An Alternative Method for the Generation of Consistent Mapping to Monitoring Land Cover Change: A Case Study of Guerrero State in Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. Pre-Processing
2.2.2. Correction and Transformation
2.3. LULC Map Generation
2.3.1. LULC Map Generation for the Base Date
2.3.2. LULC Map Generation for the Test Date
2.4. Accuracy Assessment
3. Results and Discussion
3.1. Base Date LULC Map
Accuracy Assessment of the Base Date LULC Map
3.2. Test Date LULC Map
3.2.1. Change Detection Map
3.2.2. Classification of Change Zones
3.2.3. Complementation of the Test Date LULC Map
3.2.4. Accuracy Assessment of the LULC Test Date Map
3.3. Consistency Assessment
3.3.1. Conventional LULC Map vs. LULC Map through Change Detection
3.3.2. LULC Dynamics Based on Conventional Classification Methods
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- PNUMA. Perspectivas del Medio Ambiente Mundial 2002 GEO-3: Pasado, Presente y Futuro; Mundi-Prensa: Madrid, Spain, 2002. [Google Scholar]
- Sombroek, W.G.; Sims, D. Planning for Sustainable Use of Land Resources: Toward a New Approach (FAO Land and Water Bulletin 2); Food and Agriculture Organization of the United Nations: Rome, Italy, 1995. [Google Scholar]
- Wood, S.; Sebastian, K.; Scherr, S.J. Pilot Analysis of Global Ecosystems: Agroecosystems, a Joint Study by International Food Policy Research Institute and World Resources Institute; International Food Policy Research Institute and World Resources Institute: Washington DC, WA, USA, 2000. [Google Scholar]
- Lambin, E.F. Modelling and monitoring land-cover change processes in tropical regions. Prog. Phys. Geogr. 1997, 21, 375–393. [Google Scholar] [CrossRef]
- Turkelboom, F.; Poesen, J.; Trébuil, G. The multiple land degradation effects caused by land-use intensification in tropical steeplands: A catchment study from northern Thailand. Catena 2008, 75, 102–116. [Google Scholar] [CrossRef]
- del Carmen Salazar, E.; Zavala, J.; Castillo, O.; Cámara, R. Evaluación espacial y temporal de la vegetación de la Sierra Madrigal, Tabasco, México (1973–2003). Investig. Geogr. 2004, 7–23. Available online: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0188-46112004000200002 (accessed on 11 July 2021).
- Landa, R.; Meave, J.; Carabias, J. Environmental deterioration in rural Mexico: An examination of the concept. Ecol. Appl. 1997, 7, 316–329. [Google Scholar] [CrossRef]
- Velázquez, A.; Mas, J.F.; Díaz Gallegos, J.R.; Mayorga-Saucedo, R.; Alcántara, P.C.; Castro, R.; Fernández, T.; Bocco, G.; Ezcurra, E.; Palacio, J.L. Patrones y Tasas de Cambio de Uso del Suelo en México; Gaceta Ecológica: Ciudad de México, México, 2002; pp. 21–37. ISSN 1405-2849. [Google Scholar]
- Victoria, H.A.; Niño, A.M.; Rodriguez, A.J.A. La Serie IV De Uso Del Suelo Y Vegetación Escala 1:250,000 De INEGI, Información Del Periodo 2007–2008; Instituto Nacional de Estadística y Geografía: Aguascalientes, México, 2013. [Google Scholar]
- Curtis, P.G.; Slay, C.M.; Harris, N.L.; Tyukavina, A.; Hansen, M.C. Classifying drivers of global forest loss. Science 2018, 361, 1108–1111. [Google Scholar] [CrossRef] [PubMed]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Okruszko, T.; Duel, H.; Acreman, M.; Grygoruk, M.; Flörke, M.; Schneider, C. Broad-scale ecosystem services of European wetlands-overview of the current situation and future perspectives under different climate and water management scenarios. Hydrol. Sci. J. 2011, 56, 1501–1517. [Google Scholar] [CrossRef]
