A Combined Methods of Senile Trees Inventory in Sustainable Urban Greenery Management on the Example of the City of Sandomierz (Poland)
Abstract
:1. Introduction
Need to Protect Older Trees in Cities
2. Materials and Methods
2.1. Sandomierz—General Information and Location of Research Tress
2.2. Measures
2.2.1. Tree Age Assessment
2.2.2. Acoustic Tomography
2.2.3. Electric Tomography
2.2.4. Measure the Photosynthesis Process
2.2.5. Economic Valuation of Trees
3. Results
3.1. Trees and Examination
3.2. Results of Computed Tomography
The Effect of Hollowness on the Statics of Senile Trees
3.3. Chlorophyll Fluorescence Results
3.4. Valuation of Trees
3.5. Practical Conclusions
4. Discussion—Combination of Four Tree Assessment Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khalaim, O.; Zabarna, O.; Kazantsev, T.; Panas, I.; Polishchuk, O. Urban Green Infrastructure Inventory as a Key Prerequisite to Sustainable Cities in Ukraine under Extreme Heat Events. Sustainability 2021, 13, 2470. [Google Scholar] [CrossRef]
- Lăzăroiu, G.; Ionescu, L.; Uță, C.; Hurloiu, I.; Andronie, M.; Dijmărescu, I. Environmentally Responsible Behavior and Sustainability Policy Adoption in Green Public Procurement. Sustainability 2020, 12, 2110. [Google Scholar] [CrossRef] [Green Version]
- Bednarska-Olejniczak, D.; Olejniczak, J.; Svobodová, L. Towards a Smart and Sustainable City with the Involvement of Public Participation—The Case of Wroclaw. Sustainability 2019, 11, 332. [Google Scholar] [CrossRef] [Green Version]
- Understanding and Managing Veteran Trees. An Advanced Course by the VETcert Project. 2019. Available online: https://www.vetcert.eu/sites/default/files/2020-03/VETcert%20course%2010102019_Delegate%20version-compressed.pdf (accessed on 12 October 2022).
- Gilmartin, E. Ancient and Veteran Trees: An Assessment Guide. The Woodland Trust. 2022. Available online: https://www.woodlandtrust.org.uk/media/51153/ancient-and-veteran-trees-an-assessment-guide.pdf (accessed on 12 October 2022).
- Dudkiewicz, M.; Durlak, W. Sustainable Management of Very Large Trees with the Use of Acoustic Tomography. Sustainability 2021, 13, 12315. [Google Scholar] [CrossRef]
- Durlak, W.; Dudkiewicz, M.; Pudelska, K.; Dąbski, M. Using Picus® Sonic Tomograph to assess the health state of trees of monumental sizes. Teka Kom. Archit. Urban. I Studiów Kraj. 2017, 13, 73–82. [Google Scholar] [CrossRef]
- The ISA Tree Risk Assessment Qualification (ISA TRAQ). Available online: https://www.isa-arbor.com/Credentials/ISA-Tree-Risk-Assessment-Qualification (accessed on 12 October 2022).
- Roman, L.A.; Battles, J.J.; McBride, J.R. The balance of planting and mortality in a street tree population. Urban Ecosyst. 2013, 17, 387–404. [Google Scholar] [CrossRef]
- Smith, I.A.; Dearborn, V.K.; Hutyra, L.R. Live fast, die young: Accelerated growth, mortality, and turnover in street trees. PLoS ONE 2019, 14, e0215846. [Google Scholar] [CrossRef] [PubMed]
- Szczepanowska, H.B. Drzewa W Mieście; Hortpress: Warszawa, Poland, 2001. [Google Scholar]
- Stahle, D.W.; Chaney, P.L. A predictive model for the location of ancient forests. Nat. Areas J. 1994, 14, 151–158. Available online: https://www.researchgate.net/publication/292690828_A_predictive_model_for_the_location_of_ancient_forests (accessed on 26 October 2022).
- Huckaby, L.S.; Kaufmann, M.R.; Fornwalt, P.J.; Stoker, J.M.; Dennis, C. Identification and ecology of old ponderosa pine trees in the Colorado Front Range. Gen. Tech. Rep. 2003, 110, 47. [Google Scholar] [CrossRef] [Green Version]
- Pederson, N. External Characteristics of Old Trees in the Eastern Deciduous Forest. Nat. Areas J. 2010, 30, 396–407. [Google Scholar] [CrossRef]
- Judice, A.; Gordon, J.; Abrams, J.; Irwin, K. Community Perceptions of Tree Risk and Management. Land 2021, 10, 1096. [Google Scholar] [CrossRef]
- Alexander, K.N.A. Revision of the Index of Ecological Vontinuity as Used for Saproxylic Beetles; English Nature Research Report ENRR574; English Nature: London, UK, 2004. [Google Scholar]
- Rosłon-Szeryńska, E.; Fortuna-Antosziewicz, B.; Łukaszkiewicz, J.; Borowski, J. Strategy for preservation of veteran trees in the city-a model of conduct based on plant defense mechanisms and the idea of sustainable development. Ecol. Eng. Environ. Technol. 2018, 19, 12–21. [Google Scholar] [CrossRef]
