Assessment of Woody Residual Biomass Generation Capacity in the Central Region of Portugal: Analysis of the Power Production Potential
Abstract
:1. Introduction
2. Methodology
- (a)
- Data referring to the Pêgo Power Plant, namely concerning the operation of the power station, logistical process, location, installed equipment, and other data considered relevant for the present study (information available online at http://www.tejoenergia.com/pt/central, accessed on 15 April 2022).
- (b)
- Data on power production in Portugal, by type of source, fuel, and period (information available online at https://www.ren.pt, accessed on 20 April 2022; information available online at https://www.portugalenergia.pt/setor-energetico/bloco-3/, accessed on 20 April 2022; information available online at https://www.apren.pt, accessed on 20 April 2022).
- (c)
- Data referring to land use and soil occupation, which served to calculate the amounts of residual woody biomass available in the analyzed regions (information available online at https://www.dgterritorio.gov.pt/carta-de-uso-e-ocupacao-do-solo-para-2018, accessed on 12 April 2022). According to Caetano and Marcelino [25], COS is a polygons cartography representing homogeneous land use/occupation units supported by aerial photographs (orthophoto maps). A unit of land occupation/use is understood to be an area of land greater than or equal to the defined minimum cartographic unit (1 ha) with a distance between lines greater than or equal to 20 m and whose percentage of a given class of occupation/land use is greater than or equal to 75% of the entire delimited area.
- (d)
- Data for the determination of residual woody biomass estimation coefficients adapted from the “Bioeconomia 2030—Linhas Estratégicas dos Setores de Produção Primária no Contexto do Desenvolvimento da Estratégia Nacional para a Bioeconomia Sustentável 2030” (information available online at https://www.gpp.pt/index.php/noticias/bioeconomia-sustentavel-2030-estudo-para-o-setor-de-producao-primaria-de-produtos-biologicos, accessed on 12 April 2022; information available online at Resolution of the Council of Ministers nr. 163/2017, of 31 June—https://dre.pt/dre/detalhe/resolucao-conselho-ministros/163-2017-114133883—National Plan for the Promotion of Biorefineries, accessed on 12 April 2022; information available online at https://www.icnf.pt/florestas/flestudosdocumentosestatisticasindicadores, accessed on 12 April 2022).
3. Results
3.1. The Pêgo Power Plant
3.1.1. Location
3.1.2. Operation of the Coal-Fueled Power Plant
3.1.3. Operation of a Biomass-Fueled Power Plant
3.1.4. Assessment of the Potential for Biomass Consumption in the Hypothetical Scenario of Total Conversion
3.2. Quantification of Residual Woody Biomass Potential
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Armaroli, N.; Balzani, V. The Future of Energy Supply: Challenges and Opportunities. Angew. Chem. Int. Ed. 2007, 46, 52–66. [Google Scholar] [CrossRef] [PubMed]
- Mikulčić, H.; Baleta, J.; Klemeš, J.J.; Wang, X. Energy transition and the role of system integration of the energy, water and environmental systems. J. Clean. Prod. 2021, 292, 126027. [Google Scholar] [CrossRef]
- Chen, W.-M.; Kim, H.; Yamaguchi, H. Renewable energy in eastern Asia: Renewable energy policy review and comparative SWOT analysis for promoting renewable energy in Japan, South Korea, and Taiwan. Energy Policy 2014, 74, 319–329. [Google Scholar] [CrossRef]
- Unruh, G.C. Escaping carbon lock-in. Energy Policy 2002, 30, 317–325. [Google Scholar] [CrossRef]
