forest Health and Global Change. Science 2015, 349, 819–822. [Google Scholar] [CrossRef]
- Angelstam, P.; Manton, M. Effects of Forestry Intensification and Conservation on Green Infrastructures: A Spatio-Temporal Evaluation in Sweden. Land 2021, 10, 531. [Google Scholar] [CrossRef]
- Granström, A. Fire Management for Biodiversity in the European Boreal Forest. Scand. J. For. Res. 2001, 16 (Suppl. S3), 62–69. [Google Scholar] [CrossRef]
- Roberge, J.-M.; Angelstam, P. Indicator Species among Resident Forest Birds—A Cross-Regional Evaluation in Northern Europe. Biol. Conserv. 2006, 130, 134–147. [Google Scholar] [CrossRef]
- Felton, A.; Löfroth, T.; Angelstam, P.; Gustafsson, L.; Hjältén, J.; Felton, A.M.; Simonsson, P.; Dahlberg, A.; Lindbladh, M.; Svensson, J.; et al. Keeping Pace with Forestry: Multi-Scale Conservation in a Changing Production Forest Matrix. AMBIO 2019, 49, 1050–1064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiarucci, A.; Piovesan, G. Need for a Global Map of Forest Naturalness for a Sustainable Future. Conserv. Biol. 2020, 34, 368–372. [Google Scholar] [CrossRef] [PubMed]
- Rolstad, J.; Blanck, Y.-L.; Storaunet, K.O. Fire History in a Western Fennoscandian Boreal Forest as Influenced by Human Land Use and Climate. Ecol. Monogr. 2017, 87, 219–245. [Google Scholar] [CrossRef] [Green Version]
- McLauchlan, K.K.; Higuera, P.E.; Miesel, J.; Rogers, B.M.; Schweitzer, J.; Shuman, J.K.; Tepley, A.J.; Varner, J.M.; Veblen, T.T.; Adalsteinsson, S.A.; et al. Fire as a Fundamental Ecological Process: Research Advances and Frontiers. J. Ecol. 2020, 108, 2047–2069. [Google Scholar] [CrossRef]
- Brown, R.T.; Agee, J.K.; Franklin, J.F. Forest Restoration and Fire: Principles in the Context of Place. Conserv. Biol. 2004, 18, 903–912. [Google Scholar] [CrossRef]
- Perera, A.; Buse, L. Ecology of Wildfire Residuals in Boreal Forests; Wiley Blackwell: West Sussex, UK, 2014. [Google Scholar]
- European Commission. Interpretation Manual of European Union Habitats; European Commission—DG Environment Nature: Brussels, Belgium, 2013.
- Rašomavičius, V. Eb Svarbos Natūralių Buveinių Inventorizavimo Vadovas: Buveinių Aprašai, Būdingos Ir Tipinės Rūšys, Jų Atpažinimas; Gamtos Tyrimu Centra: Vilnius, Lithuania, 2012. [Google Scholar]
- European Commission. New Eu Forest Strategy for 2030. In Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; European Union: Brussels, Belgium, 2021. [Google Scholar]
- Manton, M.; Angelstam, P. Defining Benchmarks for Restoration of Green Infrastructure: A Case Study Combining the Historical Range of Variability of Habitat and Species’ Requirements. Sustainability 2018, 10, 326. [Google Scholar] [CrossRef] [Green Version]
- Kurlavicius, P.; Kuuba, R.; Lukins, M.; Mozgeris, G.; Tolvanen, P.; Angelstam, P.; Karjalainen, H.; Walsh, M. Identifying High Conservation Value Forests in the Baltic States from Forest Databases. Ecol. Bull. 2004, 51, 351–366. [Google Scholar]
- Angelstam, P.; Pedersen, S.; Manton, M.; Garrido, P.; Naumov, V.; Elbakidze, M. Green Infrastructure Maintenance Is More Than Land Cover: Large Herbivores Limit Recruitment of Key-Stone Tree Species in Sweden. Landsc. Urban Plan. 2017, 167, 368–377. [Google Scholar] [CrossRef]
- Christensen, P.P. Historical Roots for Ecological Economics—Biophysical Versus Allocative Approaches. Ecol. Econ. 1989, 1, 17–36. [Google Scholar] [CrossRef]
- Cramer, V.A.; Hobbs, R.J.; Standish, R.J. What’s New About Old Fields? Land Abandonment and Ecosystem Assembly. Trends Ecol. Evol. 2008, 23, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest Disturbances under Climate Change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larson, A.J.; Churchill, D. Tree Spatial Patterns in Fire-Frequent Forests of Western North America, Including Mechanisms of Pattern Formation and Implications for Designing Fuel Reduction and Restoration Treatments. For. Ecol. Manag. 2012, 267, 74–92. [Google Scholar] [CrossRef]
