Agricultural Production Services, Farm Size and Chemical Fertilizer Use in China’s Maize Production
Abstract
:1. Introduction
2. Literature Review and Conceptual Framework
3. Methodology and Data
3.1. Source of Data
3.2. Estimation Strategy
3.2.1. Estimation of Deviant Amount of Chemical Fertilizer Use
3.2.2. Probit Model for APS Adoption Analysis
3.2.3. Mediation Model for Mediating Effects
3.3. Variable and Descriptive Statistics
4. Results and Discussion
4.1. Descriptive Statistics
4.2. The Deviant Amount of Chemical Fertilizer Use
4.3. Determinants of the Service Adoption Decisions (Probit Model Results)
4.4. Mediation Model Results
4.5. Discussion: The Effect of APS Adoption on Chemical Fertilizer Use under Different Circumstances
5. Conclusions and Policy Implications
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, W.L.; Luo, B.L.; Hu, X.Y. The determinants of farmers’ fertilizers and pesticides use behavior in China: An explanation based on label effect. J. Clean. Prod. 2020, 272, 123054. [Google Scholar] [CrossRef]
- Li, Y.X.; Zhang, W.F.; Ma, L.; Huang, G.Q.; Oenema, O.; Zhang, F.S.; Dou, Z.X. An Analysis of China’s Fertilizer Policies: Impacts on the Industry, Food Security, and the Environment. J. Environ. Qual. 2013, 42, 972–981. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Jiang, L. Efficiency performance of fertilizer use in arable agricultural production in China. China Agric. Econ. Rev. 2019, 11, 52–69. [Google Scholar] [CrossRef]
- Pan, D.; He, M.M.; Kong, F.B. Risk attitude, risk perception, and farmers’ pesticide application behavior in China: A moderation and mediation model. J. Clean. Prod. 2020, 276, 124241. [Google Scholar] [CrossRef]
- Yang, L.; Tang, K.; Wang, Z.H.; An, H.Z.; Fang, W. Regional eco-efficiency and pollutants’ marginal abatement costs in China: A parametric approach. J. Clean. Prod. 2017, 167, 619–629. [Google Scholar] [CrossRef]
- NBSC. China Statistical Yearbook 2021; China Statistics Press: Beijing, China, 2021.
- NBSC. Bulletin of the Third Agricultural Census; China Statistics Press: Beijing, China, 2018.
- Yang, J.; Huang, Z.H.; Zhang, X.B.; Reardon, T. The Rapid Rise of Cross-Regional Agricultural Mechanization Services in China. Am. J. Agric. Econ. 2013, 95, 1245–1251. [Google Scholar] [CrossRef]
- Zhang, X.B.; Yang, J.; Thomas, R. Mechanization outsourcing clusters and division of labor in Chinese agriculture. China Econ. Rev. 2017, 43, 184–195. [Google Scholar] [CrossRef]
- Zhang, X.B.; Yang, J.; Wang, S.L. China has reached the Lewis turning point. China Econ. Rev. 2011, 22, 542–554. [Google Scholar] [CrossRef] [Green Version]
- Luo, B.L. 40-year reform of farmland institution in China: Target, effort and the future. China Agric. Econ. Rev. 2018, 10, 16–35. [Google Scholar] [CrossRef]
- Qiu, T.W.; Choy, S.T.B.; Luo, B.L. Is small beautiful? Links between agricultural mechanization services and the productivity of different-sized farms. Appl. Econ. 2022, 54, 430–442. [Google Scholar] [CrossRef]
- Wang, X.B.; Yamauchi, F.; Huang, J.K. Rising wages, mechanization, and the substitution between capital and labor: Evidence from small scale farm system in China. Agric. Econ. 2016, 47, 309–317. [Google Scholar] [CrossRef]
- Liu, T.S.; Wu, G. Does agricultural cooperative membership help reduce the overuse of chemical fertilizers and pesticides? Evidence from rural China. Environ. Sci. Pollut. Res. 2022, 29, 7972–7983. [Google Scholar] [CrossRef] [PubMed]
- Huan, M.L.; Li, Y.J.; Chi, L.; Zhan, S.G. The Effects of Agricultural Socialized Services on Sustainable Agricultural Practice Adoption among Smallholder Farmers in China. Agronomy 2022, 12, 2198. [Google Scholar] [CrossRef]
- Government of the People’s Republic of China. The Area of Agricultural Socialized Services Provided in China Has Exceeded 1.67 billion mu. Available online: http://www.gov.cn/xinwen/2021-02/08/content_5585835.htm. (accessed on 14 September 2021).
