Heterogeneity Impacts of Farmers’ Participation in Payment for Ecosystem Services Based on the Collective Action Framework
Abstract
:1. Introduction
2. Research Hypotheses and Framework
2.1. PES Program
2.2. The Influence of Sustainable Livelihood Capital on Farmers’ Willingness to Participate in PES Programs
2.3. The Influence of Collective Action Theory on Farmers’ Willingness to Participate in PES Programs
2.4. Research Framework
3. Methods and Data Sources
3.1. HLM
3.1.1. Model 1: Null Model
3.1.2. Model 2: Random-Effects Regression Model
3.1.3. Model 3: Full Model
3.2. Study Area
3.3. Data and Descriptive Statistics
3.3.1. Data
3.3.2. Variable Definitions
- (1)
- Dependent variables
- (2)
- Independent variables
- (3)
- Descriptive statistics and t-test
4. Results
4.1. Results of Null Models
4.2. Results of Random-Effect Regression Models
4.3. Results of Full Models
4.3.1. Results of Direct Village Effects
4.3.2. Results of the Moderating Effect of Villages
4.4. Comparison of Variance Components among the Three Models
5. Discussions
5.1. The Comparisons
5.2. Policy Implications
5.3. Limitations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, J.; Gong, J.; Guldmann, J.-M.; Li, S.; Zhu, J. Carbon dynamics in the northeastern qinghai–tibetan plateau from 1990 to 2030 using landsat land use/cover change data. Remote Sens. 2020, 12, 528. [Google Scholar] [CrossRef]
- Jiao, L.; Yang, R.; Zhang, Y.; Yin, J.; Huang, J. The Evolution and Determinants of Ecosystem Services in Guizhou—A Typical Karst Mountainous Area in Southwest China. Land 2022, 11, 1164. [Google Scholar] [CrossRef]
- Jasanoff, S. NGOs and the environment: From knowledge to action. Third World Q. 1997, 18, 579–594. [Google Scholar] [CrossRef]
- Yang, T.; Percival, R.V. The emergence of global environmental law. Ecol. Law Q. 2009, 36, 615. [Google Scholar] [CrossRef]
- Steiner, F.; Blair, J.; McSherry, L.; Guhathakurta, S.; Marruffo, J.; Holm, M. A watershed at a watershed: The potential for environmentally sensitive area protection in the upper San Pedro Drainage Basin (Mexico and USA). Landsc. Urban Plan. 2000, 49, 129–148. [Google Scholar] [CrossRef]
- Liu, J.; Li, S.; Ouyang, Z.; Tam, C.; Chen, X. Ecological and socioeconomic effects of China’s policies for ecosystem services. Proc. Natl. Acad. Sci. USA 2008, 105, 9477–9482. [Google Scholar] [CrossRef]
- Zanella, M.A.; Schleyer, C.; Speelman, S. Why do farmers join Payments for Ecosystem Services (PES) schemes? An Assessment of PES water scheme participation in Brazil. Ecol. Econ. 2014, 105, 166–176. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E. Improvements in ecosystem services from investments in natural capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef]
- Wunder, S. Revisiting the concept of payments for environmental services. Ecol. Econ. 2015, 117, 234–243. [Google Scholar] [CrossRef]
- Grima, N.; Singh, S.J.; Smetschka, B.; Ringhofer, L. Payment for Ecosystem Services (PES) in Latin America: Analysing the performance of 40 case studies. Ecosyst. Serv. 2016, 17, 24–32. [Google Scholar] [CrossRef]
- Ola, O.; Menapace, L.; Benjamin, E.; Lang, H. Determinants of the environmental conservation and poverty alleviation objectives of Payments for Ecosystem Services (PES) programs. Ecosyst. Serv. 2019, 35, 52–66. [Google Scholar] [CrossRef]
- Wunder, S.; Engel, S.; Pagiola, S. Taking stock: A comparative analysis of payments for environmental services programs in developed and developing countries. Ecol. Econ. 2008, 65, 834–852. [Google Scholar] [CrossRef]
- Robertson, N.; Wunder, S. Fresh Tracks in the Forest: Assessing Incipient Payments for Environmental Services Initiatives in Bolivia; CIFOR: Bogor Regency, Indonesia, 2005. [Google Scholar]