- Pereira, P.; Mierauskas, P.; Novara, A. Stakeholders’ Perceptions About Fire Impacts on Lithuanian Protected Areas. Land Degrad. Dev. 2016, 27, 871–883. [Google Scholar] [CrossRef] [Green Version]
- Martín, D.; Lapelė, M. Forest Fire Evidences in Dzūkija National Park, Lithuania. FLAMMA 2015, 6, 71–74. [Google Scholar]
- Jõgiste, K.; Korjus, H.; Stanturf, J.A.; Frelich, L.E.; Baders, E.; Donis, J.; Jansons, A.; Kangur, A.; Köster, K.; Laarmann, D.; et al. Hemiboreal Forest: Natural Disturbances and the Importance of Ecosystem Legacies to Management. Ecosphere 2017, 8, e01706. [Google Scholar] [CrossRef]
- Karazija, S. Lietuvos Misku Tipai; Mokslas: Vilnius, Lithuania, 1988. (In Lithuanian) [Google Scholar]
- Ozenda, P.; Borel, J.-L. An Ecological Map of Europe: Why and How? C. R. Acad. Sci.—Ser. III—Sci. Vie 2000, 323, 983–994. [Google Scholar] [CrossRef]
- Brukas, V. New World, Old Ideas—A Narrative of the Lithuanian Forestry Transition. J. Environ. Policy Plan. 2015, 17, 495–515. [Google Scholar] [CrossRef]
- State Forest Service. Lithuanian Statistical Yearbook of Forestry 2019; Ministry of Environment, State Forest Service: Vilnius, Lithuania, 2020.
- National Land Service. Dirv_Dr10lt—1:10,000 Soil Spatial Data Set of the Territory of the Republic of Lithuania; National Land Service, Ministry of Agriculture of the Republic of Lithuania: Vilnius, Lithuania, 2020.
- Lazdinis, I. Implementation of International Requirements for Protected Areas in Lithuanian Forestry. In Legal Aspects of Eyropean Forest Sustainable Development (IUFRO); Deltuvas, R., Herbst, P., Cinga, G., Eds.; Aleksandras Stulginskis University: Kaunas, Lithuania, 2011; pp. 89–96. [Google Scholar]
- Angelstam, P.; Pettersson, B. Principles of Present Swedish Forest Biodiversity Management. Ecol. Bull. 1997, 46, 191–203. [Google Scholar]
- Rülcker, C.; Angelstam, P.; Rosenberg, P. Ecology in the Forest Planning Process—A Model for Large Scale Forestry. In The Forest Research Institute of Sweden. Report 8; SLU: Uppsala, Sweden, 1994. [Google Scholar]
- Segerström, U.; Bradshaw, R.; Hörnberg, G.; Bohlin, E. Disturbance History of a Swamp Forest Refuge in Northern Sweden. Biol. Conserv. 1994, 68, 189–196. [Google Scholar] [CrossRef]
- Segerstrom, U.; Hörnberg, G.; Bradshaw, R. The 9000-Year History of Vegetation Development and Disturbance Patterns of a Swamp-Forest in Dalama, Northern Sweden. Holocene 1996, 6, 37–48. [Google Scholar] [CrossRef]
- Engelmark, O.L.A. Fire History Correlations to Forest Type and Topography in Northern Sweden. Ann. Bot. Fenn. 1987, 24, 317–324. [Google Scholar]
- Vaičys, M. Miško Augaviečių Tipai; Lututė: Kaunas, Lithuania, 2006. [Google Scholar]
- Keeley, J.E. Ecology and Evolution of Pine Life Histories. Ann. For. Sci. 2012, 69, 445–453. [Google Scholar] [CrossRef] [Green Version]
- Navasaitis, M.; Ozolinčius, R.; Smaliukas, D.; Balevičienė, J. Dendroflora of Lithuania; Lututė: Kaunas, Lithuania, 2003; (In Lithuanian with a summary in English). [Google Scholar]
- Arno, S.F.; Sneck, K.M. A Method for Determining Fire History in Coniferous Forests of the Mountain West; Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station: Washington, DC, USA, 1977; Volume 42.
- Lafon, C.W.; Naito, A.T.; Grissino-Mayer, H.D.; Horn, S.P.; Waldrop, T.A. Fire History of the Appalachian Region: A Review and Synthesis; General Technical Report SRS-219; US Department of Agriculture, Forest Service, Southern Research Station: Asheville, NC, USA, 2017; pp. 1–97.