- Gao, J.J.; Gai, Q.G.; Liu, B.B.; Shi, Q.H. Farm size and pesticide use: Evidence from agricultural production in China. China Agric. Econ. Rev. 2021, 13, 912–929. [Google Scholar] [CrossRef]
- Ying, R.; Xu, B. Effects of regional pest control adoption on pesticides application. China Popul. Resour. Environ. 2017, 27, 8. [Google Scholar]
- Ren, H.; Han, K.; Liu, Y.E.; Zhao, Y.L.; Zhang, L.H.; He, Q.J.; Li, Z.H.; Zhang, J.B.; Liu, P.; Wang, H.Z.; et al. Improving smallholder farmers’ maize yields and economic benefits under sustainable crop intensification in the North China Plain. Sci. Total Environ. 2021, 763, 143035. [Google Scholar] [CrossRef] [PubMed]
- Takeshima, H.; Adhikari, R.P.; Shivakoti, S.; Kaphle, B.D.; Kumar, A. Heterogeneous returns to chemical fertilizer at the intensive margins: Insights from Nepal. Food Policy 2017, 69, 97–109. [Google Scholar] [CrossRef]
- Ju, X.T.; Gu, B.J.; Wu, Y.Y.; Galloway, J.N. Reducing China’s fertilizer use by increasing farm size. Glob. Environ. Chang. 2016, 41, 26–32. [Google Scholar] [CrossRef]
- Xiang, T.; Malik, T.H.; Nielsen, K. The impact of population pressure on global fertiliser use intensity, 1970–2011: An analysis of policy-induced mediation. Technol. Forecast. Soc. Chang. 2020, 152, 119895. [Google Scholar] [CrossRef]
- Mason, N.M.; Jayne, T.S. Fertiliser Subsidies and Smallholder Commercial Fertiliser Purchases: Crowding Out, Leakage and Policy Implications for Zambia. J. Agric. Econ. 2013, 64, 558–582. [Google Scholar] [CrossRef]
- Emmanuel, D.; Owusu-Sekyere, E.; Owusu, V.; Jordaan, H. Impact of agricultural extension service on adoption of chemical fertilizer: Implications for rice productivity and development in Ghana. NJAS-Wagening. J. Life Sci. 2016, 79, 41–49. [Google Scholar] [CrossRef]
- Yang, D.; Liu, Z. Does farmer economic organization and agricultural specialization improve rural income? Evid. China. Econ. Model. 2012, 29, 4. [Google Scholar] [CrossRef]
- Zhou, J.H.; Yang, Z.Y.; Li, K.; Yu, X.H. Direct intervention or indirect support? The effects of cooperative control measures on farmers’ implementation of quality and safety standards. Food Policy 2019, 86, 101728. [Google Scholar] [CrossRef]
- Li, H.Z.; Zeng, E.Y.; You, J. Mitigating Pesticide Pollution in China Requires Law Enforcement, Farmer Training, and Technological Innovation. Environ. Toxicol. Chem. 2014, 33, 963–971. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, X.; Lin, Q.; Guo, J. The influence of fertilization outsourcing service on Fertilizer input reduction of part-time farmers. J. Agrotech. Econ. 2022, 2, 199–215. [Google Scholar]
- Wu, H.X.; Hao, H.T.; Lei, H.Z.; Ge, Y.; Shi, H.T.; Song, Y. Farm Size, Risk Aversion and Overuse of Fertilizer: The Heterogeneity of Large-Scale and Small-Scale Wheat Farmers in Northern China. Land 2021, 10, 111. [Google Scholar] [CrossRef]
- Huang, J.K.; Huang, Z.R.; Jia, X.P.; Hu, R.F.; Xiang, C. Long-term reduction of nitrogen fertilizer use through knowledge training in rice production in China. Agric. Syst. 2015, 135, 105–111. [Google Scholar] [CrossRef]