- Bernedo Del Carpio, M.; Alpizar, F.; Ferraro, P.J. Community-based monitoring to facilitate water management by local institutions in Costa Rica. Proc. Natl. Acad. Sci. USA 2021, 118, e2015177118. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Yao, S. Ecological effectiveness of payment for ecosystem services to identify incentive priority areas: Sloping land conversion program in China. Land Use Policy 2021, 104, 105350. [Google Scholar] [CrossRef]
- Locatelli, T.; Binet, T.; Kairo, J.G.; King, L.; Madden, S.; Patenaude, G. Turning the Tide: How Blue Carbon and Payments for Ecosystem Services (PES) Might Help Save Mangrove Forests. Ambio 2014, 43, 981–995. [Google Scholar] [CrossRef]
- Villamayor-Tomas, S.; Sagebiel, J.; Rommel, J.; Olschewski, R. Types of collective action problems and farmers’ willingness to accept agri-environmental schemes in Switzerland. Ecosyst. Serv. 2021, 50, 101304. [Google Scholar] [CrossRef]
- Martin-Ortega, J.; Ojea, E.; Roux, C. Payments for Water Ecosystem Services in Latin America: A literature review and conceptual model. Ecosyst. Serv. 2013, 6, 122–132. [Google Scholar] [CrossRef]
- Olson, M. The Logic of Collective Action; Harvard University Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Liu, M.; Yang, L.; Bai, Y.; Min, Q. The impacts of farmers’ livelihood endowments on their participation in eco-compensation policies: Globally important agricultural heritage systems case studies from China. Land Use Policy 2018, 77, 231–239. [Google Scholar] [CrossRef]
- Deng, J.; Sun, P.; Zhao, F.; Han, X.; Yang, G.; Feng, Y. Analysis of the ecological conservation behavior of farmers in payment for ecosystem service programs in eco-environmentally fragile areas using social psychology models. Sci. Total Environ. 2016, 550, 382–390. [Google Scholar] [CrossRef]
- Bao, X.; Zhang, F.; Guo, S.; Deng, X.; Song, J.; Xu, D. Peer effects on farmers’ purchases of policy-based planting farming agricultural insurance: Evidence from Sichuan Province, China. Int. J. Environ. Res. Public Health 2022, 19, 7411. [Google Scholar] [CrossRef]
- Rose, C.M. Rethinking environmental controls: Management strategies for common resources. Duke Law J. 1991, 40, 1–38. [Google Scholar] [CrossRef]
- Ostrom, E. Collective action and local development processes. Sociologica 2007, 3, 1–32. [Google Scholar] [CrossRef]
- Tran, T.H.T.; Zeller, M.; Suhardiman, D. Payments for ecosystem services in Hoa Binh province, Vietnam: An institutional analysis. Ecosyst. Serv. 2016, 22, 83–93. [Google Scholar] [CrossRef]
- Nigussie, Z.; Tsunekawa, A.; Haregeweyn, N.; Adgo, E.; Cochrane, L.; Floquet, A.; Abele, S. Applying Ostrom’s institutional analysis and development framework to soil and water conservation activities in north-western Ethiopia. Land Use Policy 2018, 71, 1–10. [Google Scholar] [CrossRef]
- Ollivier, G.; Magda, D.; Mazé, A.; Plumecocq, G.; Lamine, C. Agroecological transitions: What can sustainability transition frameworks teach us? An ontological and empirical analysis. Ecol. Soc. 2018, 23, 18. [Google Scholar] [CrossRef]
- Huber-Stearns, H.; Goldstein, J.; Cheng, A.; Toombs, T. Institutional analysis of payments for watershed services in the western United States. Ecosyst. Serv. 2015, 16, 83–93. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, C.; Araral, E. The Effects of Migration on Collective Action in the Commons: Evidence from Rural China. World Dev. 2016, 88, 79–93. [Google Scholar] [CrossRef]
- Wang, Y.; Zang, L.; Araral, E. The impacts of land fragmentation on irrigation collective action: Empirical test of the social-ecological system framework in China. J. Rural Stud. 2020, 78, 234–244. [Google Scholar] [CrossRef]
- Kaczan, D.J.; Swallow, B.M.; Adamowicz, W. Forest conservation policy and motivational crowding: Experimental evidence from Tanzania. Ecol. Econ. 2019, 156, 444–453. [Google Scholar] [CrossRef]