- O’Malley, C.; Piroozfar, P.; Farr, E.R.P.; Pomponi, F. Urban Heat Island (UHI) mitigating strategies: A case-based comparative analysis. Sustain. Cities Soc. 2015, 19, 222–235. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Zhang, Y. Spatial Variation of Urban Thermal Environment and Its Relation to Green Space Patterns: Implication to Sustainable Landscape Planning. Sustainability 2018, 10, 2249. [Google Scholar] [CrossRef] [Green Version]
- Song, P.; Kim, G.; Mayer, A.; He, R.; Tian, G. Assessing the Ecosystem Services of Various Types of Urban Green Spaces Based on i-Tree Eco. Sustainability 2020, 12, 1630. [Google Scholar] [CrossRef] [Green Version]
- Nowak, D.J.; Dwyer, J.F. Understanding the benefits and costs of urban forest ecosystems. In Urban and Community Forestry in the Northeast; Kuser, J., Ed.; Springer: New York, NY, USA, 2007; pp. 25–46. [Google Scholar]
- Tiwary, A.; Sinnett, D.; Peachey, C.; Chalabi, Z.; Vardoulakis, S.; Fletcher, T.; Leonardi, G.; Grundy, C.; Azapagic, A.; Hutchings, T.R. An integrated tool to assess the role of new planting in PM10 capture and the human health benefits: A case study in London. Environ. Pollut. 2009, 157, 2645–2653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tallis, M.; Taylor, G.; Sinnett, D.; Freer-Smith, P. Estimating the removal of atmospheric particulate pollution by the urban tree canopy of London, under current and future environments. Landsc. Urban Plan. 2011, 103, 129–138. [Google Scholar] [CrossRef]
- Beckett, K.P.; Freer-Smith, P.H.; Taylor, G. Urban woodlands: Their role in reducing the effects of particulate pollution. Environ. Pollut. 1998, 99, 347–360. [Google Scholar] [CrossRef]
- Salmond, J.A.; Tadaki, M.; Vardoulakis, S.; Arbuthnott, K.; Coutts, A.; Demuzere, M.; Dirks, K.N.; Heaviside, C.; Lim, S.; MacIntyre, H.; et al. Health and climate related ecosystem services provided by street trees in the urban environment. Environ. Health 2016, 15, 95–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Memluk, M.Z. Designing Urban Squares; Intech Open: London, UK, 2013. [Google Scholar] [CrossRef] [Green Version]
- Nesbitt, L.; Hotte, N.; Barron, S.; Cowan, J.; Sheppard, S.R. The social and economic value of cultural ecosystem services provided by urban forests in North America: A review and suggestions for future research. Urban For. Urban Green. 2017, 25, 103–111. [Google Scholar] [CrossRef]
- Kondo, M.C.; Fluehr, J.M.; McKeon, T.; Branas, C.C. Urban Green Space and Its Impact on Human Health. Int. J. Environ. Res. Public Health 2018, 15, 445. [Google Scholar] [CrossRef] [Green Version]
- Bratman, G.N.; Hamilton, J.P.; Daily, G.C. The impacts of nature experience on human cognitive function and mental health. Ann. N. Y. Acad. Sci. 2012, 1249, 118–136. [Google Scholar] [CrossRef] [PubMed]
- Houlden, V.; Weich, S.; de Albuquerque, J.P.; Jarvis, S.; Rees, K. The relationship between greenspace and the mental wellbeing of adults: A systematic review. PLoS ONE 2018, 13, e0203000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marselle, M.R.; Hartig, T.; Cox, D.T.; de Bell, S.; Knapp, S.; Lindley, S.; Triguero-Mas, M.; Böhning-Gaese, K.; Braubach, M.; Cook, P.A.; et al. Pathways linking biodiversity to human health: A conceptual framework. Environ. Int. 2021, 150, 106420. [Google Scholar] [CrossRef]
- Nadkarni, N.M.; Hasbach, P.H.; Thys, T.; Crockett, E.G.; Schnacker, L. Impacts of nature imagery on people in severely nature-deprived environments. Front. Ecol. Environ. 2017, 15, 395–403. [Google Scholar] [CrossRef]
- Pataki, D.E.; Alberti, M.; Cadenasso, M.L.; Felson, A.J.; McDonnell, M.J.; Pincetl, S.; Pouyat, R.V.; Setälä, H.; Whitlow, T.H. The Benefits and Limits of Urban Tree Planting for Environmental and Human Health. Front. Ecol. Evol. 2021, 9, 395–403. [Google Scholar] [CrossRef]
- Fay, N. Environmental arboriculture, tree ecology and veteran tree management. Arboric. J. 2002, 26, 213–238. [Google Scholar] [CrossRef]
- Green, T. Arborists should have a central role in educating the public about veteran trees. Arboric. J. 2002, 26, 239–248. [Google Scholar] [CrossRef]
- Dorda, A. What is the value of trees–before and after felling? Przegląd Przyr. 2017, 28, 3–22. [Google Scholar]
- Majdecki, L. Tabela Wiekowa Drzew; Oddział Architektury Krajobrazu SGGW: Warszawa, Poland, 1980–1986. [Google Scholar]
- Mydłowska, A. Protection of greenery in the investment process, taking into account dendrological knowledge. In Attachment to the Training Materials Fri Visual Diagnosis of Trees Threating Safety-Methods and Ways to Improve the Control of the Urban Tree Stand; Dendros Poznań: Poznań, Poland, 2014. [Google Scholar]
- Available online: http://www.tree-guide.com/tree-age-calculator (accessed on 29 May 2022).