- Pan, D.; Kong, F.B.; Zhang, N.; Ying, R.Y. Knowledge training and the change of fertilizer use intensity: Evidence from wheat farmers in China. J. Environ. Manag. 2017, 197, 130–139. [Google Scholar] [CrossRef]
- Zhang, C.; Sun, Y.D.; Hu, R.F.; Yang, F.; Shen, X. The impact of rural-urban migration experience on fertilizer use: Evidence from rice production in China. J. Clean. Prod. 2021, 280, 124429. [Google Scholar] [CrossRef]
- Sheng, Y.; Chancellor, W. Chancellor, Exploring the relationship between farm size and productivity: Evidence from the Australian grains industry. Food Policy 2019, 84, 196–204. [Google Scholar] [CrossRef]
- Chi, L.; Han, S.Q.; Huan, M.L.; Li, Y.J.; Liu, J.F. Land Fragmentation, Technology Adoption and Chemical Fertilizer Application: Evidence from China. Int. J. Environ. Res. Public Health 2022, 19, 8147. [Google Scholar] [CrossRef]
- Huan, M.L.; Dong, F.X.; Chi, L. Mechanization services, factor allocation, and farm efficiency: Evidence from China(dagger). Rev. Dev. Econ. 2022, 26, 1618–1639. [Google Scholar] [CrossRef]
- Sun, Y.; Hu, R.; Zhang, C. Does the adoption of complex fertilizers contribute to fertilizer overuse? Evidence from rice production in China. J. Clean. Prod. 2019, 219, 9. [Google Scholar] [CrossRef]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; The MIT Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Wang, J.J.; Li, J.J.; Chang, J. Product co-development in an emerging market: The role of buyer supplier compatibility and institutional environment. J. Oper. Manag. 2016, 46, 69–83. [Google Scholar] [CrossRef]
- Yi, Q.; Chen, M.Y.; Sheng, Y.; Huang, J.K. Mechanization services, farm productivity and institutional innovation in China. China Agric. Econ. Rev. 2019, 11, 536–554. [Google Scholar]
- Chang, H.H.; Mishra, A.K. Chemical usage in production agriculture: Do crop insurance and off-farm work play a part? J. Environ. Manag. 2012, 105, 76–82. [Google Scholar] [CrossRef]
- Guo, L.L.; Li, H.J.; Cao, X.X.; Cao, A.D.; Huang, M.J. Effect of agricultural subsidies on the use of chemical fertilizer. J. Environ. Manag. 2021, 299, 113621. [Google Scholar] [CrossRef]
- Yuan, F.; Tang, K.; Shi, Q. Does Internet use reduce chemical fertilizer use? Evidence from rural households in China. Environ. Sci. Pollut. Res. 2021, 28, 6005–6017. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.B.; Yamauchi, F.; Huang, J.K.; Rozelle, S. What constrains mechanization in Chinese agriculture? Role of farm size and fragmentation. China Econ. Rev. 2020, 62, 101221. [Google Scholar] [CrossRef]
- Otsuka, K.; Suyanto, S.; Sonobe, T.; Tomich, T.P. Evolution of land tenure institutions and development of agroforestry: Evidence from customary land areas of Sumatra. Agric. Econ. 2001, 25, 85–101. [Google Scholar] [CrossRef]
- Qiu, T.W.; Luo, B.L. Do small farms prefer agricultural mechanization services? Evidence from wheat production in China. Appl. Econ. 2021, 53, 2962–2973. [Google Scholar] [CrossRef]
- Reardon, T.; Taylor, J.E.; Stamoulis, K.; Lanjouw, P.; Balisacan, A. Effects of non-farm employment on rural income inequality in developing countries: An investment perspective. J. Agric. Econ. 2000, 51, 266–288. [Google Scholar] [CrossRef]
