Distribution Characteristics and Drivers of Soil Carbon and Nitrogen in the Drylands of Central Asia
Abstract
:1. Preface
- (1)
- Is there a large spatial heterogeneity in soil C, N and C:N in the dry zone of Central Asia? What are the characteristics of this variability?
- (2)
- What are the most important drivers of spatial variability in soil C, N and C:N in the study area, among the many factors influencing spatial variability, climate, soil environment and vegetation?
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Sources
2.3. Statistical Analysis Methods
3. Results and Analysis
3.1. Spatial Distribution of Soil C, N and C:N in the Dry Zone of Central Asia
3.2. Relationships between Soil C, N and C:N and Environmental Factors in the Dry Zone of Central Asia
4. Discussion
4.1. Spatial Variability Characteristics of Soil C, N and C:N
4.2. Drivers of Spatial Variability in Soil C, N and C:N
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cherlet, M.; Hutchinson, C.; Reynolds, J.; Hill, J.; Sommer, S.; Von Maltitz, G. World Atlas of Desertification Rethinking Land Degradation and Sustainable Land Management; Publication Office of the European Union: Luxembourg, 2018. [Google Scholar]
- White, R.P.; Nackoney, J. Drylands, People, and Ecosystem Goods and Services: A Web-Based Geospatial Analysis. World Resources Institute: Washington, DC, USA, 2003. [Google Scholar]
- Davies, J.; Poulsen, L.; Schulte-Herbruggen, B.; Mackinnon, K.; Gudka, M. Conserving Drylands Biodiversity; IUCN: Gland, Switzerland, 2012. [Google Scholar]
- Reid, W.V.; Mooney, H.A.; Cropper, A.; Capistrano, D.; Carpenter, S.R.; Chopra, K.; Dasgupta, P.; Dietz, T.; Duraiappah, A.K.; Hassan, R. Ecosystems and Human Well-Being-Synthesis: A Report of the Millennium Ecosystem Assessment; Island Press: Washington, DC, USA, 2005; ISBN 1597260401. [Google Scholar]
- Wang, C.; Wang, X.; Liu, D.; Wu, H.; Lu, X.; Fang, Y.; Cheng, W.; Luo, W.; Jiang, P.; Shi, J.; et al. Aridity threshold in controlling ecosystem nitrogen cycling in arid and semi-arid grasslands. Nat. Commun. 2014, 5, 4799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Condit, R.; Engelbrecht, B.M.J.; Pino, D.; Pérez, R.; Turner, B.L. Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees. Proc. Natl. Acad. Sci. USA 2013, 110, 5064–5068. [Google Scholar] [CrossRef] [Green Version]
- Tian, D.; Reich, P.B.; Chen, H.Y.H.; Xiang, Y.; Luo, Y.; Shen, Y.; Meng, C.; Han, W.; Niu, S. Global changes alter plant multi-element stoichiometric coupling. New Phytol. 2018, 221, 807–817. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Zhang, F.W.; Li, Y.K.; Han, D.R.; Guo, X.W.; Cao, G.M. The Soil Carbon and Nitrogen Storage and C/N Metrological Characteristics of Chemistry in Kobresia Humilis Meadow in Degradation Succession Stage. Chin. J. Grassl. 2012, 34, 42–47. [Google Scholar]
- Qiao, Y.; Wang, Z.; Duan, Z. Effects of Different Land-Use Types on Soil Carbon and Nitrogen Contents in the Northern Region of Qinghai Lake. Acta Prataculturae Sin. 2009, 18, 105–112. [Google Scholar]
- Wu, J.; Han, M.; Chang, W. The Mineralization of Soil Nitrogen and Its Influenced Factors under Alpine Meadows in Qilian Mountains. Acta Prataculturae Sin. 2007, 16, 39. [Google Scholar]
- Ning, Z.Y.; Li, Y.L.; Yang, H.L.; Zhang, Z.Q.; Zhang, J.P. Stoichiometry and Effects of Carbon, Nitrogen, and Phosphorus in Soil of Desertified Grasslands on Community Productivity and Species Diversity. Acta Ecol. Sin. 2019, 39, 1–10. [Google Scholar]
- Zhang, Y.; Song, C.; Zhang, K.; Cheng, X.; Band, L.E.; Zhang, Q. Effects of land use/land cover and climate changes on terrestrial net primary productivity in the Yangtze River Basin, China, from 2001 to 2010. J. Geophys. Res. Biogeosci. 2014, 119, 1092–1109. [Google Scholar] [CrossRef]
- Brevik, E.C.; Cerdà, A.; Mataix-Solera, J.; Pereg, L.; Quinton, J.N.; Six, J.; Van Oost, K. The interdisciplinary nature of SOIL. Soil 2015, 1, 117–129. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.-L.; Li, Q.-Q.; Wang, C.-Q.; Zhang, W.; Zhang, H.; Li, L.-X.; Chen, J.-W.; Ma, Y. Spatial Variability of Soil C/N Ratio and Its Influence Factors at a County Scale in Hilly Area of Mid-Sichuan Basin, Southwest China. Yingyong Shengtai Xuebao 2015, 26, 177–185. [Google Scholar]
