The Energy System of an Ecovillage: Barriers and Enablers
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Bernthal, F.; Dowdeswell, E.; Luo, J.; Attard, D.; Vellinga, P.; Karimanzira, R.; Climate Change. The IPCC Response Strategies. World Meteorological Organization, United Nations Environment Program. 1990. Available online: https://www.ipcc.ch/site/assets/uploads/2018/03/ipcc_far_wg_III_full_report.pdf (accessed on 22 May 2021).
- Vajda, G. Energia és Társadalom; MTA: Budapest, Hungary, 2009. [Google Scholar]
- Vajda, G. Okok és Következmények az Energetikában; Akadémia Kiadó: Budapest, Hungary, 2014. [Google Scholar]
- European Court of Auditors. Uniós üvegházhatásúgáz-Kibocsátások: A Kibocsátásokról Megfelelően Beszámolnak, de Jobb Rálátás Szükséges a Jövőbeli Csökkentésekre. LU: Publications Office. 2019. Available online: https://op.europa.eu/webpub/eca/special-reports/greenhouse-gas-emissions-18-2019/hu/ (accessed on 21 April 2021).
- Hitchcock, G. An integrated framework for energy use and behaviour in the domestic sector. Energy Build. 1993, 20, 151–157. [Google Scholar] [CrossRef]
- Wilk, R. Consumption, human needs, and global environmental change. Glob. Environ. Chang. 2002, 12, 5–13. [Google Scholar] [CrossRef]
- König, W. Energy efficiency in industrial organizations—A cultural-institutional framework of decision making. Energy Res. Soc. Sci. 2020, 60, 101314. [Google Scholar] [CrossRef]
- Ma, G.; Lin, J.; Li, N.; Zhou, J. Cross-cultural assessment of the effectiveness of eco-feedback in building energy conservation. Energy Build. 2017, 134, 329–338. [Google Scholar] [CrossRef]
- European Commission. Closing the Loop—An EU Action Plan for the Circular Economy. 2015, p. 21. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:8a8ef5e8-99a0-11e5-b3b7-01aa75ed71a1.0012.02/DOC_1&format=PDF (accessed on 27 April 2021).
- Eurostat. Greenhouse Gas Emissions by IPCC Source Sector, EU-27, 2018. 2020. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=File:Greenhouse_gas_emissions_by_IPCC_source_sector,_EU-27,_2018.png (accessed on 21 April 2021).
- Yang, X.; Liu, Y.; Wang, M.; Bezama, A.; Thrän, D. Identifying the Necessities of Regional-Based Analysis to Study Germany’s Biogas Production Development under Energy Transition. Land 2021, 10, 135. [Google Scholar] [CrossRef]
- Gharaibeh, A.; Al-Shboul, D.; Al-Rawabdeh, A.; Jaradat, R. Establishing Regional Power Sustainability and Feasibility Using Wind Farm Land-Use Optimization. Land 2021, 10, 442. [Google Scholar] [CrossRef]
- Prieto-Amparán, J.; Pinedo-Alvarez, A.; Morales-Nieto, C.; Valles-Aragón, M.; Álvarez-Holguín, A.; Villarreal-Guerrero, F. A Regional GIS-Assisted Multi-Criteria Evaluation of Site-Suitability for the Development of Solar Farms. Land 2021, 10, 217. [Google Scholar] [CrossRef]
- Rutherford, J.; Williams, G. Environmental Systems and Societies: Course Companion, 2015th ed.; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Stremke, S. Designing Sustainable Energy Landscapes: Concepts, Principles and Procedures; Wageningen University: Wageningen, The Netherlands, 2010. [Google Scholar]
- Tillie, N. Synergetic Urban Landscape Planning in Rotterdam: Liveable Low-Carbon Cities; Delft University of Technology: Delft, The Netherlands, 2018. [Google Scholar]
- Stremke, S. Energy-landscape nexus: Advancing a Conceptual Framework for the Design of Sustainable Energy Landscapes. In Proceedings of the ECLAS Conference 2013, Hamburg, Germany, 22–24 September 2013; pp. 391–397. [Google Scholar]
- Council of Europe. European Landscape Convention. 2000, p. 7. Available online: https://rm.coe.int/1680080621 (accessed on 10 June 2021).