- Chow, J.; Kopp, R.J.; Portney, P.R. Energy Resources and Global Development. Science 2003, 302, 1528–1531. [Google Scholar] [CrossRef] [Green Version]
- Martens, J.A.; Bogaerts, A.; De Kimpe, N.; Jacobs, P.A.; Marin, G.B.; Rabaey, K.; Saeys, M.; Verhelst, S. The Chemical Route to a Carbon Dioxide Neutral World. ChemSusChem 2016, 10, 1039–1055. [Google Scholar] [CrossRef]
- Lange, M.; Cummins, V. Managing stakeholder perception and engagement for marine energy transitions in a decarbonising world. Renew. Sustain. Energy Rev. 2021, 152, 111740. [Google Scholar] [CrossRef]
- Simionescu, M.; Păuna, C.B.; Diaconescu, T. Renewable Energy and Economic Performance in the Context of the European Green Deal. Energies 2020, 13, 6440. [Google Scholar] [CrossRef]
- Grubler, A.; Wilson, C.; Bento, N.; Boza-Kiss, B.; Krey, V.; McCollum, D.L.; Rao, N.D.; Riahi, K.; Rogelj, J.; De Stercke, S. A low energy demand scenario for meeting the 1.5 C target and sustainable development goals without negative emission technologies. Nature energy 2018, 3, 515–527. [Google Scholar] [CrossRef] [Green Version]
- Inderwildi, O.; Zhang, C.; Wang, X.; Kraft, M. The impact of intelligent cyber-physical systems on the decarbonization of energy. Energy Environ. Sci. 2020, 13, 744–771. [Google Scholar] [CrossRef]
- Niles, K.; Lloyd, B. Small Island Developing States (SIDS) & energy aid: Impacts on the energy sector in the Caribbean and Pacific. Energy Sustain. Dev. 2013, 17, 521–530. [Google Scholar] [CrossRef]
- Bazilian, M.; Onyeji, I. Fossil fuel subsidy removal and inadequate public power supply: Implications for businesses. Energy Policy 2012, 45, 1–5. [Google Scholar] [CrossRef]
- Van Schaik, L.; Schunz, S. Explaining EU activism and impact in global climate politics: Is the Union a norm-or interest-driven actor? JCMS J. Common Mark. Stud. 2012, 50, 169–186. [Google Scholar] [CrossRef]
- Di Silvestre, M.L.; Favuzza, S.; Sanseverino, E.R.; Zizzo, G. How Decarbonization, Digitalization and Decentralization are changing key power infrastructures. Renew. Sustain. Energy Rev. 2018, 93, 483–498. [Google Scholar] [CrossRef]
- Capros, P.; Paroussos, L.; Fragkos, P.; Tsani, S.; Boitier, B.; Wagner, F.; Busch, S.; Resch, G.; Blesl, M.; Bollen, J. European decarbonisation pathways under alternative technological and policy choices: A multi-model analysis. Energy Strat. Rev. 2014, 2, 231–245. [Google Scholar] [CrossRef]
- Scarlat, N.; Dallemand, J.-F.; Monforti-Ferrario, F.; Banja, M.; Motola, V. Renewable energy policy framework and bioenergy contribution in the European Union—An overview from National Renewable Energy Action Plans and Progress Reports. Renew. Sustain. Energy Rev. 2015, 51, 969–985. [Google Scholar] [CrossRef]
- Fortes, P.; Simoes, S.; Gouveia, J.P.; Seixas, J. Electricity, the silver bullet for the deep decarbonisation of the energy system? Cost-effectiveness analysis for Portugal. Appl. Energy 2019, 237, 292–303. [Google Scholar] [CrossRef]
- Ericsson, K.; Nilsson, L.J. Assessment of the potential biomass supply in Europe using a resource-focused approach. Biomass Bioenergy 2006, 30, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Nunes, L.J.R.; Casau, M.; Dias, M.F. Portuguese Wood Pellets Market: Organization, Production and Consumption Analysis. Resources 2021, 10, 130. [Google Scholar] [CrossRef]
- Beccali, M.; Columba, P.; D’Alberti, V.; Franzitta, V. Assessment of bioenergy potential in Sicily: A GIS-based support methodology. Biomass Bioenergy 2009, 33, 79–87. [Google Scholar] [CrossRef]