- Hansen, J.; Sato, M.; Ruedy, R. Perception of climate change. Proc. Natl. Acad. Sci. USA 2012, 109, E2415–E2423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durlak, W.; Lublinie, U.P.W.; Dudkiewicz, M.; Pudelska, K.; Dąbski, M. Diagnozowanie kondycji drzew z wykorzystaniem tomografii komputerowej. Acta. Sci. Pol. Circumiectus 2017, 2, 71–83. [Google Scholar] [CrossRef]
- Linhares, C.S.F.; Gonçalves, R.; Martins, L.M.; Knapic, S. Structural stability of urban trees using visual and instrumental techniques: A review. Forests 2021, 12, 1752. [Google Scholar] [CrossRef]
- Papandrea, S.F.; Cataldo, M.F.; Zimbalatti, G.; Proto, A.R. Comparative evaluation of inspection techniques for decay detection in urban trees. Sens. Actuators A Phys. 2022, 340, 113544. [Google Scholar] [CrossRef]
- Göcke, L.; Rust, S.; Weihs, U.; Günther, T.; Rücker, C. Combining Sonic and Electrical Impedance Tomography for the Nondestructive Testing of Trees. In Proceedings of the 15th International Symposium on Nondestructive Testing of Wood, Duluth, MN, USA, 10–12 September 2007; pp. 31–42. [Google Scholar]
- Brazee, N.J.; Marra, R.; Gocke, L.; Van Wassenaer, P. Non-Destructive Assessment of Interna! Decay in Three Hardwood Species of Northeastern North America Rusing Sonic and Electrical Impedance Tomography. Forestry 2011, 84, 33–39. Available online: https://www.researchgate.net/publication/327778264_Estimating_carbon_loss_due_to_internal_decay_in_living_trees_using_tomography_Implications_for_forest_carbon_budgets (accessed on 29 May 2022). [CrossRef] [Green Version]
- Available online: https://www.argus-electronic.de/en/tree-inspection/support/download/manuals (accessed on 16 August 2022).
- Chomicz, E. Non-Invasive Diagnosis of the Condition of Historic Trees with the Use of Picus Tomographs. Conserv. Cour. 2010, 8, 29–32. Available online: https://www.nid.pl/upload/iblock/7f6/7f6ac9e8b82416efa9be341f0b30531e.pdf (accessed on 29 May 2022).
- Rust, S.; Weihs, U.; Günther, T.; Rücker, C.; Goecke, L. Combining Sonic and Electrical Impedance Tomography for the Nondestructive Testing of Trees. Western Arborist. 2008. Available online: https://www.researchgate.net/publication/230882039_Combining_Sonic_and_Electrical_Impedance_Tomography_for_the_Nondestructive_Testing_of_Trees (accessed on 16 August 2022).
- Dudkiewicz, M.; Durlak, W. Sonic Tomograph as a Tool Supporting the Sustainable Management of Historical Greenery of the UMCS Botanical Garden in Lublin. Sustainability 2021, 13, 9451. [Google Scholar] [CrossRef]
- Available online: https://www.argus-electronic.de (accessed on 16 August 2022).
- Sepúlveda, P.; Johnstone, D.M. A Novel Way of Assessing Plant Vitality in Urban Trees. Forests 2018, 10, 2. [Google Scholar] [CrossRef] [Green Version]
- Maldonado-Rodriguez, R.; Pavlov, S.; Gonzalez, A.; Oukarroum, A.; Strasser, R.J. Can machines recognise stress in plants? Environ. Chem. Lett. 2003, 1, 201–205. [Google Scholar] [CrossRef]
- Percival, G. Evaluation of physiological tests as predictors of young tree establishment and growth. Arboric. Urban For. 2004, 30, 80–91. Available online: https://joa.isa-arbor.com/request.asp?JournalID=1&ArticleID=129&Type=2 (accessed on 16 August 2022). [CrossRef]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Angelini, G.; Ragni, P.; Esposito, D.; Giardi, P.; Pompili, M.L.; Moscardelli, R.; Giardi, M.T. A device to study the effect of space radiation on photosynthetic organisms. Phys. Med. 2001, 17 (Suppl. 1), 267–268. Available online: https://www.researchgate.net/publication/11576798_A_device_to_study_the_effect_of_space_radiation_on_photosynthetic_organisms (accessed on 22 October 2022). [PubMed]
- Cetner, M.D.; Dąbrowski, P.; Samborska, A.; Łukasik, I.; Swoczyna, T.; Pietkiewicz, S.; Bąba, W.; Kalaji, H.M. Zastosowanie pomiarów fluorescencji chlorofilu w badaniach środowiskowych. Kosmos 2016, 65, 197–205. Available online: http://kosmos.icm.edu.pl/PDF/2016/197.pdf (accessed on 22 October 2022).
- Economic Valuation Methods and Their Use in Valuing Veteran Trees. 2019. Available online: https://www.vetcert.eu/sites/default/files/2019-11/Economic%20Valuation%20Methods%20.pdf (accessed on 12 October 2022).
- Szczepanowska, H.B.; Olizar, J.; Borkowski, J.; Sitarski, M.; Suchocka, M.; Szadkowska, E. Work synthesis. In Development of a New Method for Determining the Value of Trees Together with the Differentiating Indices and the Substantive Justification and Legitimacy of Its Introduction into the Legal Circuit; Publishing house of the Institute of Spatial Management and Housing: Warsaw, Poland, 2010. [Google Scholar]
- Kronenberg, J. Ecosystem Services—A New Look at the Value of the Natural Environment. EkoCity#Environmental. 2016. Available online: https://repozytorium.uni.lodz.pl/xmlui/handle/11089/17980?show=full (accessed on 12 October 2022).