- Baker, W.L.; Ehle, D. Uncertainty in Surface-Fire History: The Case of Ponderosa Pine Forests in the Western United States. Can. J. For. Res. 2001, 31, 1205–1226. [Google Scholar] [CrossRef]
- McClain, W.E.; Esker, T.L.; Edgin, B.R.; Spyreas, G.; Ebinger, J.E. Fire History of a Post Oak (Quercus Stellata Wang.) Woodland in Hamilton County, Illinois. Castanea 2010, 75, 461–474. [Google Scholar] [CrossRef]
- Stokes, M.A.; Smiley, T. An Introduction to Tree-Ring Dating; University of Chicago Press: Chicago, IL, USA, 1968. [Google Scholar]
- Cook, E.R.; Kairiukstis, L.A. Methods of Dendrochronology: Applications in the Environmental Sciences; Kluwer Academic Publishers: Boston, MA, USA, 2013. [Google Scholar]
- Yamaguchi, D.K. A Simple Method for Cross-Dating Increment Cores from Living Trees. Can. J. For. Res. 1991, 21, 414–416. [Google Scholar] [CrossRef]
- Brewer, P.W.; Velásquez, M.E.; Sutherland, E.K.; Falk, D.A. Fire History Analysis and Exploration System (Fhaes) V. 2.0.2. Available online: https://www.fhaes.org (accessed on 15 May 2021).
- Sutherland, E.K.; Brewer, P.W.; Falk, D.A.; Velásquez, M.E. Fire History Analysis and Exploration System (Fhaes) User Manual. Available online: https://www.fhaes.org (accessed on 15 May 2021).
- Grissino-Mayer, H.D. Fhx2-Software for Analyzing Temporal and Spatial Patterns in Fire Regimes from Tree Rings. Tree-Ring Res. 2001, 57, 115–124. [Google Scholar]
- Manton, M.; Makrickas, E.; Banaszuk, P.; Kołos, A.; Kamocki, A.; Grygoruk, M.; Stachowicz, M.; Jarašius, L.; Zableckis, N.; Sendžikaitė, J.; et al. Assessment and Spatial Planning for Peatland Conservation and Restoration: Europe’s Trans-Border Neman River Basin as a Case Study. Land 2021, 10, 174. [Google Scholar] [CrossRef]
- Plakans, A. A Concise History of the Baltic States; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Van Vliet, J.; de Groot, H.L.F.; Rietveld, P.; Verburg, P.H. Manifestations and Underlying Drivers of Agricultural Land Use Change in Europe. Landsc. Urban Plan. 2015, 133, 24–36. [Google Scholar] [CrossRef] [Green Version]
- Lithuanian Hydrometeorological Service. Lithuanian Precipitation and Temperature Data Records; Lithuanian Hydrometeorological Service under the Ministry of Environment: Vilnius, Lithuania, 2021.
- Kraft, G. Beiträge Zur Lehre Von Den Durchforstungen, Schlagstellungen Und Lichtungshieben; Klindworth: Hanover, Germany, 1884. [Google Scholar]
- Rinn, F. Tsap-Win. Time Series Analysis and Presentation for Dendrochronology and Related Applications; Rinntech: Heidelberg, Germany, 2003. [Google Scholar]
- Ruffner, C.M.; Abrams, M.D. Relating Land-Use History and Climate to the Dendroecology of a 326-Year-Old Quercus Prinus Talus Slope Forest. Can. J. For. Res. 1998, 28, 347–358. [Google Scholar] [CrossRef]
- Tamkevičiūtė, M.; Edvardsson, J.; Pukienė, R.; Taminskas, J.; Stoffel, M.; Corona, C.; Kibirkštis, G. Scots Pine (Pinus Sylvestris L.) Based Reconstruction of 130 Years of Water Table Fluctuations in a Peatland and Its Relevance for Moisture Variability Assessments. J. Hydrol. 2018, 558, 509–519. [Google Scholar] [CrossRef]
- Bohn, U.; Neuhäusl, R.; Gollub, G.; Hettwer, C.; Neuhäuslová, Z.; Raus, T.; Schluter, H.; Weber, H. Karte Der Natürlichen Vegetation Europas/Map of the Natural Vegetation of Europe. Maßstab/Scale 1: 2,500,000; Bundesamt für Naturschutz: Münster, Germany, 2003.
- Seimas of the Republic of Lithuania. On the Approval of Regulations for Forest Fellings: The Order of the Minister of the Environment of the Republic of Lithuania No. D1-79 of 27 January 2010; Valstybės Žinios: Vilnius, Lithuania, 2010.