- Li, S.; Hui, B.; Jin, C.; Liu, X.; Xu, F.; Su, C.; Li, T. Considering Farmers’ Heterogeneity to Payment Ecosystem Services Participation: A Choice Experiment and Agent-Based Model Analysis in Xin’an River Basin, China. Int. J. Environ. Res. Public Health 2022, 19, 7190. [Google Scholar] [CrossRef]
- Liu, M.; Bai, Y.; Ma, N.; Rao, D.; Yang, L.; Min, Q. Blood transfusion or hematopoiesis? How to select between the subsidy mode and the long-term mode of eco-compensation. Environ. Res. Lett. 2020, 15, 094059. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Yang, R.; Zhang, L.; Zhang, Y.; Liu, Q.; Song, Z. From “blood transfusion” to “hematopoiesis”: Watershed eco-compensation in China. Environ. Sci. Pollut. Res. 2022, 29, 49583–49597. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, X.; Cao, S.; Zhang, A. Preferences in Farmland Eco-Compensation Methods: A Case Study of Wuhan, China. Land 2021, 10, 1159. [Google Scholar] [CrossRef]
- Yang, Y.; Yao, C.; Xu, D. Ecological compensation standards of national scenic spots in western China: A case study of Taibai Mountain. Tour Manag. 2020, 76, 103950. [Google Scholar] [CrossRef]
- Wang, X.; Adamowski, J.; Wang, G.; Cao, J.; Zhu, G.; Zhou, J.; Liu, C.; Dong, X. Farmers’ willingness to accept compensation to maintain the benefits of urban forests. Forests 2019, 10, 691. [Google Scholar] [CrossRef]
- Haavisto, R.; Santos, D.; Perrels, A. Determining payments for watershed services by hydro-economic modeling for optimal water allocation between agricultural and municipal water use. Water Resour. Econ. 2019, 26, 100127. [Google Scholar] [CrossRef]
- Zeng, Q.; Brouwer, R.; Wang, Y.; Chen, L. Measuring the incremental impact of Payments for Watershed Services on water quality in a transboundary river basin in China. Ecosyst. Serv. 2021, 51, 101355. [Google Scholar] [CrossRef]
- Zhang, Q.; Song, C.; Chen, X. Effects of China’s payment for ecosystem services programs on cropland abandonment: A case study in Tiantangzhai Township, Anhui, China. Land Use Policy 2018, 73, 239–248. [Google Scholar] [CrossRef]
- Sheng, J.; Qiu, W.; Han, X. China’s PES-like horizontal eco-compensation program: Combining market-oriented mechanisms and government interventions. Ecosyst. Serv. 2020, 45, 101164. [Google Scholar] [CrossRef]
- Xu, Y.; Yao, Y. Informal institutions, collective action, and public investment in rural China. Am. Polit. Sci. Rev. 2015, 109, 371–391. [Google Scholar] [CrossRef]
- Rodríguez-Robayo, K.J.; Merino-Perez, L. Contextualizing context in the analysis of payment for ecosystem services. Ecosyst. Serv. 2017, 23, 259–267. [Google Scholar] [CrossRef]
- Zheng, Q.; Wan, L.; Wang, S.; Wang, C.; Fang, W. Does ecological compensation have a spillover effect on industrial structure upgrading? Evidence from China based on a multi-stage dynamic DID approach. J. Environ. Manag. 2021, 294, 112934. [Google Scholar] [CrossRef] [PubMed]
- Chai, S.; Zhang, Z.; Ge, J. Evolution of environmental policy for China’s rare earths: Comparing central and local government policies. Resour. Policy 2020, 68, 101786. [Google Scholar] [CrossRef]
- Zhao, X.; Meng, X.; Zhou, Y.; Li, P. Policy inducement effect in energy efficiency: An empirical analysis of China. Energy 2020, 211, 118726. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, X.; Sun, X.; Wang, W. The influence of multiple environmental regulations on haze pollution: Evidence from China. Atmos. Pollut. Res. 2020, 11, 170–179. [Google Scholar] [CrossRef]
- Medema, S.G. The Curious Treatment of the Coase Theorem in the Environmental Economics Literature, 1960–1979. Rev. Environ. Econ. Policy 2014, 8, 39–57. [Google Scholar] [CrossRef]