- Angelis-Dimakis, A.; Biberacher, M.; Dominguez, J.; Fiorese, G.; Gadocha, S.; Gnansounou, E.; Guariso, G.; Kartalidis, A.; Panichelli, L.; Pinedo, I.; et al. Methods and tools to evaluate the availability of renewable energy sources. Renew. Sustain. Energy Rev. 2011, 15, 1182–1200. [Google Scholar] [CrossRef]
- Yousefi, H.; Noorollahi, Y.; Hajinezhad, A.; Alimohammadi, A. GIS-based spatially integrated bioenergy resources assessment in Kurdistan Province-Northwest Iran. Sustain. Energy Technol. Assess. 2017, 23, 11–20. [Google Scholar] [CrossRef]
- Lozano-García, D.F.; Santibañez-Aguilar, J.E.; Lozano, F.J.; Flores-Tlacuahuac, A. GIS-based modeling of residual biomass availability for energy and production in Mexico. Renew. Sustain. Energy Rev. 2020, 120, 109610. [Google Scholar] [CrossRef]
- Famoso, F.; Prestipino, M.; Brusca, S.; Galvagno, A. Designing sustainable bioenergy from residual biomass: Site allocation criteria and energy/exergy performance indicators. Appl. Energy 2020, 274, 115315. [Google Scholar] [CrossRef]
- Caetano, M.; Marcelino, F. Especificações Técnicas da Carta de Uso e Ocupação do Solo (COS) de Portugal Continental Para 2018; Direção Geral do Território: Lisboa, Portugal, 2019; p. 60. [Google Scholar]
- Casau, M.; Cancela, D.C.M.; Matias, J.C.O.; Dias, M.F.; Nunes, L.J.R. Coal to Biomass Conversion as a Path to Sustainability: A Hypothetical Scenario at Pego Power Plant (Abrantes, Portugal). Resources 2021, 10, 84. [Google Scholar] [CrossRef]
- Bergman, P.C.; Boersma, A.; Zwart, R.; Kiel, J. Torrefaction for Biomass Co-Firing in Existing Coal-Fired Power Stations; Energy Research Centre of the Netherlands: Petten, The Netherlands, 2005. [Google Scholar]
- Tumuluru, J.S.; Wright, C.T.; Boardman, R.D.; Yancey, N.A.; Sokhansanj, S. A review on biomass classification and composition, co-firing issues and pretreatment methods. Am. Soc. Agric. Biol. Eng. 2011, 1, 1110458. [Google Scholar] [CrossRef]
- Li, J.; Brzdekiewicz, A.; Yang, W.; Blasiak, W. Co-firing based on biomass torrefaction in a pulverized coal boiler with aim of 100% fuel switching. Appl. Energy 2012, 99, 344–354. [Google Scholar] [CrossRef]
- Goldfarb, J.L.; Liu, C. Impact of blend ratio on the co-firing of a commercial torrefied biomass and coal via analysis of oxidation kinetics. Bioresour. Technol. 2013, 149, 208–215. [Google Scholar] [CrossRef]
- Panahi, A.; Tarakcioglu, M.; Schiemann, M.; Delichatsios, M.; Levendis, Y.A. On the particle sizing of torrefied biomass for co-firing with pulverized coal. Combust. Flame 2018, 194, 72–84. [Google Scholar] [CrossRef]
- Sher, F.; Yaqoob, A.; Saeed, F.; Zhang, S.; Jahan, Z.; Klemeš, J.J. Torrefied biomass fuels as a renewable alternative to coal in co-firing for power generation. Energy 2020, 209, 118444. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Pawlak-Kruczek, H.; Yang, W.; Kruczek, P.; Blasiak, W. Process simulation of co-firing torrefied biomass in a 220MWe coal-fired power plant. Energy Convers. Manag. 2014, 84, 503–511. [Google Scholar] [CrossRef]
Source | Produced Energy (GWh) | Produced Energy (%) |
---|---|---|
Natural gas | 4295.96 | 29.27 |
Fossil cogeneration | 908.51 | 6.19 |
Hydro energy | 2067.99 | 14.09 |
Wind energy | 4824.33 | 32.87 |
Biomass energy | 1128.66 | 7.69 |
Solar energy | 704.50 | 4.80 |
Retro pumping in dams | 747.06 | 5.09 |
NUTS II | Pruning Residues (t·yr−1) | Forest Residual Biomass (t·yr−1) | Total (t·yr−1) |
---|---|---|---|
Northern region | 963,472 | 751,695 | 1,715,167 |
Central region | 590,661 | 960,708 | 1,551,369 |