- Borowski, J.; Pstrągowska, M. Determination of Species and Incremental Coefficients Used in the Method of Tree Valuation in Urbanized Areas; SGGW–IGPiM: Warsaw, Poland, 2007; pp. 1–21. [Google Scholar]
- James, K.R.; Dahle, G.A.; Grabosky, J.; Kane, B.; Detter, A. Tree biomechanics literature review: Dynamics. Arboric. Urban For. 2014, 40, 1–15. Available online: https://www.isa-arbor.com/Portals/0/Assets/PDF/research/BiomechanicsAUF.pdf (accessed on 22 October 2022). [CrossRef]
- Cullen, S. Trees and Wind: A Bibliography for Tree Care Professionals. Arboric. Urban For. 2002, 28, 41–51. Available online: https://joa.isa-arbor.com/request.asp?JournalID=1&ArticleID=25&Type=2 (accessed on 22 October 2022). [CrossRef]
- Huang, Y.-S.; Hsu, F.-L.; Lee, C.-M.; Juang, J.-Y. Failure mechanism of hollow tree trunks due to cross-sectional flattening. R. Soc. Open Sci. 2017, 4, 160972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spatz, H.-C.; Niklas, K.J. Modes of failure in tubular plant organs. Am. J. Bot. 2013, 100, 332–336. [Google Scholar] [CrossRef]
- Taylor, D.; Dirks, J.-H. Shape optimization in exoskeletons and endoskeletons: A biomechanics analysis. J. R. Soc. Interface 2012, 9, 3480–3489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kane, B.; Ryan, D.; Bloniarz, D. Comparing Formulae that Assess Strength Loss Due to Decay in Trees. Arboric. Urban For. 2001, 27, 78–87. [Google Scholar] [CrossRef]
- James, K.R. A Dynamic Structural Analysis of Trees Subject to Wind Loading. Ph.D. Thesis, The University of Melbourne, Melbourne, Australia, 2010. Available online: https://minerva-access.unimelb.edu.au/items/e6806505-69c3-5538-bf2a-430a8fda5671 (accessed on 12 October 2022).
- Mattheck, C.; Bethge, K.; Breloer, H. Allgemeingültigkeit der Regeln zur Bewertung von Risikobäumen. Patzer Verlag. Das Gart. 1994, 6, 407–412. [Google Scholar]
- Wessolly, L.; Erb, M. Handbuch der Baumstatik und Baumkontrolle; Berlin Patzer Verlag: Berlin, Germany, 1998. [Google Scholar]
- Wessoly, L. How hollow may a tree be? Neue Landsch. 1996, 11, 847–850. Available online: http://www.historictreecare.com/wp-content/uploads/2015/02/Wessolly-How-hollow-may-a-tree-be.pdf (accessed on 12 October 2022).
- De Langre, E. Effects of Wind on Plants. Annu. Rev. Fluid Mech. 2008, 40, 141–168. [Google Scholar] [CrossRef] [Green Version]
- Kane, B.; Pavlis, M.; Harris, J.R.; Seiler, J.R. Crown reconfiguration and trunk stress in deciduous trees. Can. J. For. Res. 2008, 38, 1275–1289. [Google Scholar] [CrossRef]
- Turnipseed, A.A.; Anderson, D.E.; Blanken, P.D.; Baugh, W.M.; Monson, R.K. Airflows and turbulent flux measurements in mountainous terrainPart 1. Canopy and local effects. Agric. For. Meteorol. 2003, 119, 1–21. [Google Scholar] [CrossRef]
- Huang, Y.-S.; Chen, S.-S.; Kuo-Huang, L.-L.; Lee, C.-M. Growth strain in the trunk and branches of Chamaecyparis formosensis and its influence on tree form. Tree Physiol. 2005, 25, 1119–1126. [Google Scholar] [CrossRef] [Green Version]
- Schindler, D.; Bauhus, J.; Mayer, H. Wind effects on trees. Forstwiss. Cent. 2011, 131, 159–163. [Google Scholar] [CrossRef]
- Dujesiefken, D.; Fay, N.; de Groot, J.W.; de Berker, N. Trees—A Lifespan Approach. Contributions to arboriculture from European Practitioners. Available online: http://drzewa.org.pl/wp-content/uploads/2018/05/Trees_Lifespan_Approach.pdf (accessed on 22 October 2022).
- Niinemets, U.; Valladares, F. Tolerance to shade, drought, and waterlogging of temperate northern hemisphere trees and shrubs. Ecol. Monogr. 2006, 76, 521–547. [Google Scholar] [CrossRef]
- Moradi, A.; Abkenar, K.T.; Mohammadian, M.A.; Shabanian, N. Effects of dust on forest tree health in Zagros oak forests. Environ. Monit. Assess. 2017, 189, 549. [Google Scholar] [CrossRef]
- Young, R.F. Mainstreaming urban ecosystem services: A national survey of municipal foresters. Urban Ecosyst. 2013, 16, 703–722. [Google Scholar] [CrossRef]
- Driscoll, A.N.; Ries, P.D.; Tilt, J.H.; Ganio, L.M. Needs and barriers to expanding urban forestry programs: An assessment of community officials and program managers in the Portland—Vancouver metropolitan region. Urban For. Urban Green. 2015, 14, 48–55. [Google Scholar] [CrossRef]
- Grado, S.; Measells, M.; Grebner, D. Revisiting the Status, Needs, and Knowledge Levels of Mississippi’s Governmental Entities Relative to Urban Forestry. Arboric. Urban For. 2013, 39, 149–156. [Google Scholar] [CrossRef]
- Mullaney, J.; Lucke, T.; Trueman, S.J. A review of benefits and challenges in growing street trees in paved urban environments. Landsc. Urban Plan. 2015, 134, 157–166. [Google Scholar] [CrossRef]
- Tan, X.; Hirabayashi, S.; Shibata, S. Estimation of Ecosystem Services Provided by Street Trees in Kyoto, Japan. Forests 2021, 12, 311. [Google Scholar] [CrossRef]
- Gullick, D.; Blackburn, G.; Whyatt, J.; Vopenka, P.; Murray, J.; Abbatt, J. Tree risk evaluation environment for failure and limb loss (TREEFALL): An integrated model for quantifying the risk of tree failure from local to regional scales. Comput. Environ. Urban Syst. 2019, 75, 217–228. [Google Scholar] [CrossRef]
- Martinez-Trinidad, T.; Watson, W.T.; Arnold, M.A.; Lombardini, L.; Appel, D.N. Comparing various techniques to measure tree vitality of live oaks. Urban For. Urban Green. 2010, 9, 199–203. [Google Scholar] [CrossRef]
- Ciftci, C.; Brena, S.F.; Kane, B.; Arwade, S.R. The effect of crown architecture on dynamic amplification factor of an open-grown sugar maple (Acer saccharum L.). Trees 2013, 27, 1175–1189. [Google Scholar] [CrossRef]
- James, K.R.; Haritos, N.; Ades, P.K. Mechanical stability of trees under dynamic loads. Am. J. Bot. 2006, 93, 1522–1530. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.R.; Maguire, D.A. Natural sway frequencies and damping ratios of trees: Influence of crown structure. Trees 2005, 19, 363–373. [Google Scholar] [CrossRef]
- Kane, B. Tree failure following a windstorm in Brewster, Massachusetts, USA. Urban For. Urban Green. 2008, 7, 15–23. [Google Scholar] [CrossRef]
- Matheny, N.; Clark, J. Tree risk assessment. Arborist News 2009, 19, 28–33. [Google Scholar]
- Mattheck, C.; Breloer, H. The Body language of Trees; HMSO, Department of the Environment: London, UK, 1994.