- Rojas, A.M.; Ruiz-Agudelo, A.; Diazgranados, C.; Polanco, H.; Anderson, R.; Diazgranados, M.C. Approach to an integral valuation of mangrove’s ecosystem services in a marine protected area. Colomb. Pac. Region. J. Environ. Econ. Policy 2019, 8, 322–342. [Google Scholar] [CrossRef]
- United Nations. Forests, Desertification and Biodiversity-United Nations Sustainable Development; United Nations: New York, NY, USA, 2019; pp. 1–5. [Google Scholar]
- Mas, J.-F.; Velázquez, A.; Couturier, S. La evaluación de los cambios de cobertura/uso del suelo en la República Mexicana. Investig. Ambient. 2008, 1, 23–39. [Google Scholar]
- Corner, R.J.; Dewan, A.M.; Chakma, S. Monitoring and prediction of land-use and land-cover (LULC) change. In Dhaka Megacity: Geospatial Perspectives on Urbanisation, Environment and Health; Springer: New York, NY, USA; London, UK, 2014; pp. 75–97. [Google Scholar]
- D’Aquino, P.; August, P.; Balmann, A.; Berger, T.; Bousquet, F.; Brondízio, E.; Brown, D.G.; Couclelis, H.; Deadman, P.; Goodchild, M.F. Agent-Based Models of Land-Use and Land-Cover Change; Report and Review of an International Workshop; LUCC International Project Office: Irvine, CA, USA, 2001; p. 124. [Google Scholar]
- Soares-Filho, B.S.; Nepstad, D.C.; Curran, L.M.; Cerqueira, G.C.; Garcia, R.A.; Ramos, C.A.; Voll, E.; McDonald, A.; Lefebvre, P.; Schlesinger, P. Modelling conservation in the Amazon basin. Nature 2006, 440, 520–523. [Google Scholar] [CrossRef] [PubMed]
- Verburg, P.H.; Kok, K.; Pontius, R.G.; Veldkamp, A. Modeling Land-Use and Land-Cover Change. In Land-Use and Land-Cover Change. Global Change; The IGBP Series; Lambin, E.F., Geist, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 117–135. [Google Scholar] [CrossRef]
- Aitkenhead, M.J.; Aalders, I.H. Automating land cover mapping of Scotland using expert system and knowledge integration methods. Remote Sens. Environ. 2011, 115, 1285–1295. [Google Scholar] [CrossRef]
- Sutherland, W.J.; Adams, W.M.; Aronson, R.B.; Aveling, R.; Blackburn, T.M.; Broad, S.; Ceballos, G.; Cote, I.M.; Cowling, R.M.; Fonseca, G.A.B.D. One hundred questions of importance to the conservation of global biological diversity. Conserv. Biol. 2009, 23, 557–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuvieco, E. Teledetección Ambiental: La Observación de la Tierra Desde el Espacio; Ariel Ciencia: Barcelona, Spain, 2010; p. 591. [Google Scholar]
- Conde, M.C.; Perelman, S.B.; Cerezo, A. Efecto de diferentes métodos de clasificación de imágenes satelitales sobre índices de paisaje. Rev. Teledetec. 2009, 32, 5–13. [Google Scholar]
- Smith, D.A. Online interactive thematic mapping: Applications and techniques for socio-economic research. Comput. Environ. Urban. Syst. 2016, 57, 106–117. [Google Scholar] [CrossRef] [Green Version]
- Hartley, S.; Green, D.R. Integrating Photointerpretation and GIS for Vegetation Mapping: Some Issues of Error. In Vegetation Mapping: From Patch to Planet; Alexander, R., Millington, A., Eds.; John Wiley and Sons: New York, NY, USA, 2000; Chapter 7; pp. 103–134. [Google Scholar]
- Friedl, M.A.; McIver, D.K.; Hodges, J.C.F.; Zhang, X.Y.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schneider, A.; Cooper, A. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ. 2002, 83, 287–302. [Google Scholar] [CrossRef]