Lisbon and Tagus Valley region | 660,477 | 55,310 | 715,787 |
Alentejo region | 715,505 | 555,790 | 1,271,295 |
Algarve region | 58,996 | 210,817 | 269,813 |
Mainland Portugal | 3,007,071 | 2,543,320 | 5,541,391 |
Biomass Sources | Area (ha) | Relative Area (%) | Quantity (t·yr−1) |
---|---|---|---|
Orchards | 37,021 | 1.3 | 35,540 |
Olive groves | 104,491 | 3.7 | 177,635 |
Vineyards | 50,143 | 1.8 | 175,501 |
Maritime pine | 620,195 | 22.2 | 331,474 |
Eucalyptus | 482,542 | 17.2 | 216,733 |
Scrubland | 374,537 | 13.4 | 342,613 |
Total | 2,800,127 | 59.6 | 1,279,495 |
Biomass Sources | Area (ha) | Relative Area (%) | Quantity (t·yr−1) |
---|---|---|---|
Orchards | 918 | 2.5 | 881 |
Olive groves | 31,475 | 30.1 | 53,508 |
Vineyards | 2095 | 4.2 | 7333 |
Maritime pine | 84,340 | 13.6 | 45,077 |
Eucalyptus | 75,448 | 15.6 | 33,887 |
Scrubland | 32,625 | 8.7 | 29,844 |
Total | 334,423 | 11.9 | 117,530 |
Biomass Power Plant | Location (District) | Installed Power (MW) | Biomass Demand (t·yr−1) | |
---|---|---|---|---|
Cogeração Amorim | Aveiro | 1 | 2562 | 3059 |
Cogeração de Cacia | Aveiro | 35.1 | 89,936 | 107,370 |
Termoelétrica de Cacia | Aveiro | 12.5 | 32,029 | 38,237 |
Termoelétrica Terras de Sta. Maria | Aveiro | 10.75 | 27,545 | 32,884 |
Central a Biomassa de Vila Nova de Famalicão | Braga | 10.8 | 27,673 | 33,037 |
Central de Biomassa de Corga de Fradelos | Braga | 10 | 25,623 | 30,590 |
Cogeação Celtejo | Castelo Branco | 23.69 | 60,701 | 72,467 |
Termoelétrica Centroliva | Castelo Branco | 5.63 | 14,426 | 17,222 |
Termoelétrica da Palser | Castelo Branco | 3.3 | 8456 | 10,095 |
Termoelétrica de Belmonte | Castelo Branco | 2.53 | 6483 | 7739 |
Termoelétrica de Rodão | Castelo Branco | 12.5 | 32,029 | 38,237 |
Cogeração Celbi | Coimbra | 70.96 | 181,820 | 217,065 |
Cogeração da Figueira da Foz (Lavos) | Coimbra | 95 | 243,418 | 290,603 |
Termoelétrica Celbi | Coimbra | 6.26 | 16,040 | 19,149 |
Biomassa Caima | Santarém | 7.04 | 18,039 | 21,535 |
Cogeração Caima | Santarém | 8 | 20,498 | 24,472 |
Termoelétrica de Constância | Santarém | 13.23 | 33,899 | 40,470 |
Cogeração de Setúbal | Setúbal | 53.9 | 138,108 | 164,879 |
Termoelétrica de Setúbal | Setúbal | 12.5 | 32,029 | 38,237 |
Cogeração Europac Energia Viana | Viana do Castelo | 103.7 | 265,710 | 317,216 |
Cogeração SIAF | Viseu | 3.8 | 9737 | 11,624 |
Mangualde | Viseu | 12.6 | 32,285 | 38,543 |
Termoelétrica de Mortágua | Viseu | 9 | 23,061 | 27,531 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nunes, L.J.R.; Casau, M.; Matias, J.C.O.; Dias, M.F. Assessment of Woody Residual Biomass Generation Capacity in the Central Region of Portugal: Analysis of the Power Production Potential. Land 2022, 11, 1722. https://doi.org/10.3390/land11101722
Nunes LJR, Casau M, Matias JCO, Dias MF. Assessment of Woody Residual Biomass Generation Capacity in the Central Region of Portugal: Analysis of the Power Production Potential. Land. 2022; 11(10):1722. https://doi.org/10.3390/land11101722
Chicago/Turabian StyleNunes, Leonel J. R., Margarida Casau, João C. O. Matias, and Marta Ferreira Dias. 2022. "Assessment of Woody Residual Biomass Generation Capacity in the Central Region of Portugal: Analysis of the Power Production Potential" Land 11, no. 10: 1722. https://doi.org/10.3390/land11101722
APA StyleNunes, L. J. R., Casau, M., Matias, J. C. O., & Dias, M. F. (2022). Assessment of Woody Residual Biomass Generation Capacity in the Central Region of Portugal: Analysis of the Power Production Potential. Land, 11(10), 1722. https://doi.org/10.3390/land11101722