- Engel, S.; Pagiola, S.; Wunder, S. Designing payments for environmental services in theory and practice: An overview of the issues. Ecol. Econ. 2008, 65, 663–674. [Google Scholar] [CrossRef]
- CCICED. Eco-Compensation Mechanisms and Policies in China; Science Press: Beijing, China, 2007; Volume 4, pp. 76–88. [Google Scholar]
- Liu, M.; Yang, L.; Min, Q. Establishment of an eco-compensation fund based on eco-services consumption. J. Environ. Manag. 2018, 12, 306–312. [Google Scholar] [CrossRef]
- Kallbekken, S.; Kroll, S.; Cherry, T. Do you not like Pigou, or do you not understand him? Tax aversion and revenue recycling in the lab. J. Environ. Econ. Manag. 2011, 62, 53–64. [Google Scholar] [CrossRef]
- Jaffe, A.B.; Stavins, R.N. Dynamic Incentives of Environmental Regulations: The Effects of Alternative Policy Instruments on Technology Diffusion. J. Environ. Econ. Manag. 1995, 29, 43–63. [Google Scholar] [CrossRef]
- Jack, B.K.; Kousky, C.; Sims, K.R.E. Designing payments for ecosystem services: Lessons from previous experience with incentive-based mechanisms. Proc. Natl. Acad. Sci. USA 2017, 105, 9465–9470. [Google Scholar] [CrossRef] [PubMed]
- Morse, S.; McNamara, N. Sustainable Livelihood Approach: A Critique of Theory and Practice; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Wu, Z.; Li, B.; Hou, Y. Adaptive choice of livelihood patterns in rural households in a farm-pastoral zone: A case study in Jungar, Inner Mongolia. Land Use Policy 2017, 62, 361–375. [Google Scholar] [CrossRef]
- Tang, Q.; Bennett, S.J.; Xu, Y.; Li, Y. Agricultural practices and sustainable livelihoods: Rural transformation within the Loess Plateau, China. Appl. Geogr. 2013, 41, 15–23. [Google Scholar] [CrossRef]
- Qian, Y.; Yang, Q.; Zhang, H.; Su, K.; Zhang, H.; Qu, X. The Impact of Farming Households’ Livelihood Vulnerability on the Intention of Homestead Agglomeration: The Case of Zhongyi Township, China. Land 2022, 11, 1322. [Google Scholar] [CrossRef]
- Yang, L.; Liu, M.; Lun, F.; Min, Q.; Li, W. The impacts of farmers’ livelihood capitals on planting decisions: A case study of Zhagana Agriculture-Forestry-Animal Husbandry Composite System. Land Use Policy 2019, 86, 208–217. [Google Scholar] [CrossRef]
- Yang, X.; Sang, Y.; Zhang, A. How livelihood capital affects farmers’ willingness to pay for farmland non-market value? Evidence from Jianghan Plain, China. Environ. Sci. Pollut. Res. 2022, 29, 51456–51468. [Google Scholar] [CrossRef]
- Ma, S.; Swinton, S.; Lupi, F.; Jolejole-Foreman, C. Farmers’ willingness to participate in payment-for-environmental-services programmes. J. Agric. Econ. 2012, 63, 604–626. [Google Scholar] [CrossRef]
- Ostrom, E. Governing the Commons: The Evolution Of Institutions for Collective Action; Cambridge University Press: Cambridge, MA, USA, 1990. [Google Scholar]
- Xiong, H.; Payne, D. Characteristics of Chinese rural networks: Evidence from villages in central China. Chin. J. Sociol. 2017, 3, 74–97. [Google Scholar] [CrossRef]
- Fang, S.C.; Yeh, W.C.; Lee, C.C.; Yu, Z. Factors Affecting the Price of Cost-Equivalent Land: Application of Hierarchical Linear Modeling. Land 2021, 10, 684. [Google Scholar] [CrossRef]
- Goldstein, H. Multilevel mixed linear model analysis using iterative generalized least squares. Biometrika 1986, 73, 43–56. [Google Scholar] [CrossRef]
- Longford, N.T. A fast scoring algorithm for maximum likelihood estimation in unbalance models with nested random effects. Biometrika 1987, 74, 817–827. [Google Scholar] [CrossRef]
- Tammemagi, M.C.; Frank, J.W.; Leblanc, M.; Artsob, H.; Streiner, D.L. Methodological issues in assessing reproducibility—A comparative study of various indices of reproducibility applied to repeat ELISA serologic tests for Lyme disease. J. Clin. Epidemiol. 1995, 48, 1123. [Google Scholar] [CrossRef]