Variable | Definition and Descriptions |
---|---|
Yield | Quantity of maize production per mu (kg/mu) |
Labor | Number of days work on farm in maize production per mu (days/mu) |
Fertilizer | Quantity of chemical fertilizer input in maize production per mu (kg/mu) 1 |
Capital | The depreciation expenses of fixed assets investment of maize per mu (CNY/mu) 2 |
Other | The sum of the expenses of seeds, organic fertilizer, irrigation, renting machines and other inputs in maize production per mu (CNY/mu) |
CF | Quantity of chemical fertilizer usage in maize production per mu (kg/mu) |
F_optimal | Quantity of optimum usage of chemical fertilizer per mu (kg/mu) |
F_deviation | Chemical fertilizer usage deviation, measured using the quantity of chemical fertilizer subtract the quantity of optimum usage of chemical fertilizer (kg/mu) |
APS adoption | “1” if the household adopt APSs, i.e., seeds purchasing, tillage, sowing, pest control, irrigation or harvesting, transportation, drying services, “0” otherwise |
Farm size | The operated area of maize cropland (mu) |
Labor migration | The ratio of labor employment in non-agricultural sector to household population |
No. of plot | The number of plot of operated land, proxy of land fragmentation |
Flat land | The percentage of the area of flat land to total operated land area |
Sloped land | The percentage of the area of slope land to total operated land area |
Hilly land | The percentage of the area of hill land to total operated land area 3 |
Paddy land | The percentage of the area of paddy land to total operated land area |
Dry land | The percentage of the area of dry land to total operated land area |
Land quality | The self-rated quality of the operated land, “1” if the land is barren, “2” if is moderate or of low quality, “3” if is medium, “4” if is medium to high quality, “5” if is extremely fertile |
Inward transfer | “1” if the household lease land to engage in maize production, “0” otherwise |
Outward transfer | “1” if the household transfer land to engage in maize production, “0” otherwise |
Land use rights | “1” if the land use rights were registered and certificated, “0” otherwise |
Age | Age of the household head |
Education | Education of the household head, “1” if illiterate, “2” if graduated from primary school, “3” if graduated middle school, “4” if graduated from high school or vocational high school, “5” if attended three-year college, “6” if attended university or graduate school |
Male | “1” if household head is male, “0” otherwise |
Official | “1” if the member of the household worked for the government, “0” otherwise |
Organic_fer | “1” if the household used organic fertilizer, “0” otherwise |
Technical guidance | “1” if the household received technical guidance, “0” otherwise |
Social capital | The amount of friends and relatives the household reached to via WeChat, phone calls or meetings during spring festival |
Fixed assets | The depreciation expenses of total fixed asset investment (CNY) |