- Bartholome, E.; Belward, A.S. GLC2000: A new approach to global land cover mapping from Earth observation data. Int. J. Remote Sens. 2005, 26, 1959–1977. [Google Scholar] [CrossRef]
- Arino, O.; Bicheron, P.; Achard, F.; Latham, J.; Witt, R.; Weber, J.L. GLOBCOVER: The most detailed portrait of Earth. Eur Space Agency Bull. 2008, 2008, 24–31. [Google Scholar]
- Iwao, K.; Nishida, K.; Kinoshita, T.; Yamagata, Y. Validating land cover maps with Degree Confluence Project information. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Tchuenté, A.T.K.; Roujean, J.-L.; Jong, S.M.D. Comparison and relative quality assessment of the GLC2000, GLOBCOVER, MODIS and ECOCLIMAP land cover data sets at the African continental scale. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 207–219. [Google Scholar] [CrossRef]
- Laba, M.; Gregory, S.K.; Braden, J.; Ogurcak, D.; Hill, E.; Fegraus, E.; Fiore, J.; DeGloria, S.D. Conventional and fuzzy accuracy assessment of the New York Gap Analysis Project land cover map. Remote Sens. Environ. 2002, 81, 443–455. [Google Scholar] [CrossRef]
- Wickham, J.D.; Stehman, S.V.; Smith, J.H.; Yang, L. Thematic accuracy of the 1992 national land-cover data for the western United States. Remote Sens. Environ. 2004, 91, 452–468. [Google Scholar] [CrossRef]
- Wulder, M.A.; White, J.C.; Magnussen, S.; McDonald, S. Validation of a large area land cover product using purpose-acquired airborne video. Remote Sens. Environ. 2007, 106, 480–491. [Google Scholar] [CrossRef]
- Xie, Y.; Sha, Z.; Bai, Y. Classifying historical remotely sensed imagery using a tempo-spatial feature evolution (T-SFE) model. ISPRS J. Photogramm. Remote Sens. 2010, 65, 182–190. [Google Scholar] [CrossRef]
- Singh, A. Review article digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 1989, 10, 989–1003. [Google Scholar] [CrossRef] [Green Version]
- Vázquez-Jiménez, R.; Romero-Calcerrada, R.; Ramos-Bernal, R.N.; Arrogante-Funes, P.; Novillo, C.J. Topographic Correction to Landsat Imagery through Slope Classification by Applying the SCS C Method in Mountainous Forest Areas. ISPRS Int. J. Geo Inf. 2017, 6, 287–302. [Google Scholar] [CrossRef]
- Mas, J.-F. Change estimates by map comparison: A method to reduce erroneous changes due to positional error. Trans. GIS 2005, 9, 619–629. [Google Scholar] [CrossRef]
- Pan, X.; Zhao, J.; Xu, J. An object-based and heterogeneous segment filter convolutional neural network for high-resolution remote sensing image classification. Int. J. Remote Sens. 2019, 40, 5892–5916. [Google Scholar] [CrossRef]
- INEGI. Guía Para la Interpretación de Cartografía: Uso del Suelo y Vegetación: Escala 1:250,000, Serie V; Instituto Nacional de Estadística y Geografía: Aguascalientes, Mexico, 2015; p. 195.
- INEGI. Censo de Población y Vivienda 2010; Instituto Nacional de Estadística y Geografía: Aguascalientes, Mexico, 2011.
- Universal, E. Excavan en Guerrero la Mina de Oro Más Grande de América Latina; México. 2005. Available online: https://www.cronica.com.mx/notas/2005/212974.html (accessed on 11 July 2021).
- USGS. Landsat 4-7 Climate Data Record (CDR) Surface Reflectance, Product Guide; United States Geological Survey: Reston, VA, USA, 2015.
- USGS. Provisional Landsat 8 Surface Reflectance Product, Product Guide; United States Geological Survey: Reston, VA, USA, 2015.