- Smiley, E.T.; Matheny, N.; Lilly, S. Best Management Practices Tree Risk Assessment; ISA: Champaign, IL, USA, 2011. [Google Scholar]
- Ellison, M. Quantified Tree Risk Assessment used in the Management of Amenity Trees. Arboric. Urban For. 2005, 31, 57–65. [Google Scholar] [CrossRef]
- Wessolly, L. Verfahren zur Bestimmung der Stand- und Bruchsicherheit von Bäumen [Methods for determining the safety against uprooting and stem fracture]. Holz Als Roh-Und Werkst. 1991, 49, 99–104. [Google Scholar] [CrossRef]
- Gilman, E.; Masters, F.; Grabosky, J. Pruning Affects Tree Movement in Hurricane Force Wind. Arboric. Urban For. 2008, 34, 20–28. Available online: https://hort.ifas.ufl.edu/woody/documents/articles/EFG0702.pdf (accessed on 22 October 2022). [CrossRef]
- Lin, C.J.; Kao, Y.C.; Lin, T.T.; Tsai, M.J.; Wang, S.Y.; Lin, L.D.; Chan, M.H. Application of an ultrasonic tomographic technique for detecting defects in standing trees. Int. Biodeterior. Biodegrad. 2008, 62, 434–441. [Google Scholar] [CrossRef]
- Sheng, R.; Perret, L.; Calmet, I.; Demouge, F.; Guilhot, J. Wind tunnel study of wind effects on a high-rise building at a scale of 1:300. J. Wind Eng. Ind. Aerodyn. 2018, 174, 391–403. [Google Scholar] [CrossRef]
- Li, H.; Zhang, X.; Li, Z.; Wen, J.; Tan, X. A Review of Research on Tree Risk Assessment Methods. Forests 2022, 13, 1556. [Google Scholar] [CrossRef]
- Johnstone, D.; Moore, G.; Tausz, M.; Nicolas, M. The measurement of plant vitality in landscape trees. Arboric. J. 2013, 35, 18–27. [Google Scholar] [CrossRef]
- Callow, D.; May, P.; Johnstone, D.M. Tree Vitality Assessment in Urban Landscapes. Forests 2018, 9, 279. [Google Scholar] [CrossRef] [Green Version]
- Sinn, G.; Wessoly, L. A contribution to the proper assessment of the strength and stability of trees. Arbor. J. 1989, 13, 45–64. [Google Scholar] [CrossRef]
- Rinn, F. Shell-wall thickness and breaking safety of mature trees. West. Arborist 2013, 39, 40–44. Available online: https://rinntech.info/wp-content/uploads/2019/08/RINN-F.-2013.-Mature-Shell-Walls.-Western-Arborist.pdf (accessed on 29 May 2022).
- Schubert, S.; Gsell, D.; Dual, J.; Motavalli, M.; Niemz, P. Acoustic wood tomography on trees and the challenge of wood heterogeneity. Holzforschung 2009, 63, 107–112. [Google Scholar] [CrossRef] [Green Version]
- Ostrovský, R.; Kobza, M.; Gažo, J. Extensively damaged trees tested with acoustic tomography considering tree stability in urban greenery. Trees 2017, 31, 1015–1023. [Google Scholar] [CrossRef]
- Arciniegas, A.; Brancheriau, L.; Lasaygues, P. Tomography in standing trees: Revisiting the determination of acoustic wave velocity. Ann. For. Sci. 2014, 72, 685–691. [Google Scholar] [CrossRef]
- Fikos, I.; Vargemezis, G.; Zlotnicki, J.; Puertollano, J.R.; Alanis, P.B.; Pigtain, R.C.; Villacorte, E.; Malipot, G.A.; Sasai, Y. Electrical resistivity tomography study of Taal volcano hydrothermal system, Philippines. Bull. Volcanol. 2012, 74, 1821–1831. [Google Scholar] [CrossRef]
- Sudakova, M.; Terentyeva, E.; Kalashnikov, A. Assessment of health status of tree trunks using ground penetrating radar tomography. AIMS Math. 2021, 7, 162–179. [Google Scholar] [CrossRef]
- Sambuelli, L.; Socco, L.V.; Godio, A. Ultrasonic, electric and radar measurements for living trees assessment. Boll. Geofis. Teor. Appl. 2003, 44, 253–279. Available online: https://www.researchgate.net/publication/228698615_Ultrasonic_electric_and_radar_measurements_for_living_trees_assessment (accessed on 29 May 2022).