Machinery subsidy | “1” if the household received agricultural machinery purchasing subsidy, “0” otherwise |
Hired labor | The days of hired labor divided by the total days input in maize production |
Crop structure | The share of sales revenue of grains in agricultural income |
East | “1” if located in eastern region, “0” otherwise |
Central | “1” if located in central region, “0” otherwise |
West | “1” if located in western region, “0” otherwise 4 |
Variable | APS Adopters N = 689 | Non-Adopters N = 632 | t-Test Mean Diff. | t Statistic |
---|---|---|---|---|
Yield (kg/mu) | 519.80 (6.44) | 551.42 (6.36) | 31.62 *** (9.07) | 3.49 |
Labor (days/mu) | 16.93 (0.90) | 11.89 (1.59) | −5.04 *** (1.86) | −2.71 |
Fertilizer (kg/mu) | 24.12 (0.42) | 24.86 (0.53) | 0.74 (0.67) | 1.11 |
F_deviation (kg/mu) | 15.52 (0.41) | 16.17 (0.47) | 0.64 (0.62) | 1.04 |
F_optimum (kg/mu) | 9.50 (0.16) | 10.74 (0.16) | 1.24 *** (0.23) | 5.38 |
Farm size (mu) | 18.37 (1.59) | 20.51 (1.43) | 2.14 (2.15) | 0.99 |
Dependent Variable: Ln Yield | ||
---|---|---|
Variable | Coef. | St.Err. |
Ln Labor | 0.001 | 0.007 |
Ln Fertilizer | −0.059 *** | 0.012 |
Ln capital | 0.024 *** | 0.004 |
Ln other | 0.096 *** | 0.011 |
Age | 0.000 | 0.001 |
Education | −0.015 | 0.009 |
Male | 0.063 *** | 0.019 |
No. of plot | 0.001 | 0.002 |
Inward transfer | 0.076 *** | 0.020 |
Land quality | 0.041 *** | 0.010 |
Flat land | 0.045 * | 0.025 |
Sloped land | −0.076 ** | 0.035 |
Paddy land | −0.121 ** | 0.049 |
_cons | 5.795 *** | 0.084 |
Obs. | 1321 |
Variable | (1) | (2) | (3) | (4) |
---|---|---|---|---|
Probit | Probit | OLS | OLS | |
Ln Farm size | 0.139 | 0.070 | 0.048 | 0.016 |
(0.137) | (0.045) | (0.046) | (0.015) | |
Ln Farm size ^2 | −0.013 | −0.006 | ||
(0.025) | (0.008) | |||
Labor migration | 0.334 *** | 0.336 *** | 0.114 *** | 0.115 *** |
(0.098) | (0.098) | (0.033) | (0.033) | |
No. of plot | −0.036 *** | −0.037 *** | −0.008 *** | −0.008 *** |
(0.011) | (0.011) | (0.003) | (0.003) | |
Flat land | 0.532 *** | 0.529 *** | 0.191 *** | 0.190 *** |
(0.128) | (0.128) | (0.041) | (0.041) | |
Sloped land | 0.890 *** | 0.879 *** | 0.299 *** | 0.295 *** |
(0.173) | (0.172) | (0.057) | (0.056) | |
Paddy land | −0.535 ** | −0.532 ** | −0.180 ** | −0.181 ** |
(0.268) | (0.268) | (0.083) | (0.083) | |
Dry land | −0.113 ** | −0.113 ** | −0.009 ** | −0.009 ** |
(0.050) | (0.050) | (0.004) | (0.004) | |
Age | 0.005 | 0.005 | 0.002 | 0.002 |
(0.004) | (0.004) | (0.001) | (0.001) | |
Education | 0.083 * | 0.083 * | 0.029 * | 0.029 * |
(0.046) | (0.046) | (0.015) | (0.015) | |
Male | 0.166 * | 0.168 * | 0.055 * | 0.056 * |
(0.090) | (0.090) | (0.030) | (0.030) | |
Social capital | 0.002 | 0.002 | 0.001 | 0.001 |
(0.002) | (0.002) | (0.001) | (0.001) | |
Technical guidance | 0.223 ** | 0.225 ** | 0.074 ** | 0.075 ** |
(0.103) | (0.103) | (0.034) | (0.034) | |
Machinery subsidy | −0.186 | −0.186 | −0.060 | −0.060 |
(0.230) | (0.230) | (0.078) | (0.078) | |
East | 1.442 *** | 1.450 *** | 0.461 *** | 0.464 *** |
(0.152) | (0.151) | (0.045) | (0.045) | |
