Flower Margins: Attractiveness over Time for Different Pollinator Groups
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Agriculture Statistics at Regional Level. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agriculture_statistics_at_regional_level (accessed on 6 July 2022).
- Klein, A.M.; Vaissière, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B 2007, 274, 303–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haaland, C.; Naisbit, R.E.; Bersier, L.F. Sown wildflower strips for insect conservation: A review. Insect Conserv. Divers. 2011, 4, 60–80. [Google Scholar] [CrossRef]
- Pywell, R.F.; Warman, E.A.; Hulmes, L.; Hulmes, S.; Nuttall, P.; Sparks, T.H.; Critchley, C.N.R.; Sherwood, A. Effectiveness of new agri-environment schemes in providing foraging resources for bumblebees in intensively farmed landscapes. Biol. Conserv. 2006, 129, 192–206. [Google Scholar] [CrossRef]
- Carvell, C.; Mitschunas, N.; McDonald, R.; Hulmes, S.; Hulmes, L.; O’Connor, R.S.; Garratt, M.P.D.; Potts, S.G.; Fountain, M.T.; Sadykova, D.; et al. Establishment and management of wildflower areas for insect pollinators in commercial orchards. Basic Appl. Ecol. 2022, 58, 2–14. [Google Scholar] [CrossRef] [PubMed]
- Image, M.; Gardner, E.; Clough, Y.; Smith, H.G.; Baldock, K.C.R.; Campbell, A.; Garratt, M.; Gillespie, M.A.K.; Kunin, W.E.; McKerchar, M.; et al. Does agri-environment scheme participation in England increase pollinator populations and crop pollination services? Agric. Ecosyst. Environ. 2022, 325, 107755. [Google Scholar] [CrossRef]
- Lye, G.; Park, K.; Osborne, J.; Holland, J.; Goulson, D. Assessing the value of Rural Stewardship schemes for providing foraging resources and nesting habitat for bumblebee queens (Hymenoptera: Apidae). Biol. Conserv. 2009, 142, 2023–2032. [Google Scholar] [CrossRef]
- Holzschuh, A.; Steffan-Dewenter, I.; Tscharntke, T. Grass strip corridors in agricultural landscapes enhance nest-site colonization by solitary wasps. Ecol. Appl. 2009, 19, 123–132. [Google Scholar] [CrossRef]
- Thomas, C.F.G.; Cooke, H.; Bauly, J.; Marshall, E.J.P. Invertebrate colonisation of overwintering sites in different field boundary habitats. Asp. Appl. Biol. 1994, 40, 229–232. [Google Scholar]
- Wratten, S.D.; Gillespie, M.; Decourtye, A.; Mader, E.; Desneux, N. Pollinator habitat enhancement: Benefits to other ecosystem services. Agric. Ecosyst. Environ. 2012, 159, 112–122. [Google Scholar] [CrossRef]
- Mei, Z.; de Groot, G.A.; Kleijn, D.; Dimmers, W.; van Gils, S.; Lammertsma, D.; van Kats, R.; Scheper, J. Flower availability drives effects of wildflower strips on ground-dwelling natural enemies and crop yield. Agric. Ecosyst. Environ. 2021, 319, 107570. [Google Scholar] [CrossRef]
- Pollier, A.; Tricault, Y.; Plantegenest, M.; Bischoff, A. Sowing of margin strips rich in floral resources improves herbivore control in adjacent crop fields. Agr. Forest. Entomol. 2019, 21, 119–129. [Google Scholar] [CrossRef]
- Zamorano, J.; Bartomeus, I.; Grez, A.A.; Garibaldi, L.A. Field margin floral enhancements increase pollinator diversity at the field edge but show no consistent spillover into the crop field: A meta-analysis. Insect Conserv. Divers. 2020, 13, 519–531. [Google Scholar] [CrossRef]
- Carvell, C.; Meek, W.R.; Pywell, R.F.; Goulson, D.; Nowakowski, M. Comparing the efficacy of agri-environment schemes to enhance bumble bee abundance and diversity on arable field margins. J. Appl. Ecol. 2007, 44, 29–40. [Google Scholar] [CrossRef]
- Blaauw, B.R.; Isaacs, R. Flower plantings increase wild bee abundance and the pollination services provided to a pollination-dependent crop. J. Appl. Ecol. 2014, 51, 890–898. [Google Scholar] [CrossRef]