- Soenen, S.A.; Peddle, D.R.; Coburn, C.A. A Modified Sun-Canopy-Sensor Topographic Correction in Forested Terrain. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2148–2159. [Google Scholar] [CrossRef]
- Gu, D.; Gillespie, A. Topographic normalization of Landsat TM images of forest based on subpixel sun–canopy–sensor geometry. Remote Sens. Environ. 1998, 64, 166–175. [Google Scholar] [CrossRef]
- Teillet, P.M.; Guindon, B.; Goodenough, D.G. On the slope-aspect correction of multispectral scanner data. Can. J. Remote Sens. 1982, 8, 84–106. [Google Scholar] [CrossRef] [Green Version]
- Vázquez-Jiménez, R.; Romero-Calcerrada, R.; Novillo, C.J.; Ramos-Bernal, R.N.; Funes, P.A. Applying the Chi-square transformation and automatic secant thresholding to Landsat imagery as unsupervised change detection methods. J. Appl. Remote Sens. 2017, 11, 016016. [Google Scholar] [CrossRef]
- Lüdeke, M.K.B.; Ramage, P.H.; Kohlmaier, G.H. The use of satellite NDVI data for the validation of global vegetation phenology models: Application to the Frankfurt Biosphere Model. Ecol. Model. 1996, 91, 255–270. [Google Scholar] [CrossRef]
- Baig, M.H.A.; Zhang, L.; Shuai, T.; Tong, Q. Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance. Remote Sens. Lett. 2014, 5, 423–431. [Google Scholar] [CrossRef]
- Crist, E.P.; Cicone, R.C. A physically-based transformation of Thematic Mapper data-The TM Tasseled Cap. IEEE Trans. Geosci. Remote Sens. 1984, 256–263. [Google Scholar] [CrossRef]
- Healey, S.P.; Cohen, W.B.; Zhiqiang, Y.; Krankina, O.N. Comparison of Tasseled Cap-based Landsat data structures for use in forest disturbance detection. Remote Sens. Environ. 2005, 97, 301–310. [Google Scholar] [CrossRef]
- Kaliyamurthie, K.P.; Parameswari, D. Remote Sensing Imaging for Satellite Image Segmentation. Indian J. Sci. Technol. 2015, 8. [Google Scholar] [CrossRef] [Green Version]
- Angulo, J.; Serra, J. Segmentación de imágenes en color utilizando histogramas bi-variables en espacios color polares luminancia/saturación/matiz. Comput. Sist. 2005, 8, 303–316. [Google Scholar]
- Ahmad, A.; Quegan, S. Analysis of Maximum Likelihood Classification on Multispectral Data. Appl. Math. Sci. 2012, 6, 6425–6436. [Google Scholar]
- Chen, X.; Chen, J.; Shi, Y.; Yamaguchi, Y. An automated approach for updating land cover maps based on integrated change detection and classification methods. ISPRS J. Photogramm. Remote Sens. 2012, 71, 86–95. [Google Scholar] [CrossRef]
- Verbovšek, T.; Popit, T. GIS-assisted classification of litho-geomorphological units using Maximum Likelihood Classification, Vipava Valley, SW Slovenia. Landslides 2018, 15, 1415–1424. [Google Scholar] [CrossRef]
- Kelly, M.; Blanchard, S.D.; Kersten, E.; Koy, K. Terrestrial remotely sensed imagery in support of public health: New avenues of research using object-based image analysis. Remote Sens. 2011, 3, 2321–2345. [Google Scholar] [CrossRef] [Green Version]
- Hirayama, H.; Sharma, R.C.; Tomita, M.; Hara, K. Evaluating multiple classifier system for the reduction of salt-and-pepper noise in the classification of very-high-resolution satellite images. Int. J. Remote Sens. 2019, 40, 2542–2557. [Google Scholar] [CrossRef]
- Saura, S. Effects of minimum mapping unit on land cover data spatial configuration and composition. Int. J. Remote Sens. 2002, 23, 4853–4880. [Google Scholar] [CrossRef]
- Knight, J.F.; Lunetta, R.S. An experimental assessment of minimum mapping unit size. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2132–2134. [Google Scholar] [CrossRef]
