Causal Analysis of Ecological Impairment in Land Ecosystem on a Regional Scale: Applied to a Mining City Daye, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.1.1. Description of the Study Area
2.1.2. Data Source
2.2. Causal Analysis Framework
2.3. Causal Analysis Design
2.3.1. Problem Formulation
2.3.2. List Candidate Cause
2.3.3. Causality Establishment
2.4. Weighting and Scoring of Criteria
2.4.1. Causal Criteria
2.4.2. Scoring System
2.5. Analysis of Evidence
2.5.1. Probable Cause
- Habitat alteration
- Heavy metal accumulation
- Organic pollutants
- Water eutrophication
- Nutrient runoff
2.5.2. Possible Causes
- Noxious gas
- Toxicants
- Altered underground runoff
- Atmospheric deposition
- Acid rain
2.5.3. Unlikely Causes
- Altered hydrology
- Altered earth surface runoff
- Soil erosion
2.5.4. Delayed Candidate Causes
- Soil salinization
- Soluble inorganic salts
- Biological species invasion
- Pathogens
3. Results
3.1. Identification of the Candidate Causes
3.2. Uncertainty Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Turner, K.G.; Anderson, S.; Gonzales-Chang, M.; Costanza, R.; Courville, S.; Dalgaard, T.; Dominati, E.; Kubiszewski, I.; Ogilvy, S.; Porfirio, L.; et al. A review of methods, data, and models to assess changes in the value of ecosystem services from land degradation and restoration. Ecol. Model. 2016, 319, 190–207. [Google Scholar] [CrossRef]
- Guo, K.; Zhang, X.; Liu, J.; Wu, Z.; Chen, M.; Zhang, K.; Chen, Y. Establishment of an integrated decision-making method for planning the ecological restoration of terrestrial ecosystems. Sci. Total Environ. 2020, 741, 139852. [Google Scholar] [CrossRef]
- Liu, J.G.; Diamond, J. China’s environment in a globalizing world. Nature 2005, 435, 1179–1186. [Google Scholar] [CrossRef]
- Vesalon, L.; Cretan, R. Mono-industrialism and the struggle for alternative development: The case of the Rosia montana gold-ming project. Tijdschr. Econ. Soc. Geogr. 2013, 104, 539–555. [Google Scholar] [CrossRef]
- Velicu, I. De-growing environmental justice: Reflections from anti-mining movements in Eastern Europe. Ecol. Econ. 2019, 159, 271–278. [Google Scholar] [CrossRef]
- Liu, J.; Li, N.; Zhang, W.; Wei, X.; Tsang, D.C.; Sun, Y.; Luo, X.; Bao, Z.; Zheng, W.; Wang, J.; et al. Thallium contamination in farmlands and common vegetables in a pyrite mining city and potential health risks. Environ. Pollut. 2019, 248, 906–915. [Google Scholar] [CrossRef]
- Bănăduc, D.; Curtean-Bănăduc, A.; Cianfaglione, K.; Akeroyd, J.; Cioca, L.-I. Proposed Environmental Risk Management Elements in a Carpathian Valley Basin, within the Roşia Montană European Historical Mining Area. Int. J. Environ. Res. Public Health 2021, 18, 4565. [Google Scholar] [CrossRef]
- Vesalon, L.; Cretan, R. ’Cyanide kills!’ Environmental movements and the construction of environmental risk at Rosia Montana, Romania. Area 2013, 45, 443–451. [Google Scholar] [CrossRef]
- Kaiser-Bunbury, C.N.; Mougal, J.; Whittington, A.E.; Valentin, T.; Gabriel, J.M.T.V.R.; Olesen, J.M.; Blüthgen, C.N.K.-B.N. Ecosystem restoration strengthens pollination network resilience and function. Nature 2017, 542, 223–227. [Google Scholar] [CrossRef]
- Tang, Z.; Chai, M.; Cheng, J.; Jin, J.; Yang, Y.; Nie, Z.; Huang, Q.; Li, Y. Contamination and health risks of heavy metals in street dust from a coal-mining city in eastern China. Ecotoxicol. Environ. Saf. 2017, 138, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Tepanosyan, G.; Sahakyan, L.; Maghakyan, N.; Saghatelyan, A. Combination of compositional data analysis and machine learning approaches to identify sources and geochemical associations of potentially toxic elements in soil and assess the associated human health risk in a mining city. Environ. Pollut. 2020, 261, 114210. [Google Scholar] [CrossRef] [PubMed]