Central | 0.950 *** | 0.953 *** | 0.285 *** | 0.286 *** |
(0.153) | (0.153) | (0.045) | (0.045) | |
Ln Fixed assets | −0.014 | −0.014 | −0.004 | −0.004 |
(0.012) | (0.012) | (0.004) | (0.004) | |
_cons | −2.209 *** | −2.148 *** | −0.253 ** | −0.225 ** |
(0.363) | (0.344) | (0.117) | (0.109) | |
Obs. | 1321 | 1321 | 1321 | 1321 |
Variable | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
Fertilizer | Ln Farm Size | Fertilizer | F_deviation | Ln Farm Size | F_deviation | |
Service_p | −20.066 *** | 2.487 *** | −17.480 *** | −18.034 *** | 2.487 *** | −12.846 ** |
(5.503) | (0.421) | (5.560) | (5.156) | (0.421) | (5.150) | |
Ln Farm size | −1.040 *** | −2.086 *** | ||||
(0.361) | (0.334) | |||||
Labor migration | 3.147 *** | −0.769 *** | 2.347 ** | 3.355 *** | −0.769 *** | 1.751 * |
(1.013) | (0.078) | (1.047) | (0.949) | (0.078) | (0.970) | |
Organic_fer | −2.157 ** | 0.031 | −2.125 ** | −2.959 *** | 0.031 | −2.894 *** |
(0.917) | (0.070) | (0.915) | (0.860) | (0.070) | (0.848) | |
Official dummy | 2.014 ** | 0.069 | 2.085 ** | 1.794 ** | 0.069 | 1.938 ** |
(0.943) | (0.072) | (0.941) | (0.884) | (0.072) | (0.871) | |
Technical guidance | 1.219 | −0.020 | 1.197 | 1.295 | −0.020 | 1.252 |
(0.964) | (0.074) | (0.961) | (0.903) | (0.074) | (0.890) | |
Crop structure | −2.106 ** | 0.537 *** | −1.547 * | −2.810 *** | 0.537 *** | −1.689 ** |
(0.894) | (0.068) | (0.912) | (0.838) | (0.068) | (0.845) | |
Land use rights | 2.617 | 0.224 | 2.850 | 2.573 | 0.224 | 3.041 |
(2.753) | (0.211) | (2.747) | (2.580) | (0.211) | (2.544) | |
No. of plot | 0.079 | 0.112 *** | 0.195 ** | 0.032 | 0.112 *** | 0.265 *** |
(0.081) | (0.006) | (0.091) | (0.076) | (0.006) | (0.084) | |
Flat land | 5.487 *** | −0.443 *** | 5.026 *** | 5.049 *** | −0.443 *** | 4.124 *** |
(1.473) | (0.113) | (1.478) | (1.381) | (0.113) | (1.369) | |
Sloped land | 1.599 | −0.794 *** | 0.774 | 2.417 | −0.794 *** | 0.761 |
(2.047) | (0.157) | (2.061) | (1.918) | (0.157) | (1.909) | |
Hired labor | −1.888 | 0.407 *** | −1.465 | −2.100 | 0.407 *** | −1.251 |
(1.448) | (0.111) | (1.452) | (1.357) | (0.111) | (1.345) | |
Land quality | 1.266 *** | 0.060 * | 1.329 *** | 0.418 | 0.060 * | 0.544 |
(0.416) | (0.032) | (0.416) | (0.390) | (0.032) | (0.385) | |
Age | 0.030 | −0.025 *** | 0.004 | 0.054 * | −0.025 *** | 0.002 |
(0.033) | (0.003) | (0.034) | (0.031) | (0.003) | (0.032) | |
Education | −0.181 | −0.204 *** | −0.394 | 0.310 | −0.204 *** | −0.116 |
(0.424) | (0.032) | (0.429) | (0.397) | (0.032) | (0.397) | |
Male | −0.319 | 0.070 | −0.246 | −0.904 | 0.070 | −0.757 |
(0.829) | (0.063) | (0.827) | (0.777) | (0.063) | (0.766) | |
East | 14.767 *** | −0.693 *** | 14.046 *** | 12.920 *** | −0.693 *** | 11.474 *** |
(2.893) | (0.221) | (2.895) | (2.711) | (0.221) | (2.682) | |
Central | 6.302 *** | 0.222 | 6.533 *** | 5.757 *** | 0.222 | 6.220 *** |
(2.034) | (0.156) | (2.030) | (1.906) | (0.156) | (1.880) | |
_cons | 14.634 *** | 2.200 *** | 16.922 *** | 7.370 * | 2.200 *** | 11.960 *** |
(4.034) | (0.309) | (4.100) | (3.780) | (0.309) | (3.798) | |
Obs. | 1321 | 1321 | 1321 | 1321 | 1321 | 1321 |