- Lu, D.; Mausel, P.; Brondízio, E.; Moran, E. Change detection techniques. Int. J. Remote Sens. 2004, 25, 2365–2401. [Google Scholar] [CrossRef]
- Ridd, M.K.; Liu, J. A comparison of four algorithms for change detection in an urban environment. Remote Sens. Environ. 1998, 63, 95–100. [Google Scholar] [CrossRef]
- Hervás, J.; Rosin, P.L. Tratamiento digital de imágenes de teledetección en el espectro óptico para el reconocimiento y control de deslizamientos. In Proceedings of the V Simposio Nacional Sobre Taludes y Laderas Inestables, Madrid, Spain, 27–30 November 2001; pp. 27–30. [Google Scholar]
- Vázquez-Jiménez, R.; Ramos-Bernal, R.N.; Romero-Calcerrada, R.; Arrogante-Funes, P.; Tizapa, S.S.; Novillo, C.J. Thresholding Algorithm Optimization for Change Detection to Satellite Imagery. Color. Image Proc. 2018. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–40. [Google Scholar] [CrossRef]
- Couto, P. Assessing the accuracy of spatial simulation models. Ecol. Model. 2003, 167, 181–198. [Google Scholar] [CrossRef]
- Schowengerdt, R.A. Techniques for Image Processing and Classifications in Remote Sensing; Academic Press: New York, NY, USA; London, UK, 2012. [Google Scholar]
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Approach; Prentice Hall: Upper Saddle River, NJ, USA, 1996; Volume 7458. [Google Scholar]
- Mather, P.M.; Koch, M. Computer Processing of Remotely-Sensed Images: An Introduction; John Wiley & Sons: New York, NY, USA, 2011. [Google Scholar]
- Namdar, M.; Adamowski, J.; Saadat, H.; Sharifi, F.; Khiri, A. Land-use and land-cover classification in semi-arid regions using independent component analysis (ICA) and expert classification. Int. J. Remote Sens. 2014, 35, 8057–8073. [Google Scholar] [CrossRef]
- Chignell, S.M.; Anderson, R.S.; Evangelista, P.H.; Laituri, M.J.; Merritt, D.M. Multi-Temporal Independent Component Analysis and Landsat 8 for Delineating Maximum Extent of the 2013 Colorado Front Range Flood. Remote Sens. 2015, 7, 9822–9843. [Google Scholar] [CrossRef] [Green Version]
- Dabiri, Z.; Lang, S. Comparison of Independent Component Analysis, Principal Component Analysis, and Minimum Noise Fraction Transformation for Tree Species Classification Using APEX Hyperspectral Imagery. Isprs Int. J. Geo Inf. 2018, 7, 448. [Google Scholar] [CrossRef] [Green Version]
- Justice, C.O.; Wharton, S.W.; Holben, B.N. Application of digital terrain data to quantify and reduce the topographic effect on Landsat data. Int. J. Remote Sens. 1981, 2, 213–230. [Google Scholar] [CrossRef] [Green Version]
- Mora, T.J.G.; Mas, J.-F. Comparación de metodologías para el mapeo de la cobertura y uso del suelo en el sureste de México. Investig. Geogr. 2008, 7–19. Available online: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0188-46112008000300002 (accessed on 11 July 2021).
- Hervás, J.; Barredo, J.I. Evaluación de la susceptibilidad de deslizamientos mediante el uso conjunto de SIG teledetección y métodos de evaluación multicriterio aplicación al barranco de Tirajana (Gran Canaria). In Proceedings of the V Simposio Nacional Sobre Taludes y Laderas Inestables, Madrid, Spain, 27–30 November 2001. [Google Scholar]
- Xian, G.; Homer, C.; Fry, J. Updating the 2001 National Land Cover Database land cover classification to 2006 by using Landsat imagery change detection methods. Remote Sens. Environ. 2009, 113, 1133–1147. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Gong, P.; He, C.; Pu, R.; Shi, P. Land-use/land-cover change detection using improved change-vector analysis. Photogramm. Eng. Remote Sens. 2003, 69, 369–379. [Google Scholar] [CrossRef] [Green Version]