- De Groot, W.J.; Cantin, A.S.; Flannigan, M.D.; Soja, A.J.; Gowman, L.M.; Newbery, A. A Comparison of Canadian and Russian Boreal Forest Fire Regimes. For. Ecol. Manag. 2013, 294, 23–34. [Google Scholar]
- Drakenberg, B. Ekologisk Planering I Det Ekrika Sydsverige. Skogsfakta 1994, 20, 176–185. [Google Scholar]
- Pinto, G.A.S.J.; Niklasson, M.; Ryzhkova, N.; Drobyshev, I. A 500-Year History of Forest Fires in Sala Area, Central Sweden, Shows the Earliest Known Onset of Fire Suppression in Scandinavia. Reg. Environ. Chang. 2020, 20, 130. [Google Scholar] [CrossRef]
- Zin, W.; Drobyshev, I.; Bernacki, D.; Niklasson, M. Dendrochronological Reconstruction Reveals a Mixed-Intensity Fire Regime in Pinus Sylvestris-Dominated Stands of Białowieża Forest, Belarus and Poland. J. Veg. Sci. 2015, 26, 934–945. [Google Scholar] [CrossRef]
- Wallenius, T.H.; Kauhanen, H.; Herva, H.; Pennanen, J. Long Fire Cycle in Northern Boreal Pinus Forests in Finnish Lapland. Can. J. For. Res. 2010, 40, 2027–2035. [Google Scholar] [CrossRef]
- Marschall, J.M.; Guyette, R.P.; Stambaugh, M.C.; Stevenson, A.P. Fire Damage Effects on Red Oak Timber Product Value. For. Ecol. Manag. 2014, 320, 182–189. [Google Scholar] [CrossRef]
- Stanis, S.; Wiedenbeck, J.; Saunders, M.R. Effect of Prescribed Fire on Timber Volume and Grade in the Hoosier National Forest. For. Sci. 2019, 65, 714–724. [Google Scholar] [CrossRef] [Green Version]
- Angelstam, P.; Manton, M.; Yamelynets, T.; Sørensen, O.J. Landscape Approach towards Integrated Conservation and Use of Primeval Forests: The Transboundary Kovda River Catchment in Russia and Finland. Land 2020, 9, 144. [Google Scholar] [CrossRef]
- Ganteaume, A.; Camia, A.; Jappiot, M.; San-Miguel-Ayanz, J.; Long-Fournel, M.; Lampin, C. A Review of the Main Driving Factors of Forest Fire Ignition over Europe. Environ. Manag. 2013, 51, 651–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verbyla, V.; Brukas, A.; Kairiūkštis, L. Lietuvos Miškų Metraštis Xx Amžius; Lietuvos Respublikos Aplinkos Ministerija: Vilnius, Lithuania, 2003.
- Keane, R.E.; Hessburg, P.F.; Landres, P.B.; Swanson, F.J. The Use of Historical Range and Variability (Hrv) in Landscape Management. For. Ecol. Manag. 2009, 258, 1025–1037. [Google Scholar] [CrossRef]
- Angelstam, P.; Fedoriak, M.; Cruz, F.; Muñoz-Rojas, J.; Yamelynets, T.; Manton, M.; Washbourne, C.-L.; Dobrynin, D.; Izakovicova, Z.; Jansson, N.; et al. Meeting Places and Social Capital Supporting Rural Landscape Stewardship: A Pan-European Horizon Scanning. Ecol. Soc. 2021, 26, 11. [Google Scholar] [CrossRef]
- Richter, K. Displacement without Moving: Secession, Border Changes and Practices of Population Politics in Lithuania, 1916–1923. In Population Displacement in Lithuania in the Twentieth Century; Brill Rodopi: Leiden, The Netherlands, 2016; pp. 62–88. [Google Scholar]
- Burneika, D.; Daugirdas, V.; Ubarevičienė, R. Migration as a Factor of Development of the Depopulating Areas in East Eu Countries—The Case of Lithuania. Europa XXI 2014, 27, 79–95. [Google Scholar] [CrossRef] [Green Version]
- Mierauskas, P.; Pereira, P. Stakeholders Perception About Prescribed Fire Use in Lithuania. FLAMMA 2013, 4, 156–161. [Google Scholar]
- Margolis, E.Q.; Woodhouse, C.A.; Swetnam, T.W. Drought, Multi-Seasonal Climate, and Wildfire in Northern New Mexico. Clim. Chang. 2017, 142, 433–446. [Google Scholar] [CrossRef]
- Dewar, J.J.; Falk, D.A.; Swetnam, T.W.; Baisan, C.H.; Allen, C.D.; Parmenter, R.R.; Margolis, E.Q.; Taylor, E.J. Valleys of Fire: Historical Fire Regimes of Forest-Grassland Ecotones across the Montane Landscape of the Valles Caldera National Preserve, New Mexico, USA. Landsc. Ecol. 2021, 36, 331–352. [Google Scholar] [CrossRef]