- Pastorok, R.A.; Bartell, S.M.; Ferson, S.; Ginzburg, L.R. Ecological Modeling in Risk Assessment: Chemical Effects on Populations, Ecosystems, and Landscapes; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Chen, R.; Ye, C. Resolving soil pollution in China. Nature 2014, 505, 483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, K.; Liu, Y.; Zeng, C.; Chen, Y.; Wei, X. Global research on soil contamination from 1999 to 2012: A bibliometric analysis. Acta Agric. Scand. Sect. B Plant Soil Sci. 2014, 64, 377–391. [Google Scholar] [CrossRef]
- Johnston, R.K.; Munns, W.R.; Tyler, P.L.; Marajh-Whittemore, P.R.; Finkelstein, K.; Munney, K.; Short, F.T.; Melville, A.; Hahn, S.P. Weighing the evidence of ecological risk from chemical contamination in the estuarine environment adjacent to the Portsmouth Naval Shipyard, Kittery, Maine, USA. Environ. Toxicol. Chem. Int. J. 2002, 21, 182–194. [Google Scholar] [CrossRef]
- Wickwire, T.; Menzie, C.A. The Causal Analysis Framework: Refining Approaches and Expanding Multidisciplinary Applications. Hum. Ecol. Risk Assess. Int. J. 2010, 16, 10–18. [Google Scholar] [CrossRef]
- Larsen, A.E.; Meng, K.; Kendall, B.E. Causal analysis in control–impact ecological studies with observational data. Methods Ecol. Evol. 2019, 10, 924–934. [Google Scholar] [CrossRef]
- Vu, M.Q.; Le, Q.B.; Scholz, R.W.; Vlek, P.L. Detecting geographic hotspots of human-induced land degradation in Vietnam and characterization of their social-ecological types. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 6220–6223. [Google Scholar] [CrossRef]
- Wang, G.; Qian, J.; Cheng, G.; Lai, Y. Eco-environmental degradation and causal analysis in the source region of the Yellow River. Environ. Geol. 2021, 40, 884–890. [Google Scholar]
- Zhang, L.; Zhang, L.; Xu, Y.; Zhou, P.; Yeh, C.-H. Evaluating urban land use efficiency with interacting criteria: An empirical study of cities in Jiangsu China. Land Use Policy 2020, 90, 104292. [Google Scholar] [CrossRef]
- Feng, H.; Lim, C.W.; Chen, L.; Zhou, X.; Zhou, C.; Lin, Y. Sustainable Deforestation Evaluation Model and System Dynamics Analysis. Sci. World J. 2014, 2014, 1–14. [Google Scholar] [CrossRef]
- Dale, V.H.; Kline, K.L. Issues in using landscape indicators to assess land changes. Ecol. Indic. 2013, 28, 91–99. [Google Scholar] [CrossRef]
- Efroymson, R.A.; Kline, K.L.; Angelsen, A.; Verburg, P.H.; Dale, V.H.; Langeveld, J.W.; McBride, A. A causal analysis framework for land-use change and the potential role of bioenergy policy. Land Use Policy 2016, 59, 516–527. [Google Scholar] [CrossRef] [Green Version]
- Vasconcelos, R.; Reis-Santos, P.; Fonseca, V.; Maia, A.; Ruano, M.; França, S.; Vinagre, C.; Costa, M.; Cabral, H. Assessing anthropogenic pressures on estuarine fish nurseries along the Portuguese coast: A multi-metric index and conceptual approach. Sci. Total Environ. 2007, 374, 199–215. [Google Scholar] [CrossRef]
- Giubilato, E.; Zabeo, A.; Critto, A.; Giove, S.; Bierkens, J.; Hond, E.D.; Marcomini, A. A risk-based methodology for ranking environmental chemical stressors at the regional scale. Environ. Int. 2014, 65, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Vu, Q.M.; Le, Q.B.; Frossard, E.; Vlek, P.L. Socio-economic and biophysical determinants of land degradation in Vietnam: An integrated causal analysis at the national level. Land Use Policy 2014, 36, 605–617. [Google Scholar] [CrossRef]