- Tress, B. (Ed.) From Landscape Research to Landscape Planning: Aspects of Integration, Education and Application; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Girot, C.; Imhof, D. (Eds.) Thinking the Contemporary Landscape, 1st ed.; Princeton Architectural Press: New York, NY, USA, 2017. [Google Scholar]
- Murphy, M.D. Landscape Architecture Theory: An Ecological Approach; Island Press: Washington, DC, USA, 2016. [Google Scholar]
- Yap, N.T. Towards a Circular Economy: Progress and Challenges. Green Manag. Int. 2005, 11–24. Available online: https://www.jstor.org/stable/greemanainte.50.11 (accessed on 27 April 2021).
- Salvia, R.; Andreopoulou, Z.S.; Quaranta, G. The Circular Economy: A Broader Perspective for Rural Areas; Torrossa: Fiesole, Italy, 2018; pp. 87–105. [Google Scholar] [CrossRef]
- Díaz, S.; Pascual, U.; Stenseke, M.; Martín-López, B.; Watson, R.T.; Molnár, Z.; Hill, R.; Chan, K.M.A.; Baste, I.A.; Brauman, K.A.; et al. Assessing nature’s contributions to people. Science 2018, 359, 270–272. [Google Scholar] [CrossRef]
- Molnár, Z.; Babai, D. Inviting ecologists to delve deeper into traditional ecological knowledge. Trends Ecol. Evol. 2021. [Google Scholar] [CrossRef]
- Kümmel, R. The Second Law of Economics: Energy, Entropy, and the Origins of Wealth; Springer Science + Business Media, LLC.: New York, NY, USA, 2011. [Google Scholar]
- Lutzenhiser, L. A cultural model of household energy consumption. Energy 1992, 17, 47–60. [Google Scholar] [CrossRef]
- Ravindra, K.; Kaur-Sidhu, M.; Mor, S.; John, S. Trend in household energy consumption pattern in India: A case study on the influence of socio-cultural factors for the choice of clean fuel use. J. Clean. Prod. 2019, 213, 1024–1034. [Google Scholar] [CrossRef]
- Bach, L.; Hopkins, D.; Stephenson, J. Solar electricity cultures: Household adoption dynamics and energy policy in Switzerland. Energy Res. Soc. Sci. 2020, 63, 101395. [Google Scholar] [CrossRef]
- Jelinski, L.W.; Graedel, T.E.; Laudise, R.A.; McCall, D.W.; Patel, C.K. Industrial ecology: Concepts and approaches. Proc. Natl. Acad. Sci. USA 1992, 89, 793–797. [Google Scholar] [CrossRef]
- Allenby, B. The ontologies of industrial ecology? Prog. Ind. Ecol. Int. J. 2006, 3, 28. [Google Scholar] [CrossRef]
- Svensson, N.; Funck, E.K. Management control in circular economy. Exploring and theorizing the adaptation of management control to circular business models. J. Clean. Prod. 2019, 233, 390–398. [Google Scholar] [CrossRef]
- Belaud, J.-P.; Adoue, C.; Vialle, C.; Chorro, A.; Sablayrolles, C. A circular economy and industrial ecology toolbox for developing an eco-industrial park: Perspectives from French policy. Clean Technol. Environ. Policy 2019, 21, 967–985. [Google Scholar] [CrossRef]
- FAO. Organic Agriculture: What Is Organic Agriculture? Available online: http://www.fao.org/organicag/oa-faq/oa-faq1/en/ (accessed on 27 April 2021).