- Howard, L.F.; Cahalan, G.D.; Ehleben, K.; Muhammad El, B.A.; Halza, H.; DeLeon, S. Fire History and Dendroecology of Catoctin Mountain, Maryland, USA, with Newspaper Corroboration. Fire Ecol. 2021, 17, 8. [Google Scholar] [CrossRef]
- Feurdean, A.; Veski, S.; Florescu, G.; Vannière, B.; Pfeiffer, M.; O’Hara, R.B.; Stivrins, N.; Amon, L.; Heinsalu, A.; Vassiljev, J.; et al. Broadleaf Deciduous Forest Counterbalanced the Direct Effect of Climate on Holocene Fire Regime in Hemiboreal/Boreal Region (Ne Europe). Quat. Sci. Rev. 2017, 169, 378–390. [Google Scholar] [CrossRef]
- Venäläinen, A.; Lehtonen, I.; Laapas, M.; Ruosteenoja, K.; Tikkanen, O.-P.; Viiri, H.; Ikonen, V.-P.; Peltola, H. Climate Change Induces Multiple Risks to Boreal Forests and Forestry in Finland: A Literature Review. Glob. Chang. Biol. 2020, 26, 4178–4196. [Google Scholar] [CrossRef]
- Vitas, A. Tree-Ring Chronology of Scots Pine (Pinus Sylvestris L.) for Lithuania. Balt. For. 2008, 14, 110–115. [Google Scholar]
- Panayotov, M.P.; Zafirov, N.; Cherubini, P. Fingerprints of Extreme Climate Events in Pinus Sylvestris Tree Rings from Bulgaria. Trees 2013, 27, 211–227. [Google Scholar] [CrossRef] [Green Version]
- Marozas, V.; Plausinyte, E.; Augustaitis, A.; Kaciulyte, A. Changes of Ground Vegetation and Tree-Ring Growth after Surface Fires in Scots Pine Forests. Acta Biol. Univ. Daugavp. 2011, 11, 156–162. [Google Scholar]
- Taminskas, J.; Linkevičienė, R.; Šimanauskienė, R.; Jukna, L.; Kibirkštis, G.; Tamkevičiūtė, M. Climate Change and Water Table Fluctuation: Implications for Raised Bog Surface Variability. Geomorphology 2018, 304, 40–49. [Google Scholar] [CrossRef]
- Vitas, A. Interpopulation Variation of Individual Tree Response to Pollution: Evidence from Scots Pine Dendrochronological Data. Pol. J. Environ. Stud. 2011, 20, 209–214. [Google Scholar]
- Pukienė, R.; Vitas, A.; Kažys, J.; Rimkus, E. Four-Decadal Series of Dendrometric Measurements Reveals Trends in Pinus Sylvestris Inter- and Intra-Annual Growth Response to Climatic Conditions. Can. J. For. Res. 2021, 51, 445–454. [Google Scholar] [CrossRef]
- Rimkus, E.; Edvardsson, J.; Kažys, J.; Pukienė, R.; Lukošiūnaitė, S.; Linkevičienė, R.; Corona, C.; Stoffel, M. Scots Pine Radial Growth Response to Climate and Future Projections at Peat and Mineral Soils in the Boreo-Nemoral Zone. Theor. Appl. Climatol. 2019, 136, 639–650. [Google Scholar] [CrossRef]
- Krawchuk, M.A.; Cumming, S.G.; Flannigan, M.D. Predicted Changes in Fire Weather Suggest Increases in Lightning Fire Initiation and Future Area Burned in the Mixedwood Boreal Forest. Clim. Chang. 2009, 92, 83–97. [Google Scholar] [CrossRef]
- Kuuluvainen, T.T. Disturbance Dynamics in Boreal Forests: Defining the Ecological Basis of Restoration and Management of Biodiversity. Silva Fenn. 2002, 36, 5–11. [Google Scholar] [CrossRef]
- Vanha-Majamaa, I.; Lilja, S.; Ryömä, R.; Kotiaho, J.S.; Laaka-Lindberg, S.; Lindberg, H.; Puttonen, P.; Tamminen, P.; Toivanen, T.; Kuuluvainen, T. Rehabilitating Boreal Forest Structure and Species Composition in Finland through Logging, Dead Wood Creation and Fire: The Evo Experiment. For. Ecol. Manag. 2007, 250, 77–88. [Google Scholar] [CrossRef]
- Kuuluvainen, T.; Grenfell, R. Natural Disturbance Emulation in Boreal Forest Ecosystem Management—Theories, Strategies, and a Comparison with Conventional Even-Aged Management. Can. J. For. Res. 2012, 42, 1185–1203. [Google Scholar] [CrossRef]