- Riseng, C.M.; Wiley, M.J.; Black, R.W.; Munn, M.D. Impacts of agricultural land use on biological integrity: A causal analysis. Ecol. Appl. 2011, 21, 3128–3146. [Google Scholar] [CrossRef] [Green Version]
- Meyfroidt, P. Approaches and terminology for causal analysis in land systems science. J. Land Use Sci. 2016, 11, 501–522. [Google Scholar] [CrossRef]
- Serveiss, V.B.; Bowen, J.L.; Dow, D.; Valiela, I. Using Ecological Risk Assessment to Identify the Major Anthropogenic Stressor in the Waquoit Bay Watershed, Cape Cod, Massachusetts. Environ. Manag. 2004, 33, 730–740. [Google Scholar] [CrossRef]
- Cheng, H.; Shen, R.; Chen, Y.; Wan, Q.; Shi, T.; Wang, J.; Wan, Y.; Hong, Y.; Li, X. Estimating heavy metal concentrations in suburban soils with reflectance spectroscopy. Geoderma 2019, 336, 59–67. [Google Scholar] [CrossRef]
- Cormier, S.; Norton, S.; Suter, G.; Reed-Judkins, D. Stressor Identification Guidance Document; U.S. Environmental Protection Agency: Washington, DC, USA, 2000. [Google Scholar]
- Linkov, I.; Loney, D.; Cormier, S.; Satterstrom, F.K.; Bridges, T. Weight-of-evidence evaluation in environmental assessment: Review of qualitative and quantitative approaches. Sci. Total Environ. 2009, 407, 5199–5205. [Google Scholar] [CrossRef]
- Suter, G.W.; Cormier, S.M. Why and how to combine evidence in environmental assessments: Weighing evidence and building cases. Sci. Total Environ. 2011, 409, 1406–1417. [Google Scholar] [CrossRef]
- Burton, G.A.; Chapman, P.M.; Smith, E.P. Weight-of-Evidence Approaches for Assessing Ecosystem Impairment. Hum. Ecol. Risk Assess. Int. J. 2002, 8, 1657–1673. [Google Scholar] [CrossRef]
- Weed, D.L. Weight of Evidence: A Review of Concept and Methods. Risk Anal. 2005, 25, 1545–1557. [Google Scholar] [CrossRef] [PubMed]
- Linder, S.H.; Delclos, G.; Sexton, K. Making Causal Claims about Environmentally Induced Adverse Effects. Hum. Ecol. Risk Assess. Int. J. 2010, 16, 35–52. [Google Scholar] [CrossRef]
- Cormier, S.M.; Paul, J.F.; Spehar, R.L.; Shaw-Allen, P.; Berry, W.J.; Suter, G.W. Using Field Data and Weight of Evidence to Develop Water Quality Criteria. Integr. Environ. Assess. Manag. 2008, 4, 490–504. [Google Scholar] [CrossRef] [PubMed]
- Suter, G.W.; Norton, S.B.; Cormier, S.M. The Science and Philosophy of a Method for Assessing Environmental Causes. Hum. Ecol. Risk Assess. Int. J. 2010, 16, 19–34. [Google Scholar] [CrossRef]
- Burton, G.A.; Batley, G.E.; Chapman, P.M.; Forbes, V.E.; Smith, E.P.; Reynoldson, T.; Schlekat, C.E.; Besten, P.J.D.; Bailer, A.J.; Green, A.S.; et al. A Weight-of-Evidence Framework for Assessing Sediment (Or Other) Contamination: Improving Certainty in the Decision-Making Process. Hum. Ecol. Risk Assess. Int. J. 2002, 8, 1675–1696. [Google Scholar] [CrossRef]
- Smith, E.P.; Lipkovich, I.; Ye, K. Weight-of-Evidence (WOE): Quantitative Estimation of Probability of Impairment for Individual and Multiple Lines of Evidence. Hum. Ecol. Risk Assess. Int. J. 2002, 8, 1585–1596. [Google Scholar] [CrossRef] [Green Version]
- Collier, T.K.; Adams, S.M. Establishing Causal Relationships between Environmental Stressors and Biological Effects in Field Studies. Hum. Ecol. Risk Assess. Int. J. 2003, 9, 15. [Google Scholar] [CrossRef]