- Shigo, A.L.; Shortle, W.C. Spruce Budworms Handbook: Shigometry—A Reference Guide; Agriculture Handbook 1985 No 646; USA Department of Agriculture, Forest Service, Cooperative State Research Service: DC Washington, DC, USA, 1985; 48p.
- Seaby, D.A. Recent Advances in Detection of Wood Decay. Research for Practical Arboriculture; Hodge, S.J., Ed.; University of York, HMSO: Heslington, UK, 1994; Volume 3, pp. 168–176. [Google Scholar]
- Nicolotti, G.; Miglietta, P. Using High-Technology Instruments to Assess Defects in Trees. Arboric. Urban For. 1998, 24, 297–302. [Google Scholar] [CrossRef]
- Shigo, A.L. Modern Arboriculture; Shigo & Trees: Barrington, NH, USA, 1991; 421p. [Google Scholar]
- Nicolotti, G.; Socco, L.V.; Martinis, R.; Godio, A.; Sambuelli, L. Application and comparison of three tomographic techniques for detection of decay in trees. J. Arboric. 2003, 29, 66–77. [Google Scholar] [CrossRef]
- Al Hagrey, S.A. Geophysical imaging of root-zone, trunk, and moisture heterogeneity. J. Exp. Bot. 2007, 58, 839–854. [Google Scholar] [CrossRef]
- Vössing, K.J.; Niederleithinger, E. Nondestructive assessment and imaging methods for internal inspection of timber. A review. Holzforschung 2018, 72, 467–476. [Google Scholar] [CrossRef]
- Soge, A.O.; Popoola, O.I.; Adetoyinbo, A.A. Detection of wood decay and cavities in living trees: A review. Can. J. For. Res. 2021, 51, 937–947. [Google Scholar] [CrossRef]
- EU Strategy for the Protection of Biological Diversity until 2030 Restoring Nature in Life. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1590574123338&uri=CELEX:52020DC0380 (accessed on 26 August 2020).
- Projekt Komisji Dotyczący Ogólnego Unijnego Programu Działań w Zakresie Środowiska do 2030 r. Available online: https://data.consilium.europa.eu/doc/document/ST-11987-2020-INIT/en/pdf (accessed on 29 May 2022).
- Peper, P.J. New York City, New York—Municipal Forest Resource Analysis; Center for Urban Forest Research, USDA Forest Service: Davis, CA, USA, 2007. Available online: https://www.fs.usda.gov/research/treesearch/45969 (accessed on 29 May 2022).
- Szczepanowska, H.B. Trees in the city-green capital of values and ecosystem services. Man Environ. 2015, 39, 5–28. [Google Scholar]
No. | Species Name | The Circumference of the Trunk at the Height of 1.3 m (cm) | Height (m) | Crown Reach (m) | Localization | Age | Mean Age | Value (Euro) * |
---|---|---|---|---|---|---|---|---|
1 | Norway maple (Acer platanoides L.) | 275 | 13.2 | EW 18.6m NS 15 m Mean: 16.8 m | Piszczele Park 50°40′56.9″ N 21°44′40.1″ E | 157 1 110 2 157 3 158 4 | 145 | 6820.50 |
2 | White poplar (Populus alba L.) | 577 | 36.6 | EW 18.8 m NS 23.7 m Mean: 21.2 m | Piszczele Park 50°40′57.8″ N 21°44′25.0″ E | 152 1 230 2 152 3 260 4 | 198 | 11,674.03 |
3 | White poplar (Populus alba L.) | 472 | 35 | EW 22.2 m NS 24 m Mean: 23.1 m | Piszczele Park 50°40′57.6″ N 21°44′26.0″ E | 124 1 188 2 124 3 213 4 | 162 | 8284.30 |
4 | English oak (Quercus robur L.) | 397 | 17.6 | EW 25.5 m NS 24.5 m Mean: 25 m | Saski Park 50°40′56.3″ N 21°44′38.1″ E | 275 1 158 2 275 3 313 4 | 255 | 21,723.34 |
5 | Small-leaved linden (Tilia cordata Mill.) | 390 | 10.8 | EW 12.8 m NS 11.7 m Mean: 12.2 m | At the entrance to the vineyard and the Church of St. James 50°40′37.1″ N 21°44′41.0″ E | 162 1 156 2 162 3 268 4 | 187 | 13,536.18 |
6 | Small-leaved linden (Tilia cordata Mill.) | 384 | 8.4 | EW 10 m NS 9 m Mean: 9.5 m | At the entrance to the Church of St. James 50°40′37.8″ N 21°44′39.3″ E | 159 1 153 2 159 3 264 4 | 184 | 9475.32 |
7 | Common ash (Fraxinus excelsior L.) | 310 | 22.2 | EW 21 m NS 21 m Mean: 21 m | At the Church of St. Paul 50°40′57.6″ N 21°44′26.0″ E | 165 1 124 2 164 3 175 4 | 157 | 16,547.62 |
8 | English oak (Quercus robur L.) | 525 | 18.4 | EW 27 m NS 28 m Mean 27.5 m | At the rectory of the Church of St. Paul 50°40′40.2″ N 21°44′22.9″ E | 364 1 210 2 364 3 414 4 | 338 | 49,692.52 |
9 | Small-leaved linden (Tilia cordata Mill.) | 419 | 13.8 | EW 14.2 m NS 18.9 m Mean: 33.1 m | At the Collegium Gostomianum 50°40′39.2″ N 21°45′6.2″ E | 174 1 167 2 174 3 288 4 | 201 | 16,976.20 |
10 | English oak (Quercus robur L.) | 532 | 18.4 | EW 20.7 m NS 18.5 m Mean: 19.6 m | Milberta St. 50°42′3.8″ N 21°45′0.4″ E | 369 1 212 2 369 3 384 4 | 333 | 23,378.06 |