Variable | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
Transferred Land | Didn’t Transfer Land | Used Traditional Techniques | Used Mechanized Techniques | Used Fertilizer Service | Didn’t Use Fertilizer Service | |
Service_p | −11.298 | −24.628 *** | −15.238 | −19.420 *** | −30.165 ** | −17.633 *** |
(8.537) | (7.371) | (19.929) | (5.796) | (12.372) | (6.128) | |
Labor migration | −2.133 | 3.981 *** | 3.868 | 2.263 ** | 1.339 | 2.969 *** |
(2.092) | (1.208) | (2.970) | (1.095) | (2.236) | (1.138) | |
Organic_fer | −7.438 *** | −0.708 | −9.614 *** | −0.700 | 5.175 *** | −4.622 *** |
(1.954) | (1.069) | (2.507) | (1.001) | (1.706) | (1.085) | |
Official dummy | 2.674 | 1.567 | 2.212 | 2.048 ** | −0.434 | 2.221 ** |
(1.637) | (1.147) | (2.573) | (1.012) | (1.927) | (1.078) | |
Technical guidance | −3.461 * | 2.764 ** | 4.018 | 0.433 | 2.223 | 0.998 |
(1.799) | (1.160) | (2.912) | (1.040) | (1.897) | (1.099) | |
Crop structure | −1.267 | −1.767 * | −7.169 ** | −1.267 | −5.475 *** | −1.621 |
(1.740) | (1.060) | (3.090) | (0.943) | (2.062) | (0.999) | |
Land use rights | 3.439 | 2.605 | −9.002 | 4.589 | 8.994 | 2.169 |
(5.221) | (3.219) | (8.342) | (2.919) | (9.939) | (2.892) | |
No. of plot | 0.056 | 0.184 | −0.093 | 0.077 | −0.046 | 0.095 |
(0.116) | (0.148) | (0.317) | (0.085) | (0.318) | (0.087) | |
Flat land | 7.290 *** | 5.833 *** | 4.950 | 5.780 *** | 16.206 *** | 4.389 *** |
(2.638) | (1.814) | (4.314) | (1.589) | (3.860) | (1.612) | |
Sloped land | −2.528 | 3.827 | 4.808 | 1.452 | 8.156 | 0.615 |
(3.414) | (2.603) | (6.137) | (2.192) | (5.252) | (2.231) | |
Hired labor | 1.446 | −3.631 * | −1.226 | −1.964 | −8.126 * | −0.505 |
(2.332) | (1.923) | (4.038) | (1.544) | (4.472) | (1.553) | |
Land quality | 0.461 | 1.643 *** | 2.073 ** | 1.013 ** | −1.373 | 1.558 *** |
(0.841) | (0.476) | (0.966) | (0.460) | (1.146) | (0.450) | |
Age | 0.115 | 0.012 | −0.040 | 0.033 | 0.081 | 0.018 |
(0.074) | (0.038) | (0.087) | (0.036) | (0.069) | (0.037) | |
Education | −1.575 * | 0.089 | 0.783 | −0.411 | 1.297 | −0.356 |
(0.894) | (0.487) | (1.225) | (0.452) | (0.788) | (0.501) | |
Male | −2.919 * | 0.464 | −3.049 | 0.188 | 2.297 | −0.753 |
(1.597) | (0.983) | (2.242) | (0.897) | (1.837) | (0.924) | |
East | 5.788 | 18.013 *** | 16.870 | 12.824 *** | 18.454 ** | 13.591 *** |
(4.614) | (3.845) | (10.459) | (3.049) | (7.868) | (3.213) | |
Central | −1.347 | 8.502 *** | 10.327 | 4.121 * | 7.871 | 5.319 ** |
(3.586) | (2.638) | (6.994) | (2.172) | (6.201) | (2.229) | |
_cons | 22.731 *** | 11.314 ** | 26.120 ** | 14.746 *** | 5.737 | 15.820 *** |
(7.947) | (4.726) | (11.844) | (4.306) | (12.321) | (4.377) | |
Obs. | 341 | 980 | 194 | 1127 | 227 | 1094 |
Variable | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
Transferred Land | Didn’t Transfer Land | Used Traditional Techniques | Used Mechanized Techniques | Used Fertilizer Service | Didn’t Use Fertilizer Service | |
Service_p | −13.996 * | −19.796 *** | −0.895 | −20.015 *** | −25.189 ** | −16.669 *** |
(8.289) | (6.839) | (17.489) | (5.470) | (12.197) | (5.660) | |
Labor migration | −2.175 | 3.909 *** | 3.343 | 2.845 *** | −0.573 | 3.473 *** |