- Richardson, A.J.; Wiegand, C.L. Distinguishing vegetation from soil background information. [by gray mapping of Landsat MSS data]. Photogramm. Eng. Remote Sens. 1977, 43, 1541–1552. [Google Scholar]
- Song, C. Spectral mixture analysis for subpixel vegetation fractions in the urban environment: How to incorporate endmember variability? Remote Sens. Environ. 2005, 95, 248–263. [Google Scholar] [CrossRef]
Id | Description |
---|---|
1-1 | Encino forest |
1-2 | Pine forest |
1-3 | Mixed forest |
2-1 | Deciduous forest |
3-1 | Agricultural area |
4-1 | Bare soil |
5-1 | Water bodies |
6-1 | Urban/Industrial Areas |
LULC | Encino Forest | Pine Forest | Mixed Forest | Decid. Forest | Agric. | Bare Soil | Water Bodies | Urban/Indust. | Total | User Match | Comm Error |
---|---|---|---|---|---|---|---|---|---|---|---|
Encino forest | 22,082 | 426 | 2333 | 881 | 87 | 0 | 4 | 0 | 25,813 | 85.5 | 14.5 |
Pine forest | 1277 | 17,001 | 187 | 1222 | 95 | 0 | 0 | 0 | 19,782 | 85.9 | 14.1 |
Mixed forest | 480 | 14 | 31,045 | 0 | 0 | 0 | 0 | 0 | 31,539 | 98.4 | 1.6 |
Decid. forest | 442 | 243 | 0 | 34,477 | 3102 | 1 | 0 | 12 | 38,277 | 90.1 | 9.9 |
Agric. | 197 | 154 | 13 | 2090 | 12,203 | 6 | 8 | 580 | 15,251 | 80.0 | 20.0 |
Bare soil | 17 | 8 | 0 | 18 | 181 | 1689 | 24 | 105 | 2042 | 82.7 | 17.3 |
Water bodies | 0 | 0 | 0 | 0 | 0 | 0 | 3450 | 0 | 3450 | 100.0 | 0.0 |
Urban/ Indust. | 0 | 0 | 0 | 4 | 312 | 73 | 5 | 8232 | 8626 | 95.4 | 4.6 |
Total | 24,495 | 17,846 | 33,578 | 38,692 | 15,980 | 1769 | 3491 | 8929 | 144,780 | ||
Produc. Match | 90.1 | 95.3 | 92.5 | 89.1 | 76.4 | 95.5 | 98.8 | 92.2 | |||
Omission errors | 9.9 | 4.7 | 7.5 | 10.9 | 23.6 | 4.5 | 1.2 | 7.8 | Kappa | 87.64 |
Condition | No-Change | Change | Total | User Match | Commission Error |
---|---|---|---|---|---|
No-change | 74,192 | 1216 | 8708 | 85.6 | 14.0 |
Change | 120 | 6307 | 6424 | 98.1 | 1.9 |
Total | 7612 | 7523 | 15,135 | ||
Productor Match | 98.4 | 83.8 | |||
Omission errors | 1.6 | 16.2 | Kappa | 82.33 |
LULC | Encino Forest | Pine Forest | Mixed Forest | Decid. Forest | Agric. | Bare Soil | Water Bodies | Urban/Indust. | Total | User Match | Comm. Error |
---|---|---|---|---|---|---|---|---|---|---|---|
Encino forest | 60 | 10 | 9 | 0 | 8 | 0 | 0 | 0 | 87 | 69.0 | 31.0 |
Pine forest | 1 | 316 | 13 | 0 | 88 | 0 | 0 | 0 | 418 | 75.6 | 24.4 |
Mixed forest | 2 | 15 | 372 | 0 | 0 | 0 | 0 | 0 | 389 | 95.6 | 4.4 |
Decid. forest | 3 | 10 | 15 | 108 | 22 | 0 | 0 | 2 | 160 | 67.5 | 32.5 |
Agric. | 8 | 29 | 11 | 28 | 1669 | 18 | 3 | 6 | 1772 | 94.2 | 5.8 |
Bare soil | 1 | 0 | 2 | 10 | 116 | 758 | 17 | 125 | 1029 | 73.7 | 26.3 |
Water bodies | 0 | 0 | 0 | 0 | 0 | 0 | 90 | 0 | 90 | 100.0 | 0.0 |
Urban/ Indust. | 3 | 0 | 0 | 2 | 121 | 15 | 11 | 482 | 634 | 76.0 | 24.0 |
Total | 78 | 380 | 422 | 148 | 2024 | 791 | 121 | 615 | 4579 | ||
Produc. Match | 76.9 | 83.2 | 88.2 | 73.0 | 82.5 | 95.8 | 74.4 | 78.4 | |||
Omission errors | 23.1 | 16.8 | 11.8 | 27.0 | 17.5 | 4.2 | 25.6 | 21.6 | Kappa | 79.03 |
LULC | Encino Forest | Pine Forest | Mixed Forest | Decid. Forest | Agric. | Bare Soil | Water Bodies | Urban/Indust. | Total | User Match | Comm Error |
---|---|---|---|---|---|---|---|---|---|---|---|
Encino forest | 20,110 | 638 | 2229 | 853 | 75 | 0 | 5 | 0 | 23,910 | 84.1 | 15.9 |