- McRae, D.J.; Duchesne, L.C.; Freedman, B.; Lynham, T.J.; Woodley, S. Comparisons between Wildfire and Forest Harvesting and Their Implications in Forest Management. Environ. Rev. 2001, 9, 223–260. [Google Scholar] [CrossRef]
- Martin, M.; Grondin, P.; Lambert, M.-C.; Bergeron, Y.; Morin, H. Compared to Wildfire, Management Practices Reduced Old-Growth Forest Diversity and Functionality in Primary Boreal Landscapes of Eastern Canada. Front. For. Glob. Chang. 2021, 4, 15. [Google Scholar] [CrossRef]
- Etheridge, D.; Kayahara, G. Challenges and Implications of Incorporating Multi-Cohort Management in Northeastern Ontario, Canada: A Case Study. For. Chron. 2013, 89, 315–326. [Google Scholar] [CrossRef] [Green Version]
- Esquilin, A.E.J.; Stromberger, M.E.; Shepperd, W.D. Soil Scarification and Wildfire Interactions and Effects on Microbial Communities and Carbon. Soil Sci. Soc. Am. J. 2008, 72, 111–118. [Google Scholar] [CrossRef]
- Flanagan, S.A.; Bhotika, S.; Hawley, C.; Starr, G.; Wiesner, S.; Hiers, J.K.; O’Brien, J.J.; Goodrick, S.; Callaham, M.A., Jr.; Scheller, R.M.; et al. Quantifying Carbon and Species Dynamics under Different Fire Regimes in a Southeastern U.S. Pineland. Ecosphere 2019, 10, e02772. [Google Scholar] [CrossRef]
- Santín, C.; Doerr, S.H.; Preston, C.M.; González-Rodríguez, G. Pyrogenic Organic Matter Production from Wildfires: A Missing Sink in the Global Carbon Cycle. Glob. Chang. Biol. 2015, 21, 1621–1633. [Google Scholar] [CrossRef] [Green Version]
- Gorshkov, V.V.; Stavrova, N.I. Scots Pine Renewal Dynamics During Postfire Recovery of Boreal Pine Forest. Bot. Zhurnal 2002, 87, 62–77. [Google Scholar]
- Kuuluvainen, T.; Rouvinen, S. Post-Fire Understorey Regeneration in Boreal Pinus Sylvestris Forest Sites with Different Fire Histories. J. Veg. Sci. 2000, 11, 801–812. [Google Scholar] [CrossRef]
- Jonsson, B.G.; Esseen, P.-A. Plant Colonisation in Small Forest–Floor Patches: Importance of Plant Group and Disturbance Traits. Ecography 1998, 21, 518–526. [Google Scholar] [CrossRef]
- Taulavuori, K.; Laine, K.; Taulavuori, E. Experimental Studies on Vaccinium Myrtillus and Vaccinium Vitis-Idaea in Relation to Air Pollution and Global Change at Northern High Latitudes: A Review. Environ. Exp. Bot. 2013, 87, 191–196. [Google Scholar] [CrossRef]
- Toivanen, T.; Kotiaho, J.S. Burning of Logged Sites to Protect Beetles in Managed Boreal Forests. Conserv. Biol. 2007, 21, 1562–1572. [Google Scholar] [CrossRef]
- Hancock, M.H.; Amphlett, A.; Proctor, R.; Dugan, D.; Willi, J.; Harvey, P.; Summers, R.W. Burning and Mowing as Habitat Management for Capercaillie Tetrao Urogallus: An Experimental Test. For. Ecol. Manag. 2011, 262, 509–521. [Google Scholar] [CrossRef]
- Bolte, A.; Ammer, C.; Löf, M.; Madsen, P.; Nabuurs, G.-J.; Schall, P.; Spathelf, P.; Rock, J. Adaptive Forest Management in Central Europe: Climate Change Impacts, Strategies and Integrative Concept. Scand. J. For. Res. 2009, 24, 473–482. [Google Scholar] [CrossRef]
- Ryan, K.C.; Knapp, E.E.; Varner, J.M. Prescribed Fire in North American Forests and Woodlands: History, Current Practice, and Challenges. Front. Ecol. Environ. 2013, 11, e15–e24. [Google Scholar] [CrossRef]
- Angelstam, P.; Munoz-Rojas, J.; Pinto-Correia, T. Landscape Concepts and Approaches Foster Learning about Ecosystem Services. Landsc. Ecol. 2019, 34, 1445–1460. [Google Scholar] [CrossRef] [Green Version]