- Waerther, S. Sustainability in ecovillages—A reconceptualization. Int. J. Manag. Appl. Res. 2014, 1, 1–16. [Google Scholar] [CrossRef]
- Liverød, M. Alternatives to the Present Global Development Pattern: Ecovillages—A Model for Sustainable Living? 2016. Available online: https://uia.brage.unit.no/uia-xmlui/handle/11250/2414557 (accessed on 16 June 2021).
- Andreas, M.; Wagner, F. Realizing Utopia: Ecovillage Endeavors and Academic Approaches; Rachel Carson Center for Environment and Society: Munchen, Germany, 2013; 156p. [Google Scholar] [CrossRef]
- Kisdi, B. Az ökotudatos életmód metamorfózisai. Farkas Judit: Leválni a köldökzsinórról. Ökofalvak Magyarországon. Replika 2018, 335–345. [Google Scholar] [CrossRef][Green Version]
- évi CXC. Törvény a Nemzeti Köznevelésről. 2011. Available online: https://net.jogtar.hu/jogszabaly?docid=a1100190.tv (accessed on 17 June 2021).
- Farkas, J. Kicsi kis hősök. Kovász 2014, 18, 43–66. [Google Scholar]
- Héra, G.; Ligeti, G. Módszertan: Bevezetés a Társadalmi Jelenségek Kutatásába; Osiris: Budapest, Hungary, 2014. [Google Scholar]
- Patton, M.Q. Qualitative Research & Evaluation Methods: Integrating Theory and Practice, 4th ed.; Sage Publications, Inc.: Thousand Oaks, CA, USA, 2015. [Google Scholar]
- Központi Statisztikai Hivatal. Available online: https://www.ksh.hu/energiagazdalkodas (accessed on 25 March 2021).
- Database—Energy—Eurostat. Available online: https://ec.europa.eu/eurostat/web/energy/data/database (accessed on 25 March 2021).
- Data & Statistics. IEA. Available online: https://www.iea.org/data-and-statistics (accessed on 29 April 2021).
- Copernicus, L.M.S. CLC 2018—Copernicus Land Monitoring Service. 2018. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (accessed on 25 April 2021).
- Agrárminisztérium. Magyarország Ökoszisztéma Alaptérképe. 2019. Available online: http://web.map.fomi.hu/nosztep_open/ (accessed on 26 April 2021).
- Google. Google Satellite. Available online: https://www.google.com/maps (accessed on 27 April 2021).
- Urmee, T.; Md, A. Social, cultural and political dimensions of off-grid renewable energy programs in developing countries. Renew. Energy 2016, 93, 159–167. [Google Scholar] [CrossRef]
- Sovacool, B. The cultural barriers to renewable energy and energy efficiency in the United States. Technol. Soc. 2009, 31, 365–373. [Google Scholar] [CrossRef]
- Esteves, A.M. Radical Environmentalism and “Commoning”: Synergies between Ecosystem Regeneration and Social Governance at Tamera Ecovillage, Portugal. Antipode 2017, 49, 357–376. [Google Scholar] [CrossRef]
- Stephenson, J.; Barton, B.; Carrington, G.; Gnoth, D.; Lawson, R.; Thorsnes, P. Energy cultures: A framework for understanding energy behaviours. Energy Policy 2010, 38, 6120–6129. [Google Scholar] [CrossRef]
- OECD. Glossary of Statistical Terms. Available online: https://stats.oecd.org/glossary/detail.asp?ID=2290 (accessed on 28 March 2021).
- 123map GmbH & Co. KG. Stromnetzkarte. Available online: https://www.flosm.de/html/Stromnetz.html?lat=46.2044786&lon=17.6606551&r=7323.6259&st=0&sw=cabledistributioncabinet,generator,powerbay,powerbiofuel,powerbiogas,powerbiomass,powerbusbar,powercable,powercoal,powercompensator,powerconverter,powergeothermal,powerhydro,powerline,powerline110k,powerline115k,powerline20k,powerline220k,powerline220v,powerline225k,powerline30k,powerline380k,powerline3k,powerline400k,powerline420k,powerline500v,powerline50k,powerline6k,powerline750k,powerline765k,powerlinedchigh,powerlinedclow,powernuclear,poweroil,powerpole,powersolar,powersubstation,powerswitch,powertidal,powertower,powerwaste,powerwind,transformer (accessed on 28 April 2021).