Pine forest | 1057 | 21,403 | 182 | 1225 | 97 | 0 | 0 | 0 | 23,964 | 89.3 | 10.7 |
Mixed forest | 516 | 14 | 27,297 | 0 | 0 | 0 | 0 | 0 | 27,827 | 98.1 | 1.9 |
Decid. forest | 536 | 211 | 0 | 32,636 | 3120 | 20 | 1 | 2 | 36,526 | 89.4 | 10.6 |
Agric. | 141 | 187 | 27 | 2160 | 14,963 | 44 | 9 | 388 | 17,919 | 83.5 | 16.5 |
Bare soil | 6 | 11 | 0 | 7 | 230 | 1670 | 30 | 86 | 2040 | 81.9 | 18.1 |
Water bodies | 0 | 0 | 0 | 0 | 0 | 0 | 3594 | 0 | 3594 | 100.0 | 0.0 |
Urban/ Indust. | 7 | 0 | 0 | 5 | 270 | 109 | 15 | 5869 | 6275 | 93.5 | 6.5 |
Total | 22,373 | 22,464 | 29,735 | 36,886 | 18,755 | 1843 | 3654 | 6345 | 142,055 | ||
Produc. Match | 89.9 | 95.3 | 91.8 | 88.5 | 79.8 | 90.6 | 98.4 | 92.5 | |||
Omission errors | 10.1 | 4.7 | 8.2 | 11.5 | 20.2 | 9.4 | 1.6 | 7.5 | Kappa | 87.53 |
Indicator | Change Classification | Conventional Classification | Classification Via Change Detection |
---|---|---|---|
(Partial Evaluation) | (Global Evaluation) | ||
Omission error | 18.5 | 6.6 | 9.2 |
Commission error | 18.6 | 9.2 | 10.0 |
Kappa index | 79.03 | 91.18 | 87.53 |
2011 Via Change Detection | 2011 Conventional Classification | 2011 Via Change Detection | Difference (+) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Encino Forest | Pine Forest | Mixed Forest | Decid. Forest | Agric. | Bare Soil | Water Bodies | Urban/ Indust. | |||
Encino forest | 89.7 | 12.0 | 10.1 | 2.9 | 9.7 | 1.2 | 0.2 | 3.5 | 110,607.2 | 13.7 |
Pine forest | 2.4 | 80.6 | 0.1 | 1.9 | 1.9 | 0.0 | 0.2 | 0.1 | 34,562.3 | 3.8 |
Mixed forest | 3.9 | 0.2 | 89.9 | 0.0 | 0.1 | 0.1 | 0.0 | 0.1 | 46,344.6 | 1.8 |
Decid. forest | 2.2 | 6.0 | 0.0 | 88.2 | 20.2 | 5.5 | 10.2 | 10.6 | 189,233.8 | 1.0 |
Agric. | 1.6 | 1.0 | 0.0 | 6.4 | 64.2 | 22.9 | 1.0 | 15.4 | 74,669.0 | 17.3 |
Bare soil | 0.0 | 0.1 | 0.0 | 0.4 | 2.0 | 61.3 | 3.2 | 9.2 | 8006.6 | 9.3 |
Water bodies | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 85.2 | 0.0 | 3895.2 | 13.4 |
Urban/ Indust. | 0.1 | 0.1 | 0.0 | 0.2 | 1.9 | 8.4 | 0.1 | 61.0 | 7585.3 | 1.5 |
2011 Conventional | 97,289.4 | 33,298.4 | 47,180.4 | 187,286.6 | 90,327.1 | 7325.3 | 4497.2 | 7699.7 | 474,904.0 | |
Difference | 10.3 | 19.4 | 10.1 | 11.88 | 35.8 | 38.7 | 14.8 | 39.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vázquez-Jiménez, R.; Romero-Calcerrada, R.; Ramos-Bernal, R.N.; Arrogante-Funes, P.; Novillo, C.J. An Alternative Method for the Generation of Consistent Mapping to Monitoring Land Cover Change: A Case Study of Guerrero State in Mexico. Land 2021, 10, 731. https://doi.org/10.3390/land10070731
Vázquez-Jiménez R, Romero-Calcerrada R, Ramos-Bernal RN, Arrogante-Funes P, Novillo CJ. An Alternative Method for the Generation of Consistent Mapping to Monitoring Land Cover Change: A Case Study of Guerrero State in Mexico. Land. 2021; 10(7):731. https://doi.org/10.3390/land10070731
Chicago/Turabian StyleVázquez-Jiménez, René, Raúl Romero-Calcerrada, Rocío N. Ramos-Bernal, Patricia Arrogante-Funes, and Carlos J. Novillo. 2021. "An Alternative Method for the Generation of Consistent Mapping to Monitoring Land Cover Change: A Case Study of Guerrero State in Mexico" Land 10, no. 7: 731. https://doi.org/10.3390/land10070731
APA StyleVázquez-Jiménez, R., Romero-Calcerrada, R., Ramos-Bernal, R. N., Arrogante-Funes, P., & Novillo, C. J. (2021). An Alternative Method for the Generation of Consistent Mapping to Monitoring Land Cover Change: A Case Study of Guerrero State in Mexico. Land, 10(7), 731. https://doi.org/10.3390/land10070731