11 | White poplar (Populus alba L.) | 465 | 18.6 | EW 17.7 m NS 17 m Mean: 17.3 m | Baczyńskiego St. 50°39′41.4″ N 21°44′51.9″ E | 122 1 186 2 123 3 210 4 | 160 | 12,051.42 |
12 | White poplar (Populus alba L.) | 430 | 17.8 | EW 18.3 m NS 15 m Mean: 16.6 m | Baczyńskiego St. 50°39′41.1″ N 21°44′52.2″ E | 113 1 172 2 113 3 194 4 | 148 | 10,804.72 |
13 | English oak (Quercus robur L.) | 357 | 16.4 | EW 25.3 m NS 26.5 m Mean: 25.9 m | Opatowska St. 50°40′51.6″ N 21°45′0.1″ E | 247 1 142 2 247 3 281 4 | 229 | 44,574.54 |
No. | Species Name and Locatization | Picus Sonic Tomograph 3 | PicusTreeTronic |
---|---|---|---|
1. | Acer platanoides L. Piszczele Park | ||
2. | Populus alba L. Piszczele Park | ||
3. | Populus alba L. Piszczele Park | ||
4. | Quercus robur L. Saski Park | ||
5. | Tilia cordata Mill. At the entrance to the vineyard and the Church of St. James | ||
6. | Tilia cordata Mill. At the entrance to the Church of St. James | ||
7. | Fraxinus excelsior L. At the church of St. Paul | ||
8. | Quercus robur L. At the rectory of the Church of St. Paul | ||
9. | Tilia cordata Mill. At the Collegium Gostomianum | ||
10. | Quercus robur L. Milberta St. | ||
11. | Populus alba L. Baczyńskiego St. | ||
12. | Populus alba L. Baczyńskiego St. | ||
13. | Quercus robur L. Opatowska St. |
No. | Species Name | The Obtained Values of the Chlorophyll Fluorescence Index (FV/FM) in Successive Replications | Average Value of the FV/FM Ratio | Place of Growth | ||||
---|---|---|---|---|---|---|---|---|
1 | Norway maple (Acer platanoides L.) | 0.825 | 0.825 | 0.821 | 0.826 | 0.822 | 0.823 | Piszczele Park |
2 | White poplar (Populus alba L.) | 0.813 | 0.818 | 0.815 | 0.815 | 0.803 | 0.812 | Piszczele Park |
3 | White poplar (Populus alba L.) | 0.811 | 0.804 | 0.807 | 0.811 | 0.803 | 0.807 | Piszczele Park |
4 | English oak (Quercus robur L.) | 0.821 | 0.823 | 0.816 | 0.81 | 0.826 | 0.819 | Saski Park |
5 | Small-leaved linden (Tilia cordata Mill.) | 0.804 | 0.805 | 0.809 | 0.800 | 0.808 | 0.805 | At the entrance to the vineyard and the Church of St. James |
6 | Small-leaved linden (Tilia cordata Mill.) | 0.779 | 0.755 | 0.708 | 0.769 | 0.780 | 0.758 | At the entrance to the Church of St. James |
7 | Common ash (Fraxinus excelsior L.) | 0.825 | 0.835 | 0.829 | 0.821 | 0.822 | 0.826 | At the church of St. Paul |
8 | English oak (Quercus robur L.) | 0.827 | 0.839 | 0.833 | 0.832 | 0.836 | 0.833 | At the rectory of the Church of St. Paul |
9 | Small-leaved linden (Tilia cordata Mill.) | 0.804 | 0.802 | 0.783 | 0.789 | 0.798 | 0.795 | At the Collegium Gostomianum |
10 | English oak (Quercus robur L.) | 0.759 | 0.729 | 0.754 | 0.722 | 0.740 | 0.740 | Milberta St. |
11 | White poplar (Populus alba L.) | 0.821 | 0.815 | 0.821 | 0.820 | 0.822 | 0.819 | Baczyńskiego St. |
12 | White poplar (Populus alba L.) | 0.807 | 0.808 | 0.818 | 0.809 | 0.829 | 0.814 | Baczyńskiego St. |
13 | English oak (Quercus robur L.) | 0.824 | 0.826 | 0.826 | 0.830 | 0.826 | 0.826 | Opatowska St. |
No. | Species Name | Picus Sonic Tomograph 3 | Picus TreeTronic | Fluorometer OS5p+ | |
---|---|---|---|---|---|
Type of Wood | Percent | Average Value of the FV/FM Ratio | |||
1 | Norway maple (Acer platanoides L.) | technically efficient wood | 100% | 56 Ω·m–362 Ω·m | 0.823 |
2 | White poplar (Populus alba L.) | damaged wood | 63% | 63 Ω·m | 0.812 |
transitional wood | 7% | 1860 Ω·m | |||
technically efficient wood | 30% | 2200 Ω·m | |||
3 | White poplar (Populus alba L.) | damaged wood | 56% | 11–33 Ω·m | 0.807 |
transitional wood | 13% | 2790 Ω·m | |||
technically efficient wood | 31% | 9780 Ω·m | |||
4 | English oak (Quercus robur L.) | damaged wood | 12% | 64 Ω·m | 0.819 |
transitional wood | 4% | 725 Ω·m | |||
technically efficient wood | 84% | 2360 Ω·m; resistance values ranged from in the middle of the trunk from 64 Ω·m to 206–210 Ω·m in the area facing the outside of the trunk (wood typical of pedunculate oak) | |||
5 | Small-leaved linden (Tilia cordata Mill.) | damaged wood | 43% | 7–41 Ω·m | 0.805 |
transitional wood | 24% | 531 Ω·m | |||
technically efficient wood | 33% | 2274–2554 Ω·m | |||