(2.031) | (1.121) | (2.607) | (1.034) | (2.204) | (1.051) | |
Organic_fer | −5.991 *** | −2.649 *** | −8.963 *** | −1.887 ** | 2.870 * | −5.196 *** |
(1.897) | (0.992) | (2.200) | (0.945) | (1.682) | (1.002) | |
Official dummy | 2.309 | 1.528 | 1.485 | 1.939 ** | −0.547 | 2.272 ** |
(1.590) | (1.064) | (2.258) | (0.955) | (1.900) | (0.995) | |
Technical guidance | −1.555 | 1.998 * | 4.343 * | 0.393 | 3.032 | 0.762 |
(1.747) | (1.076) | (2.556) | (0.982) | (1.870) | (1.015) | |
Crop structure | −1.953 | −2.678 *** | −5.792 ** | −2.134 ** | −8.049 *** | −1.890 ** |
(1.690) | (0.983) | (2.711) | (0.890) | (2.033) | (0.923) | |
Land use rights | 3.012 | 2.415 | −17.770 ** | 5.546 ** | 14.317 | 1.562 |
(5.069) | (2.987) | (7.320) | (2.754) | (9.798) | (2.671) | |
No. of plot | 0.011 | 0.175 | 0.136 | 0.006 | −0.051 | 0.052 |
(0.112) | (0.137) | (0.278) | (0.080) | (0.313) | (0.080) | |
Flat land | 7.130 *** | 5.080 *** | −1.402 | 6.169 *** | 11.445 *** | 4.533 *** |
(2.561) | (1.683) | (3.785) | (1.499) | (3.805) | (1.489) | |
Sloped land | −0.802 | 4.563 * | 1.247 | 3.132 | 5.591 | 1.851 |
(3.315) | (2.415) | (5.385) | (2.069) | (5.178) | (2.061) | |
Hired labor | 1.271 | −3.027 * | −0.972 | −2.178 | −9.571 ** | −0.460 |
(2.264) | (1.784) | (3.543) | (1.457) | (4.409) | (1.434) | |
Land quality | 0.242 | 0.582 | 1.732 ** | 0.077 | −1.324 | 0.571 |
(0.816) | (0.441) | (0.848) | (0.434) | (1.130) | (0.415) | |
Age | 0.119 * | 0.034 | −0.057 | 0.062 * | 0.102 | 0.036 |
(0.072) | (0.035) | (0.077) | (0.034) | (0.068) | (0.034) | |
Education | −1.585 * | 0.705 | 0.319 | 0.237 | 1.683 ** | 0.117 |
(0.868) | (0.452) | (1.075) | (0.427) | (0.777) | (0.462) | |
Male | −1.784 | −0.814 | −4.122 ** | −0.295 | 1.214 | −1.121 |
(1.551) | (0.912) | (1.967) | (0.846) | (1.811) | (0.853) | |
East | 5.956 | 15.004 *** | 8.445 | 12.431 *** | 24.683 *** | 11.717 *** |
(4.479) | (3.568) | (9.178) | (2.877) | (7.756) | (2.968) | |
Central | −2.114 | 7.845 *** | 5.617 | 4.560 ** | 18.168 *** | 4.212 ** |
(3.481) | (2.448) | (6.138) | (2.050) | (6.113) | (2.059) | |
_cons | 14.990 * | 5.021 | 32.046 *** | 5.720 | −13.067 | 9.490 ** |
(7.716) | (4.385) | (10.394) | (4.064) | (12.146) | (4.042) | |
Obs. | 341 | 980 | 194 | 1127 | 227 | 1094 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huan, M.; Zhan, S. Agricultural Production Services, Farm Size and Chemical Fertilizer Use in China’s Maize Production. Land 2022, 11, 1931. https://doi.org/10.3390/land11111931
Huan M, Zhan S. Agricultural Production Services, Farm Size and Chemical Fertilizer Use in China’s Maize Production. Land. 2022; 11(11):1931. https://doi.org/10.3390/land11111931
Chicago/Turabian StyleHuan, Meili, and Shaoguo Zhan. 2022. "Agricultural Production Services, Farm Size and Chemical Fertilizer Use in China’s Maize Production" Land 11, no. 11: 1931. https://doi.org/10.3390/land11111931
APA StyleHuan, M., & Zhan, S. (2022). Agricultural Production Services, Farm Size and Chemical Fertilizer Use in China’s Maize Production. Land, 11(11), 1931. https://doi.org/10.3390/land11111931