- Axelsson, R.; Angelstam, P.; Degerman, E.; Teitelbaum, S.; Andersson, K.; Elbakidze, M.; Drotz, M.K. Social and Cultural Sustainability: Criteria, Indicators, Verifier Variables for Measurement and Maps for Visualization to Support Planning. AMBIO 2013, 42, 215–228. [Google Scholar] [CrossRef] [Green Version]
Fire Frequency ASIO Model | LT Site Type | Soil Fertility | Soil Moisture | Dominant Forest Type | Field Layer | Secondary Forest Type |
---|---|---|---|---|---|---|
Absent | Nf | Very rich | Mesic | Oak | Aegopodiosa | Ash, Aspen, Grey alder, Hornbeam, Linden, Norway spruce |
Lf | Very rich | Moist | Ash, Oak | Aegopodiosa, Carico-mixtoherbosa | Aspen, Birch, Linden, Grey and Black alder | |
Uc | Semi-poor | Wet | Birch | Calamagrostidosa | Black alder, Birch, Norway spruce, Aspen | |
Ud | Rich | Wet | Black alder | Filipendulo-mixtoherbosa | Norway spruce, Ash, Birch, Grey alder | |
Uf | Very rich | Wet | Black alder | Urticosa | Ash, Birch, Norway spruce | |
Pc | Semi-poor | Very wet | Birch | Caricosa | Black alder, Scots pine, Norway spruce | |
Pd | Rich | Very wet | Black alder | Carico-iridosa | Birch | |
Seldom | Sd | Rich | Dry | Oak | Hepatico-oxalidosa | Norway spruce, Birch, Aspen, Hornbeam, Linden, Grey alder, Scots Pine, Ash |
Nd | Rich | Mesic | Oak | Hepatico-oxalidosa | Norway spruce, Birch, Aspen, Hornbeam, Linden, Grey alder, Scots Pine, Ash | |
Lc | Semi-rich | Moist | Spruce | Myrtillo-oxalidosa | Birch, Aspen, Scots pine, Oak | |
Ld | Rich | Moist | Ash, Norway spruce | Carico-mixtoherbosa, Oxalido-nemorosa, | Birch, Oak, Linden, Aspen, Grey and Black alder | |
Ua | Very poor | Wet | Scots pine | Myrtillo-sphagnosa | - | |
Ub | Poor | Wet | Scots pine | Myrtillo-sphagnosa | Birch | |
Pa | Very poor | Very wet | Scots pine | Ledo-sphagnosa | - | |
Pb | Poor | Very wet | Scots pine | Carico-sphagnosa | Birch | |
Intermittent | Sc | Semi-rich | Dry | Norway spruce | Oxalidosa, Hepatico- oxalidosa | Scots pine, Birch, Aspen Oak |
Nc | Semi-rich | Mesic | Norway spruce | Oxalidosa, Hepatico- oxalidosa | Scots pine, Birch, Aspen Oak | |
Lb | Poor | Moist | Scots pine | Myrtillosa | Norway spruce, Birch, Aspen | |
Nb | Poor | Mesic | Scots pine | Vaccinio-myrtillosa | Norway spruce, Birch, Aspen | |
Often | Nbl | Poor | Mesic | Scots pine | Vaccinio-myrtillosa | Norway spruce, Birch, Aspen |
Na | Very poor | Mesic | Scots pine | Cladoniosa, Vacciniosa | - | |
Sa | Very poor | Dry | Scots pine | Cladoniosa, Vacciniosa | - | |
Sb | Poor | Dry | Scots pine | Vaccinio-myrtillosa | Norway spruce, Birch, Aspen |
Composite Parameters | F1 | F2 | F3 | F4 | All F | RB1 | RB2 | RB3 | RB4 | All RB |
---|---|---|---|---|---|---|---|---|---|---|
Total intervals | 33 | 23 | 30 | 23 | 43 | 6 | 11 | 6 | 8 | 12 |
Mean fire interval | 4.67 | 5 | 4.87 | 5.87 | 4.33 | 17.33 | 9.45 | 9 | 13 | 8.67 |
Median fire interval | 4 | 3 | 2 | 4 | 2 | 18.5 | 4 | 8 | 10 | 4.5 |
Standard deviation | 3.95 | 5.48 | 5.7 | 6.98 | 6.21 | 12.18 | 8.94 | 4.73 | 7.15 | 8.4 |
Minimum fire interval | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 3 | 6 | 1 |
Maximum fire interval | 21 | 26 | 25 | 25 | 34 | 33 | 25 | 17 | 27 | 27 |
Weibull mean | 4.70 | 5.04 | 4.86 | 5.85 | 4.27 | 17.2 | 9.45 | 9.02 | 13.09 | 8.68 |
Weibull median | 3.91 | 3.79 | 3.33 | 3.9 | 2.7 | 14.6 | 6.5 | 8.64 | 12.41 | 6.29 |
Weibull standard deviation | 3.53 | 4.49 | 4.93 | 6.14 | 4.75 | 12.32 | 9.56 | 4.29 | 6.56 | 8.17 |
Composite Parameters | Pre-1950 | Post-1950 | ||
---|---|---|---|---|
DNP (F) | CSNR (RB) | DNP (F) | CSNR (RB) | |
Total intervals | 38 | 5 | 5 | 7 |
Mean fire interval | 3.08 | 7 | 8 | 8 |
Median fire interval | 1.50 | 6 | 8 | 3 |
Standard deviation | 3.76 | 4.64 | 4.74 | 10 |