- Zhang, L.-X.; Bai, Y.-F.; Han., X.-G. Application of N: P Stoichiometry to Ecology Studies. J. Integr. Plant Biol. 2003, 45, 1009. [Google Scholar]
- Yu, X.; Gaodi, X.; Kai, A.N. The Function and Economic Value of Soil Conservation of Ecosystems in Qinghai-Tibet Plateau. Acta Ecol. Sin. 2003, 23, 2367–2378. [Google Scholar]
- Zhang, Y.; Zhang, C.; Wang, Z.; Chen, Y.; Gang, C.; An, R.; Li, J. Vegetation dynamics and its driving forces from climate change and human activities in the Three-River Source Region, China from 1982 to 2012. Sci. Total Environ. 2016, 563, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Yu, M.; Chen, H.; Zhao, H.; Huang, Y.; Su, W.; Xia, F.; Chang, S.X.; Brookes, P.C.; Dahlgren, R.A.; et al. Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems. Glob. Chang. Biol. 2020, 26, 5267–5276. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Deng, H.; Du, K.; Lin, Y.; Ma, R.; Yu, W.; Wang, D.J.; Wu, C.Z.; Hong, W. Soil Stoichiometry Characteristics at Different Elevation Gradients of a Mountain in an Area with High Frequency Debris Flow: A Case Study in Xiaojiang Watershed, Yunnan. Acta Ecol. Sin. 2016, 36, 675–687. [Google Scholar]
- Chen, X.; Li, B.; Li, Q.; Li, J.; Abdulla, S. Spatio-temporal pattern and changes of evapotranspiration in arid Central Asia and Xinjiang of China. J. Arid Land 2012, 4, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Yu, G.; Liu, L.; Hu, S.; Chapin, F.S. Climate change, human impacts, and carbon sequestration in China. Proc. Natl. Acad. Sci. USA 2018, 115, 4015–4020. [Google Scholar] [CrossRef] [Green Version]
- Maestre, F.T.; Delgado-Baquerizo, M.; Jeffries, T.C.; Eldridge, D.J.; Ochoa, V.; Gozalo, B.; Quero, J.L.; García-Gómez, M.; Gallardo, A.; Ulrich, W.; et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc. Natl. Acad. Sci. USA 2015, 112, 15684–15689. [Google Scholar] [CrossRef]
- Schimel, J.; Balser, T.C.; Wallenstein, M. Microbial stress-response physiology and its implications for ecosystem function. Ecology 2007, 88, 1386–1394. [Google Scholar] [CrossRef]
- Ward, D.; Wiegand, K.; Getzin, S. Walter’s Two-Layer Hypothesis Revisited: Back to the Roots! Oecologia 2013, 172, 617–630. [Google Scholar] [CrossRef] [Green Version]
- Maestre, F.T.; Benito, B.M.; Berdugo, M.; Concostrina-Zubiri, L.; Delgado-Baquerizo, M.; Eldridge, D.J.; Guirado, E.; Gross, N.; Kéfi, S.; Le Bagousse-Pinguet, Y.L.; et al. Biogeography of Global Drylands. New Phytol. 2021, 231, 540–558. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.-Y.; Hu, R.-J.; Zhou, Q.-M.; Chen, X.; Yin, G.; Qian, J. Spatiotemporal Variation of Wetting or Drying in the Arid Regions in Central Asia. Arid Zo. Res. 2018, 35, 260–268. [Google Scholar]
- Zhang, C.; Ren, W. Complex climatic and CO2 controls on net primary productivity of temperate dryland ecosystems over central Asia during 1980–2014. J. Geophys. Res. Biogeosci. 2017, 122, 2356–2374. [Google Scholar] [CrossRef]
- Durán, J.; Delgado-Baquerizo, M.; Dougill, A.J.; Guuroh, R.T.; Linstädter, A.; Thomas, A.D.; Maestre, F.T. Temperature and aridity regulate spatial variability of soil multifunctionality in drylands across the globe. Ecology 2018, 99, 1184–1193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlesinger, W.H.; Reynolds, J.F.; Cunningham, G.L.; Huenneke, L.F.; Jarrell, W.M.; Virginia, R.A.; Whitford, W.G. Biological Feedbacks in Global Desertification. Science 1990, 247, 1043–1048. [Google Scholar] [CrossRef] [Green Version]
- Fang, C.; Ye, J.-S.; Gong, Y.; Pei, J.; Yuan, Z.; Xie, C.; Zhu, Y.; Yu, Y. Seasonal responses of soil respiration to warming and nitrogen addition in a semi-arid alfalfa-pasture of the Loess Plateau, China. Sci. Total Environ. 2017, 590, 729–738. [Google Scholar] [CrossRef]
- Gruber, N.; Galloway, J.N. An Earth-system perspective of the global nitrogen cycle. Nature 2008, 451, 293–296. [Google Scholar] [CrossRef] [Green Version]