- Birnbaum, J.; Fox, L. Sustainable Revolution: Permaculture in Ecovillages, Urban Farms, and Communities Worldwide; North Atlantic Books: Berkeley, CA, USA, 2014. [Google Scholar]
- Jacke, D.; Toensmeier, E. Edible Forest Gardens; Chelsea Green Pub. Co.: White River Junction, VT, USA, 2005. [Google Scholar]
- Holden, J. (Ed.) An Introduction to Physical Geography and the Environment, 3rd ed.; Prentice Hall: Harlow, UK, 2012. [Google Scholar]
- Ghimessy, L. A Tájpotenciál: Táj, Víz, Ember, Energia; Mezőgazdasági Kiadó: Budapest, Hungary, 1984. [Google Scholar]
- Kay, J.J. On complexity theory, exergy, and industrial ecology. In Construction Ecology: Nature as the Basis for Green Buildings; Spon Press: New York, NY, USA, 2002; pp. 72–107. [Google Scholar]
- Gross, M. 3. Community by Experiment: Recursive Practice in Landscape Design and Ecological Restoration. In Community and Ecology; McCright, A.M., Nichols Clark, T., Eds.; Emerald Group Publishing Limited: Bingley, UK, 2006; Volume 10, pp. 43–62. [Google Scholar] [CrossRef]
- Kocsis, K. (Ed.) Magyarország Nemzeti Atlasza: Természeti Környezet; Magyar Tudományos Akadémia Csillagászati és Földtudományi Kutatóközpont Földrajztudományi Intézet: Budapest, Hungary, 2018. [Google Scholar]
- Osende, B.; Abraham, J.P.; Mowry, G. Small-Scale Use of Solar Power in Remote, Developing Regions: A Case Study. J. Sustain. Dev. 2011, 4, 3. [Google Scholar] [CrossRef][Green Version]
- Freeman, J.; Guarracino, I.; Kalogirou, S.; Markides, C. A small-scale solar organic Rankine cycle combined heat and power system with integrated thermal energy storage. Appl. Therm. Eng. 2017, 127, 1543–1554. [Google Scholar] [CrossRef]
- Abedinia, O.; Raisz, D.; Amjady, N. Effective prediction model for Hungarian small-scale solar power output. IET Renew. Power Gener. 2017, 11, 1648–1658. [Google Scholar] [CrossRef]
- Innovációs és Technológiai Minisztérium. Második Nemzeti Éghajlatváltozási Stratégia; Információs és Technológiai Minsztérium: Budapest, Hungary, 2018; p. 251. [Google Scholar]
- Baranyák, Z.; Zalai, N. Napelemes Erőmű Koncepcióterv Derekegyház és Újhartyán Számára; Magyar Természetvédők Szövetsége: Budapest, Hungary, 2016. [Google Scholar]
- 5 kW-os Napelem Rendszer árak. Available online: https://napelemrendszer.info/napelem-arak/5-kw-os-napelem-rendszer-arak.html (accessed on 2 May 2021).
- Cattaneo, B.; Photovoltaic Geographical Information System (PVGIS). EU Science Hub—European Commission. 15 June 2018. Available online: https://ec.europa.eu/jrc/en/pvgis (accessed on 2 May 2021).
- 370 Wp/Mono: NUJC370—NUJC370—Napelemek—Monokristályos Szilikon Fotovoltaikus Modulok—Product Details Solar Modules. Available online: https://www.sharp.hu/cps/rde/xchg/hu/hs.xsl/-/html/product-details-solar-modules.htm?product=NUJC370 (accessed on 2 May 2021).
- Szűcs, G.; Ezek a Legkisebb Fogyasztású Elektromos Autók. Villanyautósok, 26 December 2019. Available online: https://villanyautosok.hu/2019/12/26/ezek-a-legkisebb-fogyasztasu-elektromos-autok/ (accessed on 2 May 2021).