- Jones, K.W.; Powlen, K.; Roberts, R.; Shinbrot, X. Participation in payments for ecosystem services programs in the Global South: A systematic review. Ecosyst. Serv. 2020, 45, 101159. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, Y. A geographic identification of multidimensional poverty in rural China under the framework of sustainable livelihoods analysis. Appl. Geogr. 2016, 73, 62–76. [Google Scholar] [CrossRef]
- Denzau, A.T.; North, D.C. Shared mental models: Ideologies and institutions. Kyklos 1994, 47, 3–31. [Google Scholar] [CrossRef]
- Roongtawanreongsri, S.; Ho, T.Q.; Tran, P.H.N. Can payments for forest environmental services help improve income and attitudes toward forest conservation? Household-level evaluation in the Central Highlands of Vietnam. For. Policy Econ. 2021, 132, 102578. [Google Scholar] [CrossRef]
- Ma, W.; Jiang, G.; Wang, D.; Li, W.; Guo, H.; Zheng, Q. Rural settlements transition (RST) in a suburban area of metropolis: Internal structure perspectives. Sci. Total Environ. 2018, 615, 672–680. [Google Scholar] [CrossRef]
- Zhang, Q.; Bilsborrow, R.E.; Song, C.; Tao, S.; Huang, Q. Determinants of out-migration in rural China: Effects of payments for ecosystem services. Popul. Environ. 2018, 40, 182–203. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: London, UK, 2013. [Google Scholar]
- Zhang, Y.; Li, X.; Song, W. Determinants of cropland abandonment at the parcel, household and village levels in mountain areas of China: A multi-level analysis. Land Use Policy 2014, 41, 186–192. [Google Scholar] [CrossRef]
- Yost, A.; An, L.; Bilsborrow, R.; Shi, L.; Chen, X.; Yang, S.; Zhang, W. Mechanisms behind concurrent payments for ecosystem services in a Chinese nature reserve. Ecol. Econ. 2020, 169, 106509. [Google Scholar] [CrossRef]
- An, L.; Song, C.; Zhang, Q.; Bohnett, E. Conservation Effectiveness and Concurrent Green Initiatives; Taylor & Francis: Abingdon, UK, 2022. [Google Scholar]
- Rawlins, M.A.; Westby, L. Community participation in payment for ecosystem services design and implementation: An example from Trinidad. Ecosyst. Serv. 2013, 6, 117–121. [Google Scholar] [CrossRef]
- Brownson, K.; Guinessey, E.; Carranza, M.; Esquivel, M.; Hesselbach, H.; Ramirez, L.M.; Villa, L. Community-Based Payments for Ecosystem Services (CB-PES): Implications of community involvement for program outcomes. Ecosyst. Serv. 2019, 39, 100974. [Google Scholar] [CrossRef]
- Thapa, D.; Sein, M.K.; Sæbø, Ø. Building collective capabilities through ICT in a mountain region of Nepal: Where social capital leads to collective action. Inf. Technol. Dev. 2012, 18, 5–22. [Google Scholar] [CrossRef]
- Putraditama, A.; Kim, Y.-S.; Baral, H. Where to put community-based forestry?: Reconciling conservation and livelihood in Lampung, Indonesia. Trees For. People 2021, 4, 100062. [Google Scholar] [CrossRef]
- Cárdenas, J.-C.; Rodriguez, L.A.; Johnson, N. Vertical collective action: Addressing vertical asymmetries in watershed management. Documento CEDE 2015, 2015-07. [Google Scholar] [CrossRef]
- Negi, S.; Pham, T.T.; Karky, B.; Garcia, C. Role of community and user attributes in collective action: Case study of community-based forest management in Nepal. Forests 2018, 9, 136. [Google Scholar] [CrossRef]
- Li, S.; Zhang, H.; Zhou, X.; Yu, H.; Li, W. Enhancing protected areas for biodiversity and ecosystem services in the Qinghai–Tibet Plateau. Ecosyst. Serv. 2020, 43, 101090. [Google Scholar] [CrossRef]
Categories | Variable | Variable Definition and Assignment | Mean | S.D. | Min. | Max. |
---|---|---|---|---|---|---|
Dependent variable | WTA | Logarithmic form of willingness to accept compensation | 6.523 | 1.299 | 2.996 | 11.184 |