- Delgado-Baquerizo, M.; Maestre, F.T.; Gallardo, A.; Bowker, M.A.; Wallenstein, M.D.; Quero, J.L.; Ochoa, V.; Gozalo, B.; García-Gómez, M.; Soliveres, S.; et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 2013, 502, 672–676. [Google Scholar] [CrossRef]
- Hobbie, S.E.; Nadelhoffer, K.J.; Högberg, P. A synthesis: The role of nutrients as constraints on carbon balances in boreal and arctic regions. Plant Soil 2002, 242, 163–170. [Google Scholar] [CrossRef]
- Jing, X.; Wang, Y.; Chung, H.; Mi, Z.; Wang, S.; Zeng, H.; He, J.-S. No temperature acclimation of soil extracellular enzymes to experimental warming in an alpine grassland ecosystem on the Tibetan Plateau. Biogeochemistry 2014, 117, 39–54. [Google Scholar] [CrossRef]
- Pajares, S.; Bohannan, B.J.M. Ecology of Nitrogen Fixing, Nitrifying, and Denitrifying Microorganisms in Tropical Forest Soils. Front. Microbiol. 2016, 7, 1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Björsne, A.-K.; Rütting, T.; Ambus, P. Combined climate factors alleviate changes in gross soil nitrogen dynamics in heathlands. Biogeochemistry 2014, 120, 191–201. [Google Scholar] [CrossRef]
- Davidson, E.A.; Janssens, I.A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 2006, 440, 165–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sardans, J.; Peuelas, J.; Estiarte, M. Changes in Soil Enzymes Related to C and N Cycle and in Soil C and N Content under Prolonged Warming and Drought in a Mediterranean Shrubland. Appl. Soil Ecol. 2008, 39, 223–235. [Google Scholar] [CrossRef]
- Post, W.M.; Emanuel, W.R.; Zinke, P.J.; Stangenberger, A.G. Soil carbon pools and world life zones. Nature 1982, 298, 156–159. [Google Scholar] [CrossRef]
- Buckman, H.O.; Brady, N.C. The Nature and Properties of Soils, 7th Edition. J. Range Manag. 2002, 5, 333. [Google Scholar]
- Sun, X.; Liang, B.; Wang, J.; Cheng, Y.; Chang, S.X.; Cai, Z.-C.; Müller, C.; Zhang, J.-B. Soil N transformation rates are not linked to fertilizer N losses in vegetable soils with high N input. Soil Tillage Res. 2020, 202, 104651. [Google Scholar] [CrossRef]
- Tyler, G. Some Ecophysiological and Historical Approaches to Species Richness and Calcicole/Calcifuge Behaviour: Contribution to a Debate. Folia Geobot. 2003, 38, 419–428. [Google Scholar] [CrossRef]
- Santi, C.; Bogusz, D.; Franche, C. Biological nitrogen fixation in non-legume plants. Ann. Bot. 2013, 111, 743–767. [Google Scholar] [CrossRef]
Type | Variable | Unite | Original Resolution | Data Source |
---|---|---|---|---|
Mean annual temperature | °C | 4638.3 m | doi:10.1038/sdata.2017.191, accessed on 16 June 2022 | |
Climate | Mean annual precipitation | mm | 4638.3 m | doi:10.1038/sdata.2017.191, accessed on 16 June 2022 |
Aridity | - | 4638.3 m | doi:10.1038/sdata.2017.191, accessed on 16 June 2022 | |
Elevation | Elevation | m | 4638.3 m | doi:10.1038/sdata.2017.191, accessed on 16 June 2022 |
Soil organic carbon | g/kg | 250 m | https://www.isric.org/explore/soilgrids/faq-soilgrids-2017, accessed on 16 June 2022 | |
Soil Properties | Total nitrogen | g/kg | 250 m | https://www.isric.org/explore/soilgrids/faq-soilgrids-2017, accessed on 16 June 2022 |
Aboveground biomass | Mg/ha | 1000 m | https://doi.org/10.3334/ORNLDAAC/2017, accessed on 16 June 2022 | |
pH | - | 250 m | https://www.isric.org/explore/soilgrids/faq-soilgrids-2017, accessed on 16 June 2022 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Zhang, S.; Wang, Y. Distribution Characteristics and Drivers of Soil Carbon and Nitrogen in the Drylands of Central Asia. Land 2022, 11, 1723. https://doi.org/10.3390/land11101723
Chen Y, Zhang S, Wang Y. Distribution Characteristics and Drivers of Soil Carbon and Nitrogen in the Drylands of Central Asia. Land. 2022; 11(10):1723. https://doi.org/10.3390/land11101723
Chicago/Turabian StyleChen, Yusen, Shihang Zhang, and Yongdong Wang. 2022. "Distribution Characteristics and Drivers of Soil Carbon and Nitrogen in the Drylands of Central Asia" Land 11, no. 10: 1723. https://doi.org/10.3390/land11101723
APA StyleChen, Y., Zhang, S., & Wang, Y. (2022). Distribution Characteristics and Drivers of Soil Carbon and Nitrogen in the Drylands of Central Asia. Land, 11(10), 1723. https://doi.org/10.3390/land11101723