- Geppert, C.; Hass, A.; Földesi, R.; Donkó, B.; Akter, A.; Tscharntke, T.; Batáry, P. Agri-environment schemes enhance pollinator richness and abundance but bumblebee reproduction depends on field size. J. Appl. Ecol. 2020, 57, 1818–1828. [Google Scholar] [CrossRef]
- Santa, F.; Aguado, L.O.; Falcó-Garí, J.V.; Jiménez-Peydró, R.; Schade, M.; Vasileiadis, V.; Miranda-Barroso, L.; Peris-Felipo, F.J. Effectiveness of Multifunctional Margins in Insect Biodiversity Enhancement and RTE Species Conservation in Intensive Agricultural Landscapes. Agronomy 2021, 11, 2093. [Google Scholar] [CrossRef]
- Peris-Felipo, F.J.; Santa, F.; Aguado, O.; Falcó-Garí, J.V.; Iborra, A.; Schade, M.; Brittain, C.; Vasileiadis, V.; Miranda-Barroso, L. Enhancement of the Diversity of Pollinators and Beneficial Insects in Intensively Managed Vineyards. Insects 2021, 12, 740. [Google Scholar] [CrossRef] [PubMed]
- Miranda-Barroso, L.; Aguado, O.; Falcó-Garí, J.V.; Lopez, D.; Schade, M.; Vasileiadis, V.; Peris-Felipo, F.J. Multifunctional areas as a tool to enhance biodiversity and promote conservation in alfalfa fields. J. Insect Biodivers. Syst. 2021, 7, 251–261. [Google Scholar] [CrossRef]
- Albrecht, M.; Kleijn, D.; Williams, N.M.; Tschumi, M.; Blaauw, B.R.; Bommarco, R.; Campbell, A.J.; Dainese, M.; Drummond, F.A.; Entling, M.H.; et al. The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: A quantitative synthesis. Ecol. Lett. 2020, 23, 1488–1498. [Google Scholar] [CrossRef]
- Lowe, E.B.; Groves, R.; Gratton, C. Impacts of field-edge flower plantings on pollinator conservation and ecosystem service delivery–A meta-analysis. Agric. Ecosyst. Environ. 2021, 310, 107290. [Google Scholar] [CrossRef]
- Morrison, J.; Izquierdo, J.; Hernández Plaza, E.; González-Andújar, J.L. The role of field margins in supporting wild bees in Mediterranean cereal agroecosystems: Which biotic and abiotic factors are important? Agric. Ecosyst. Environ. 2017, 247, 216–224. [Google Scholar] [CrossRef]
- Scheper, J.; Holzschuh, A.; Kuussaari, M.; Potts, S.G.; Rundlöf, M.; Smith, H.G.; Kleijn, D. Environmental factors driving the effectiveness of European agri-environmental measures in mitigating pollinator loss—A meta-analysis. Ecol. Lett. 2013, 16, 912–920. [Google Scholar] [CrossRef] [PubMed]
- Wix, N.; Reich, M.; Schaarschmidt, F. Butterfly richness and abundance in flower strips and field margins: The role of local habitat quality and landscape context. Heliyon 2019, 5, e01636. [Google Scholar] [CrossRef] [Green Version]
- McHugh, N.M.; Bown, B.; McVeigh, A.; Powell, R.; Swan, E.; Szczur, J.; Wilson, P.; Holland, J. The value of two agri-environment scheme habitats for pollinators: Annually cultivated margins for arable plants and floristically enhanced grass margins. Agric. Ecosyst. Environ. 2022, 326, 107773. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2004. [Google Scholar]
- Brooks, M.E.; Kristensen, K.; van Benthem, K.J.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Maechler, M.; Bolker, B.M. glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling. R J. 2017, 9, 378–400. [Google Scholar] [CrossRef] [Green Version]
- Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models, R package version 0.4.6; 2022. Available online: http://florianhartig.github.io/DHARMa/ (accessed on 9 August 2022).
- Greenleaf, S.S.; Williams, N.M.; Winfree, R.; Kremen, C. Bee foraging ranges and their relationship to body size. Oecologia 2007, 153, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Vreeland, R.H.; Sammataro, D. Beekeeping—From Science to Practice, 1st ed.; Springer International Publishing AG: Cham, Switzerland, 2017. [Google Scholar]
- Pecze, R.; (Syngenta Crop Protection, Switzerland). Personal Communication, 2022.