- Grantham, A.; Pudney, P.; Ward, L.; Whaley, D.; Boland, J. The viability of electrical energy storage for low-energy households. Sol. Energy 2017, 155, 1216–1224. [Google Scholar] [CrossRef]
- Kaschub, T.; Jochem, P.; Fichtner, W. Solar energy storage in German households: Profitability, load changes and flexibility. Energy Policy 2016, 98, 520–532. [Google Scholar] [CrossRef]
- He, H.; Tian, S.; Tarroja, B.; Ogunseitan, O.A.; Samuelsen, S.; Schoenung, J.M. Flow battery production: Materials selection and environmental impact. J. Clean. Prod. 2020, 269, 121740. [Google Scholar] [CrossRef]
- Islam, M.A.; Hasanuzzaman, M.; Rahim, N.A.; Nahar, A.; Hosenuzzaman, M. Global Renewable Energy-Based Electricity Generation and Smart Grid System for Energy Security. Sci. World J. 2014, 2014, 197136. [Google Scholar] [CrossRef]
- Sovacool, B.; Mukherjee, I. Conceptualizing and measuring energy security: A synthesized approach. Energy 2011, 36, 5343–5355. [Google Scholar] [CrossRef]
- Gyulai, I. A Biomassza Dilemma; Magyar Természetvédők Szövetsége Föld Barátai Magyarország: Budapest, Hungary, 2008. [Google Scholar]
- Sørensen, B. Renewable Energy: Physics, Engineering, Environmental Impacts, Economics and Planning, 5th ed.; Academic Press: London, UK, 2017. [Google Scholar]
- Villeneuve, J.; Palacios, J.H.; Savoie, P.; Godbout, S. A critical review of emission standards and regulations regarding biomass combustion in small scale units (<3 MW). Bioresour. Technol. 2012, 111, 1–11. [Google Scholar] [CrossRef]
- Wheeler, R. Creating Carbon-Negative Communities: Ecovillages and the UN’s New Sustainable Development Goals. Communities. 2016, pp. 24–27. Available online: https://www.ic.org/creating-carbon-negative-communities-ecovillages-and-the-uns-new-sustainable-development-goals/ (accessed on 10 June 2021).
- MacKay, D. Sustainable Energy—Without the Hot Air, Reprinted; UIT Cambridge: Cambridge, UK, 2010. [Google Scholar]
- Kaplan, J.O.; Krumhardt, K.M.; Zimmermann, N. The prehistoric and preindustrial deforestation of Europe. Quat. Sci. Rev. 2009, 28, 3016–3034. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M.; Energy. Our World in Data. March 2014. Available online: https://ourworldindata.org/energy (accessed on 15 November 2020).