6 | Small-leaved linden (Tilia cordata Mill.) | damaged wood | 66% | 75–112 Ω·m | 0.758 |
transitional wood | 8% | 636 Ω·m | |||
technically efficient wood | 26% | 4681 Ω·m | |||
7 | Common ash (Fraxinus excelsior L.) | damaged wood | 0.7% | 41 Ω·m | 0.826 |
transitional wood | 0.3% | 100 Ω·m | |||
technically efficient wood | 99% | 251–262 Ω·m; resistance values ranged from in the middle of the trunk cross-section is a ring system (28–39 Ω·m)—suggesting good tissue hydration | |||
8 | English oak (Quercus robur L.) | damaged wood | 0% | - | 0.833 |
transitional wood | 0% | - | |||
technically efficient wood | 100% | 298–462 Ω·m; resistance values ranged from 61 Ω·m in the middle of the trunk to 153–175 Ω·m—may suggest good tissue hydration. | |||
transitional wood | 21% | 17,740 Ω·m | |||
technically efficient wood | 44% | 15–94 Ω·m | |||
10 | English oak (Quercus robur L.) | damaged wood | 73% | 41–65 Ω·m | 0.740 |
transitional wood | 7% | 220 Ω·m | |||
technically efficient wood | 20% | 1171 Ω·m | |||
11 | White poplar (Populus alba L.) | damaged wood | 24% | 80–86 Ω·m | 0.819 |
transitional wood | 20% | 200 Ω·m | |||
technically efficient wood | 56% | 700 Ω·m | |||
12 | White poplar (Populus alba L.) | damaged wood | 23% | 122,516 Ω·m | 0.814 |
transitional wood | 15% | 9500 Ω·m | |||
technically efficient wood | 62% | 8000 Ω·m | |||
13 | English oak (Quercus robur L.) | damaged wood | 0% | - | 0.826 |
transitional wood | 0% | - | |||
technically efficient wood | 100% | 338 to 414 Ω·m; resistance values ranged from 90 Ω·m in the middle of the trunk to 129 Ω·m, which is caused by good tissue hydration. |
No. | Species Name | Removal of Branches | Crown Correction (Removal of Stumps) | Health Condition Monitoring | Ordering the Tree Surrounding | Other |
---|---|---|---|---|---|---|
1 | Norway maple (Acer platanoides L.) | yes (branch deadwood 25%) | no | yes (every two years) | yes | - |
2 | White poplar (Populus alba L.) | yes (branch deadwood 10–15%) | no | yes (each year) | no | - |
3 | White poplar (Populus alba L.) | yes (branch deadwood 15%) | no | yes (every six months) | no | - |
4 | English oak (Quercus robur L.) | yes (branch deadwood 25%) | no | yes (each year) | no | - |
5 | Small-leaved linden (Tilia cordata Mill.) | yes (branch deadwood 20%) | no | yes (each year) | no | - |
6 | Small-leaved linden (Tilia cordata Mill.) | no (branch deadwood 10–15%) | no | yes (each year) | no | - |
7 | Common ash (Fraxinus excelsior L.) | yes (branch deadwood 20%) | no | yes (every two years) | no | - |
8 | English oak (Quercus robur L.) | yes (branch deadwood 20%) | no | yes (every two years) | no | - |
9 | Small-leaved linden (Tilia cordata Mill.) | yes (branch deadwood 15%) | no | yes (each year) | no | - |
10 | English oak (Quercus robur L.) | yes (branch deadwood 30%) | yes | yes (each year) | yes | - |
11 | White poplar (Populus alba L.) | yes (branch deadwood 10–15%) | yes | yes (each year) | no | - |
12 | White poplar (Populus alba L.) | yes (branch deadwood 10–15%) | yes | yes (each year) | no | - |
13 | English oak (Quercus robur L.) | yes (branch deadwood 5%) | no | yes (every two years) | no | Protected by an entry in the register of monuments |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durlak, W.; Dudkiewicz, M.; Milecka, M. A Combined Methods of Senile Trees Inventory in Sustainable Urban Greenery Management on the Example of the City of Sandomierz (Poland). Land 2022, 11, 1914. https://doi.org/10.3390/land11111914
Durlak W, Dudkiewicz M, Milecka M. A Combined Methods of Senile Trees Inventory in Sustainable Urban Greenery Management on the Example of the City of Sandomierz (Poland). Land. 2022; 11(11):1914. https://doi.org/10.3390/land11111914
Chicago/Turabian StyleDurlak, Wojciech, Margot Dudkiewicz, and Małgorzata Milecka. 2022. "A Combined Methods of Senile Trees Inventory in Sustainable Urban Greenery Management on the Example of the City of Sandomierz (Poland)" Land 11, no. 11: 1914. https://doi.org/10.3390/land11111914
APA StyleDurlak, W., Dudkiewicz, M., & Milecka, M. (2022). A Combined Methods of Senile Trees Inventory in Sustainable Urban Greenery Management on the Example of the City of Sandomierz (Poland). Land, 11(11), 1914. https://doi.org/10.3390/land11111914