- Nichols, R.N.; Wood, T.J.; Holland, J.M.; Goulson, D. Role of management in the long-term provision of floral resources on farmland. Agric. Ecosyst. Environ. 2022, 335, 108004. [Google Scholar] [CrossRef]
- Noordijk, J.; Musters, C.J.M.; van Dijk, J.; de Snoo, G.R. Invertebrates in field margins: Taxonomic group diversity and functional group abundance in relation to age. Biodivers. Conserv. 2010, 19, 3255–3268. [Google Scholar] [CrossRef] [Green Version]
- Gresty, C.E.A.; Clare, E.; Devey, D.S.; Cowan, R.S.; Csiba, L.; Malakasi, P.; Lewis, O.T.; Willis, K.J. Flower preferences and pollen transport networks for cavity-nesting solitary bees: Implications for the design of agri-environment schemes. Ecol. Evol. 2018, 8, 7574–7587. [Google Scholar] [CrossRef]
- M’Gonigle, L.K.; Ponisio, L.C.; Cutler, K.; Kremen, C. Habitat restoration promotes pollinator persistence and colonization in intensively managed agriculture. Ecol. Appl. 2015, 25, 1557–1565. [Google Scholar] [CrossRef]
Species (Family) | Percent in Seed Mixture | kg/ha When Sown at 25 kg/ha | kg/ha When Sown at 20 kg/ha | Plant Type |
---|---|---|---|---|
Trifolium pratense (Fabaceae) | 20 | 5 | 4 | Perennial |
Onobrychis viciaefolia (Fabaceae) | 15 | 3.75 | 3 | Perennial |
Fagopyrum esculentum (Polygonaceae) | 15 | 3.75 | 3 | Annual |
Medicago sativa (Fabaceae) | 12 | 3 | 2.4 | Perennial |
Trifolium incarnatum (Fabaceae) | 10 | 2.5 | 2 | Perennial |
Trifolium alexandrinum (Fabaceae) | 7 | 1.75 | 1.4 | Annual |
Trifolium repens (Fabaceae) | 5 | 1.25 | 1 | Perennial |
Phacelia tanacetifolia (Boraginaceae) | 5 | 1.25 | 1 | Annual |
Secale cereale x Secale montanum (Poaceae) | 3 | 0.75 | 0.6 | Perennial |
Lotus corniculatus (Fabaceae) | 3 | 0.75 | 0.6 | Perennial |
Phleum pratense (Poaceae) | 3 | 0.75 | 0.6 | Perennial |
Sinapis alba (Brassicaceae) | 2 | 0.5 | 0.4 | Annual |
Pollinator Group | Margin Type | Flower Abundance | Temperature | Margin Type × Flower Abundance | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
p Value | ChiSq | Direction 1 | p Value | ChiSq | Direction 1 | p Value | ChiSq | Direction 1 | p Value | ChiSq | Direction 1 | |
Honey bees | <0.001 | 117 | C < M | <0.001 | 565 | +L, −Q | 0.266 | 1 | 0.154 | 5 | ||
Bumble bees | <0.001 | 123 | C < M | <0.001 | 382 | +L | 0.733 | 0 | 0.052 | 8 | ||
Mining bees | <0.001 | 126 | C < M | <0.001 | 346 | +L, −Q | 0.266 | 1 | 0.013 | 11 | +C, +M 2 | |
Trap-nesting bees | <0.001 | 41 | C < M | <0.001 | 71 | +L, −Q | 0.107 | 2 | 0.185 | 5 | ||
Hoverflies | 0.013 | 6 | C < M | <0.001 | 244 | +L, −Q | 0.003 | 9 | +L | <0.001 | 17 | +C, +M 2 |
Lepidoptera | <0.001 | 53 | C < M | <0.001 | 293 | +L, −Q | 0.008 | 7 | +L | 0.709 | 1 |
Pollinator Group | Flower Margin Age | Flower Abundance | Temperature | ||||||
---|---|---|---|---|---|---|---|---|---|
p Value 1 | ChiSq | Direction 1 | p Value | ChiSq | Direction 2 | p Value | ChiSq | Direction 2 | |
Honey bees | <0.001, <0.001 | 34, 14 | −L, +SQ | <0.001 | 347 | +L, −Q | 0.262 | 1 | |
Bumble bees | 0.130 | 3 | <0.001 | 228 | +L | 0.907 | 0 | ||
Mining bees | 0.008, 0.009 | 7, 7 | −L, +SQ | <0.001 | 254 | +L, −Q | 0.464 | 1 | |
Trap nesting bees | <0.001 | 12 | + | <0.001 | 82 | +L | 0.501 | 0 | |
Hoverflies | <0.001, <0.001 | 44, 20 | −L, +SQ | <0.001 | 156 | +L, −Q | 0.008 | 7 | + |
Lepidoptera | 0.351 | 1 | <0.001 | 161 | +L, −Q | 0.013 | 6 | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brittain, C.; Benke, S.; Pecze, R.; Potts, S.G.; Peris-Felipo, F.J.; Vasileiadis, V.P. Flower Margins: Attractiveness over Time for Different Pollinator Groups. Land 2022, 11, 1933. https://doi.org/10.3390/land11111933
Brittain C, Benke S, Pecze R, Potts SG, Peris-Felipo FJ, Vasileiadis VP. Flower Margins: Attractiveness over Time for Different Pollinator Groups. Land. 2022; 11(11):1933. https://doi.org/10.3390/land11111933
Chicago/Turabian StyleBrittain, Claire, Szabolcs Benke, Rozalia Pecze, Simon G. Potts, Francisco Javier Peris-Felipo, and Vasileios P. Vasileiadis. 2022. "Flower Margins: Attractiveness over Time for Different Pollinator Groups" Land 11, no. 11: 1933. https://doi.org/10.3390/land11111933
APA StyleBrittain, C., Benke, S., Pecze, R., Potts, S. G., Peris-Felipo, F. J., & Vasileiadis, V. P. (2022). Flower Margins: Attractiveness over Time for Different Pollinator Groups. Land, 11(11), 1933. https://doi.org/10.3390/land11111933