Willingness to participate in command-control strategy in living | Volunteer to participate in village cleaning activities such as improved toilets (0 = no, 1 = yes) | 0.699 | 0.459 | 0.000 | 1.000 | |
Willingness to participate in command-control strategy in farming | Whether to voluntarily participate in the development of green agriculture and cultivate regional public brands (0 = no, 1 = yes) | 0.287 | 0.453 | 0.000 | 1.000 | |
Independent variable | ||||||
Farmer level | Sample size = 349 | |||||
Human capital | Age | Continuous variable (age) | 61.355 | 11.085 | 18.000 | 89.000 |
Level of education | 0 = no schooling, 6 = primary school, 9 = Junior high school, 12 = Technical secondary school and high school, 15 = junior college or above | 6.713 | 3.425 | 0.000 | 16.000 | |
Quantity of labor force | Number of family members (except students and soldiers) with complete working ability (person) | 2.722 | 1.402 | 0.000 | 10.000 | |
Natural capital | Forest land slope | Woodland location: 0 = not clear, 1 = flat, 2 = steep, 3 = very steep | 2.003 | 0.693 | 0.000 | 3.000 |
Financial capital | Annual gross household income | Total household income, including farming and operation income, transfer income. (103 yuan) | 44.547 | 52.216 | 0.500 | 509.600 |
Non-farm income share | The proportion of non-farm income in total annual household income (%) | 0.576 | 0.361 | 0.000 | 1.000 | |
Cost of forestry | Forestry production and operation cost (thousand yuan) | 1.286 | 1.723 | 0.000 | 10.300 | |
Physical capital | The housing situation | Number of houses owned by farmers (buildings) | 1.117 | 0.364 | 1.000 | 3.000 |
Communication and entertainment equipment | The number of communication and entertainment equipment (fixed telephone, mobile phone, computer) owned by the household (unit) | 3.384 | 1.596 | 1.000 | 9.000 | |
Social capital | Social trust | Degree of trust in neighbors and relatives: 1 = very distrust, 2 = relatively distrust, 3 = average, 4 = relatively trust, 5 = very trust | 4.135 | 0.736 | 2.000 | 5.000 |
Social participation | Frequency of communication with farmers in the same village: 1 = almost no, 2 = rarely, 3 = average, 4 = more, 5 = a lot | 2.530 | 1.136 | 1.000 | 5.000 | |
Program cognition | Understanding of program | The degree of understanding of ecological compensation program: 1 = very unfamiliar, 2 = relatively unfamiliar, 3 = fair, 4 = relatively familiar, 5 = very familiar | 2.963 | 0.977 | 1.000 | 5.000 |
Village level | Sample size = 10 | |||||
Geographical characteristics | Distance from county government | Distance of the village from the county government of the county to which it belongs (km) | 59.300 | 20.205 | 24.000 | 85.000 |
Mean village elevation | The average elevation of the village is/m | 359.800 | 186.097 | 100.000 | 634.000 | |
Natural-social-economic characteristics | Village environmental assessment | The overall evaluation (mean) of the village environment by the resident farmers: 1 = poor, 2 = relatively poor, 3 = average, 4 = relatively good, 5 = good | 3.948 | 0.415 | 2.890 | 4.400 |
Per capita forestland area | Village per capita forestland area (mu/person) | 13.813 | 9.870 | 4.150 | 27.680 | |
Characteristics of program implementation | Degree of program implementation | The implementation intensity of village ecological compensation program is calculated by the implementation status of six major strategies: pesticide and chemical fertilizer replacement, village garbage cleaning, fishermen’s withdrawal from fishing, farmland conversion, ecological migration, and compensation for public welfare forest (value: 0–6). | 4.300 | 1.418 | 3.000 | 6.000 |
The Farmer Level | Farmers in Upstream Villages (N = 166) | Farmers in Midstream Villages (N = 183) | Difference in Means | ||
---|---|---|---|---|---|