- Hovi, M.; Sundrum, A.; Thamsborg, S.M. Animal Health and Welfare in Organic Livestock Production in Europe: Current State and Future Challenges. Livest. Prod. Sci. 2003, 80, 41–53. [Google Scholar] [CrossRef]
- VaarstHugo, M.; Alrøe, H.F. Concepts of Animal Health and Welfare in Organic Livestock Systems. J. Agric. Environ. Ethics 2012, 25, 333–347. [Google Scholar] [CrossRef]
- Hazzan, O.; Dori, Y.J.; Even-Zahav, A.; Heyd-Metzuyanim, E.; Tal, T. Application of Management Theories for STEM Education: The Case of SWOT Analysis, 1st ed.; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Moreda, G.; Muñoz-García, M.; Barreiro, P. High voltage electrification of tractor and agricultural machinery—A review. Energy Convers. Manag. 2016, 115, 117–131. [Google Scholar] [CrossRef]
- Erasmus, C.J. Search of the Common Good: Utopian Experiments Past and Future, 1st ed.; The Free Press, Collier Macmillan: New York, NY, USA; London, UK, 1985. [Google Scholar]
- Roysen, R.; Mertens, F. New normalities in grassroots innovations: The reconfiguration and normalization of social practices in an ecovillage. J. Clean. Prod. 2019, 236, 117647. [Google Scholar] [CrossRef]
- Hassan, A.; Wall, G. The Ecovillage: Concept and Applications. In Driving Agribusiness with Technology Innovations; IGI Global: Hershey, PA, USA, 2017; pp. 56–69. [Google Scholar] [CrossRef]
- Pasqualetti, M.; Stremke, S. Energy landscapes in a crowded world: A first typology of origins and expressions. Energy Res. Soc. Sci. 2018, 36, 94–105. [Google Scholar] [CrossRef]
- Bridge, G.; Bouzarovski, S.; Bradshaw, M.; Eyre, N. Geographies of energy transition: Space, place and the low-carbon economy. Energy Policy 2013, 53, 331–340. [Google Scholar] [CrossRef]
- Boyer, R.H. Achieving one-planet living through transitions in social practice: A case study of Dancing Rabbit Ecovillage. Sustain. Sci. Pract. Policy 2016, 12, 47–59. [Google Scholar] [CrossRef]
- LaBelle, M.C. Energy Cultures: Technology, Justice, and Geopolitics in Eastern Europe; Edward Elgar Publishing: Cheltenham, UK; Northampton, MA, USA, 2020. [Google Scholar]
Activity | Energy Resource | Place of the Production |
---|---|---|
Living labor | Muscle power | Local |
Lighting | Electricity | Local |
Network | ||
Electric devices | Electricity | Local |
Network | ||
Cooking | Biomass | Local |
Natural gas | Non-local | |
Electricity | Network | |
Heating | Biomass | Local |
Transport | Petrol | Non-local |
Diesel |
Activity | Energy Resource | Place of the Production |
---|---|---|
Machine work | Electricity | Network |
Petrol | Non-local | |
Diesel | Non-local | |
Living labor | Muscle power | Local |
Activity | Energy Resource | Place of the Production |
---|---|---|
Living labor | Muscle power | Local |
Lighting | Electricity | Local |
Network | ||
Electric devices | Electricity | Network |
Cooking | Biomass | Local |
Natural gas | Non-local | |
Electricity | Network | |
Heating | Biomass | Local |
Transport | Petrol | Non-local |
Diesel |
Corine Land Cover 2018 | Ecosystem Map of Hungary |
---|---|
Non-irrigated arable land □ | Fruit and berry, and other plantations □ |
Complex cultivation patterns with scattered buildings □ | |
Green urban areas without trees □ | |
Land principally occupied by agriculture □ | Black-locust-dominated mixed plantations □ |
Other ligneous vegetation, woodlands □ | |
Closed grasslands in hills and mountains or on cohesive soil □ | |
Green urban areas with trees □ | |
Tall-herb vegetation of marshes and fens standing in water □ | |
Fens and mesotrophic wet meadows, grasslands with periodic water effect □ | |
Complex cultivation patterns □ | Other herbaceous vegetation □ |
Arable land □ | |
Other ligneous vegetation, woodlands □ | |
Low building □ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szabó, Z.; Prohászka, V.; Sallay, Á. The Energy System of an Ecovillage: Barriers and Enablers. Land 2021, 10, 682. https://doi.org/10.3390/land10070682
Szabó Z, Prohászka V, Sallay Á. The Energy System of an Ecovillage: Barriers and Enablers. Land. 2021; 10(7):682. https://doi.org/10.3390/land10070682
Chicago/Turabian StyleSzabó, Zita, Viola Prohászka, and Ágnes Sallay. 2021. "The Energy System of an Ecovillage: Barriers and Enablers" Land 10, no. 7: 682. https://doi.org/10.3390/land10070682
APA StyleSzabó, Z., Prohászka, V., & Sallay, Á. (2021). The Energy System of an Ecovillage: Barriers and Enablers. Land, 10(7), 682. https://doi.org/10.3390/land10070682