Minimum fire interval | 1 | 1 | 1 | 2 |
Maximum fire interval | 20 | 13 | 14 | 27 |
Weibull mean | 3.09 | 6.95 | 7.88 | 7.95 |
Weibull median | 2.22 | 6.19 | 7.2 | 5.15 |
Weibull standard deviation | 2.96 | 4.4 | 4.61 | 8.62 |
Time Period | Number of Fires | Area Burnt (ha) | Mean Fire Size (ha) | Cultural Influences on Forest Ecosystems |
---|---|---|---|---|
1795–1914 Imperial Russia | No data | No data | No data | Control, noble estates, and serfdom, 1859–1862 Warsaw–Saint Petersburg railway construction * 1863–1864 Lithuanian uprising Lands were marked by violence and guerrilla warfare [70] No fire control systembut fire was used for traditional land use Mosaic landscape Burning for subsistence farming (increased berry yields) Fire was used to clear forest land for agriculture Katra and Ula Rivers bifurcation (flow change (7 km)) * |
1914–1918 WWI | No data | No data | No data | Front line passage * 1914 Narrow railway construction (28.5 km) Marcinkonys–Čepkeliai for wood extraction * Big fire 1915 several fires totaling thousands of hectares * |
1918–1939 First Independence + | 2053 + | 15908 + | 10.41 + | Widespread forest planting * Private forest, no fire control Intensive fire protection by Polish state forests * |
1939–1945 WWII | 1052 | 15285 | 12.97 | Front line passage, war activities were common Marcinkonys ghetto established 1941–1942 * |
1945–1990 Soviet occupation | 3166 | 25316 | 7.27 | 1945–1953 Stalin’s reign of terror and upheaval |
13101 | 8343 | 0.63 | Widespread forest planting Soviet army forest stealing and illegal activities Collective farms, industrial agriculture and farming, no private land ownership Relocation of people from Dzūkija to other parts of Lithuania 1963–1975 climate effects, peak fire events * 1963–1968 large wildfires in CSNR, need to evacuate nearby villages * Human mobility increased, leading to accidents and arson Effective fire control, even-aged forest management | |
1990–2016 2nd Independence | 13638 | 7233 | 0.51 | Forest ownership restitution 2004 EU membership Effective fire control Even-age stand management Forest harvesting doubled Increased fuel loads, high risk for fire events 99% of forest fires are from anthropogenic ignition |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manton, M.; Ruffner, C.; Kibirkštis, G.; Brazaitis, G.; Marozas, V.; Pukienė, R.; Makrickiene, E.; Angelstam, P. Fire Occurrence in Hemi-Boreal Forests: Exploring Natural and Cultural Scots Pine Fire Regimes Using Dendrochronology in Lithuania. Land 2022, 11, 260. https://doi.org/10.3390/land11020260
Manton M, Ruffner C, Kibirkštis G, Brazaitis G, Marozas V, Pukienė R, Makrickiene E, Angelstam P. Fire Occurrence in Hemi-Boreal Forests: Exploring Natural and Cultural Scots Pine Fire Regimes Using Dendrochronology in Lithuania. Land. 2022; 11(2):260. https://doi.org/10.3390/land11020260
Chicago/Turabian StyleManton, Michael, Charles Ruffner, Gintautas Kibirkštis, Gediminas Brazaitis, Vitas Marozas, Rūtilė Pukienė, Ekaterina Makrickiene, and Per Angelstam. 2022. "Fire Occurrence in Hemi-Boreal Forests: Exploring Natural and Cultural Scots Pine Fire Regimes Using Dendrochronology in Lithuania" Land 11, no. 2: 260. https://doi.org/10.3390/land11020260
APA StyleManton, M., Ruffner, C., Kibirkštis, G., Brazaitis, G., Marozas, V., Pukienė, R., Makrickiene, E., & Angelstam, P. (2022). Fire Occurrence in Hemi-Boreal Forests: Exploring Natural and Cultural Scots Pine Fire Regimes Using Dendrochronology in Lithuania. Land, 11(2), 260. https://doi.org/10.3390/land11020260