Mean | S.D. | Mean | S.D. | ||
Human capital | |||||
Age | 61.620 | 12.123 | 61.115 | 10.078 | 0.506 ** |
Years of education | 5.867 | 3.789 | 7.481 | 2.859 | −1.613 ** |
Quantity of labor force | 3.078 | 1.549 | 2.399 | 1.167 | 0.679 *** |
Natural capital | |||||
Forest land slope | 1.964 | 0.622 | 2.038 | 0.751 | −0.074 |
Financial capital | |||||
Annual gross household income | 57.077 | 64.542 | 33.180 | 34.113 | 23.897 *** |
Non-farm income share | 0.710 | 0.279 | 0.455 | 0.383 | 0.255 *** |
Cost of forestry | 0.442 | 0.482 | 2.052 | 2.056 | −1.610 *** |
Physical capital | |||||
The housing situation | 1.114 | 0.388 | 1.120 | 0.343 | −0.006 |
Communication and entertainment equipment | 3.452 | 1.567 | 3.322 | 1.624 | 0.129 |
Social capital | |||||
Social trust | 4.127 | 0.698 | 4.142 | 0.771 | −0.016 ** |
Social participation | 2.277 | 0.806 | 2.760 | 1.329 | −0.482 *** |
Program cognition | |||||
Understanding of program | 2.681 | 0.908 | 3.219 | 0.970 | −0.538 |
Variable | Fixed Effect | Coe. | t-Test | p Value | Random Effect | S.D. | Variance | χ2 | p Value |
---|---|---|---|---|---|---|---|---|---|
WTA | 6.523 | 37.643 | 0.000 *** | 0.562 | 0.316 | 75.633 | 0.000 *** | ||
1.191 | 1.419 | ||||||||
Willingness to participate in command-control strategy in living | 0.843 | 3.544 | 0.001 *** | 1.011 | 1.023 | 53.572 | 0.000 *** | ||
Willingness to participate in command-control strategy in farming | −0.912 | −3.637 | 0.000 *** | 0.931 | 0.868 | 48.855 | 0.000 *** |
Fixed Effects | WTA | Willingness to Participate in Command-Control Strategy in Living | Willingness to Participate in Command-Control Strategy in Farming | |||
---|---|---|---|---|---|---|
Coefficient | S.D. | Coefficient | S.D. | Coefficient | S.D. | |
Intercept | 6.477 *** | 0.190 | 0.961 ** | 0.388 | −1.000 ** | 0.362 |
Human capital | ||||||
Age | 0.003 | 0.006 | −0.000 | 0.012 | 0.008 | 0.013 |
Years of education | −0.004 | 0.020 | 0.036 | 0.040 | −0.022 | 0.040 |
Quantity of labor force | −0.061 | 0.059 | −0.125 | 0.123 | −0.061 | 0.115 |
Natural capital | ||||||
Forest land slope | 0.223 ** | 0.096 | −0.055 | 0.189 | −0.109 | 0.192 |
Financial capital | ||||||
Annual gross household income | −0.002 | 0.002 | 0.007 * | 0.004 | −0.000 | 0.003 |
Non-farm income share | 0.461 ** | 0.230 | 0.149 | 0.460 | −0.617 | 0.464 |
Cost of forestry | 0.020 | 0.047 | 0.013 | 0.096 | 0.003 | 0.094 |
Physical capital | ||||||
The housing situation | 0.096 | 0.188 | −0.420 | 0.380 | −0.076 | 0.372 |
Communication and entertainment equipment | 0.062 | 0.046 | 0.287 *** | 0.095 | 0.336 *** | 0.092 |
Social capital | ||||||
Social trust | 0.305 *** | 0.088 | −0.152 | 0.174 | 0.346 * | 0.181 |
Social participation | 0.134 ** | 0.062 | 0.338 *** | 0.125 | 0.192 | 0.125 |
Program cognition | ||||||
Understanding of program | 0.085 | 0.068 | 0.217 | 0.134 | 0.287 ** | 0.141 |
Random effect | ||||||
Var () | 0.318 *** | 1.333 *** | 1.137 *** |
Fixed Effects | Coefficient | Standard Error |
---|---|---|
Intercept | 6.485 *** | 0.114 |
Per capita forestland area | −0.049 *** | 0.012 |
Human capital | ||
Age | 0.002 | 0.006 |
Years of education | −0.018 | 0.021 |
Quantity of labor force | −0.039 | 0.058 |
Natural capital | ||
Forest land slope | 0.244 ** | 0.094 |
Financial capital | ||
Annual gross household income | −0.002 | 0.002 |
Non-farm income share | 0.609 ** | 0.233 |
Distance from county government | 0.038 * | 0.020 |
Mean altitude | −0.004 * | 0.002 |
Cost of forestry | 0.027 | 0.047 |
Physical capital | ||
Housing situation | 0.132 | 0.186 |
Communication and entertainment equipment | 0.041 | 0.045 |
Social capital | ||
Social trust | 0.271 *** | 0.087 |
Distance from county government | −0.011 *** | 0.004 |
Social participation | 0.202 *** | 0.076 |
Village environmental assessment | −0.239 * | 0.136 |
Per capita forestland area | −0.026 | 0.017 |
Degree of program implementation | −0.277 ** | 0.130 |
Program cognition | ||
Understanding of program | 0.081 | 0.067 |
Random effect | ||
Var () | 0.091 *** | |
Var () | 1.298 |
Fixed Effects | Willingness to Participate in Command-Control Strategy in Living | Willingness to Participate in Command-Control Strategy in Farming | ||
---|---|---|---|---|
Coefficient | S.D. | Coefficient | S.D. | |
Intercept | 1.197 *** | 0.330 | −1.158 *** | 0.313 |
Per capita forestland area | 0.075 * | 0.035 | 0.072 * | 0.033 |
Human capital | ||||
Age | −0.001 | 0.014 | 0.009 | 0.013 |
Years of education | −0.001 | 0.046 | −0.035 | 0.041 |
Quantity of labor force | −0.095 | 0.139 | −0.093 | 0.121 |
Natural capital | ||||
Forest land slope | 0.014 | 0.194 | −0.087 | 0.210 |
Financial capital | ||||
Annual gross household income | 0.011 ** | 0.005 | 0.001 | 0.003 |
Distance from county government | −0.001 ** | 0.000 | — | |
Degree of program implementation | −0.006 | 0.004 | — | |
Non-farm income share | 0.406 | 0.511 | −0.761 | 0.503 |
Cost of forestry | 0.018 | 0.093 | −0.032 | 0.113 |
Physical capital | ||||
Housing situation | −0.172 | 0.417 | −0.020 | 0.386 |
Communication and entertainment equipment | 0.276 *** | 0.106 | 0.391 *** | 0.100 |
Per capita forestland area | 0.058 ** | 0.024 | — | |
Degree of program implementation | 0.366 ** | 0.163 | 0.109 * | 0.066 |
Social capital | ||||
Social trust | −0.182 | 0.188 | 0.423 ** | 0.201 |
Mean altitude | — | 0.003 | 0.002 | |
Degree of program implementation | — | 0.535 ** | 0.229 | |
Social participation | 0.723 *** | 0.185 | 0.263 * | 0.139 |
Per capita forestland area | 0.060 *** | 0.020 | — | |
Program cognition | ||||
Understand of program | 0.298 ** | 0.144 | 0.249 * | 0.150 |
Per capita forestland area | — | 0.026 * | 0.015 | |
Random effect | ||||
Var () | 0.838 *** | 0.749 *** |
Variance | Random Effect | Null Model | Random Effect Model | Full Model | |||
---|---|---|---|---|---|---|---|
S.D. | Variance | S.D. | Variance | S.D. | Variance | ||
WTA | Var () | 0.562 | 0.316 *** | 0.564 | 0.318 *** | 0.301 | 0.091 *** |
Var () | 1.191 | 1.419 | 1.162 | 1.349 | 1.139 | 1.298 | |
Willingness to participate in command-control strategy in living | Var () | 1.011 | 1.023 *** | 1.154 | 1.333 *** | 0.915 | 0.838 *** |
Willingness to participate in command-control strategy in farming | Var () | 0.931 | 0.868 *** | 1.066 | 1.137 *** | 0.866 | 0.749 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, Y.; Zhang, T.; Cao, J.; Jin, C.; Chen, T.; Su, Y.; Su, C.; Sannigrahi, S.; Maiti, A.; Tao, S.; et al. Heterogeneity Impacts of Farmers’ Participation in Payment for Ecosystem Services Based on the Collective Action Framework. Land 2022, 11, 2007. https://doi.org/10.3390/land11112007
Qi Y, Zhang T, Cao J, Jin C, Chen T, Su Y, Su C, Sannigrahi S, Maiti A, Tao S, et al. Heterogeneity Impacts of Farmers’ Participation in Payment for Ecosystem Services Based on the Collective Action Framework. Land. 2022; 11(11):2007. https://doi.org/10.3390/land11112007
Chicago/Turabian StyleQi, Yunyun, Tianye Zhang, Jing Cao, Cai Jin, Tianyu Chen, Yue Su, Chong Su, Srikanta Sannigrahi, Arabinda Maiti, Shiqi Tao, and et al. 2022. "Heterogeneity Impacts of Farmers’ Participation in Payment for Ecosystem Services Based on the Collective Action Framework" Land 11, no. 11: 2007. https://doi.org/10.3390/land11112007
APA StyleQi, Y., Zhang, T., Cao, J., Jin, C., Chen, T., Su, Y., Su, C., Sannigrahi, S., Maiti, A., Tao, S., Zhang, Q., & Li, T. (2022). Heterogeneity Impacts of Farmers’ Participation in Payment for Ecosystem Services Based on the Collective Action Framework. Land, 11(11), 2007. https://doi.org/10.3390/land11112007