- Haake, D.M.; Wilton, T.; Krier, K.; Stewart, A.J.; Cormier, S.M. Causal Assessment of Biological Impairment in the Little Floyd River, Iowa, USA. Hum. Ecol. Risk Assess Int. J. 2010, 16, 116–148. [Google Scholar] [CrossRef]
- Shao, J.; Zhou, J.Q. Study on the influences of industry transformation on the sustainable development of resource-exhausted city space. Procedia Eng. 2011, 21, 421–427. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Long, R.; Chen, H. Economic transition policies in Chinese resource-based cities: An overview of government efforts. Energy Policy 2013, 55, 251–260. [Google Scholar] [CrossRef]
- Zhang, H.; Xiong, L.; Qiu, Y.; Zhou, D. How Have Political Incentives for Local Officials Reduced Environmental Pollution in Resource-Depleted Cities? Sustainability 2017, 9, 1941. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Xiong, L.; Li, L.; Zhang, S. Political incentives, transformation efficiency and resource-exhausted cities. J. Clean. Prod. 2018, 196, 1418–1428. [Google Scholar] [CrossRef]
- Cormier, S.M.; Norton, S.B.; Suter, G.W. The U.S. Environmental Protection Agency’s Stressor Identification Guidance: A Process for Determining the Probable Causes of Biological Impairments. Hum. Ecol. Risk Assess. Int. J. 2003, 9, 1431–1443. [Google Scholar] [CrossRef]
- Science Policy Council Handbook: Peer Review. Available online: https://www.epa.gov/iris/us-epa-2000-science-policy-council-handbook-peer-review (accessed on 15 January 2019).
- Ziegel, E.R.; Suter, G. Ecological Risk Assessment. Technometrics 1995, 37, 240. [Google Scholar] [CrossRef]
- Guidelines for Ecological Risk Assessment. Available online: https://www.epa.gov/risk/guidelines-ecological-risk-assessment (accessed on 3 December 2019).
- Suter, G.; Efroymson, R.; Sample, B.; Jones, D. Ecological Risk Assessment for Contaminated Sites; Apple Academic Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Platt, J.R. Strong Inference: Certain systematic methods of scientific thinking may produce much more rapid progress than others. Science 1964, 146, 347–353. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.; Feng, J.; Che, Y.; Lin, X.; Hu, L.; Yang, S. The identification and assessment of ecological risks for land consolidation based on the anticipation of ecosystem stabilization: A case study in Hubei Province, China. Land Use Policy 2010, 27, 293–303. [Google Scholar] [CrossRef]
- Causal Analysis/Diagnosis Decision Information System (CADDIS). Available online: https://www.epa.gov/caddis (accessed on 16 February 2019).
- Fox, G.A. Practical causal inference for ecoepidemiologists. J. Toxicol. Environ. Health Part A 1991, 33, 359–373. [Google Scholar] [CrossRef]
- Hill, A.B. The Environment and Disease: Association or Causation? Proc. R. Soc. Med. 1965, 58, 295–300. [Google Scholar] [CrossRef] [Green Version]
- Glass, R.I. New prospects for epidemiologic investigations. Science 1986, 234, 951–955. [Google Scholar] [CrossRef]
- Gard, N.W.; Menzie, C.A. A Causal/Risk Analysis Framework for Informing Endangered Species Jeopardy Reviews for Pesticides. In Pesticide Regulation and the Endangered Species Act; American Chemical Society: Washington, DC, USA, 2012; pp. 243–257. [Google Scholar]
- Cormier, S.M.; Suter, G.W.; Norton, S.B. Causal Characteristics for Ecoepidemiology. Hum. Ecol. Risk Assess. Int. J. 2010, 16, 53–73. [Google Scholar] [CrossRef]
- Application of Watershed Ecological Risk Assessment Methods to Watershed Management. Available online: https://cfpub.epa.gov/ncea/risk/era/recordisplay.cfm?deid=162845 (accessed on 19 March 2020).
- Su, S.; Ma, X.; Xiao, R. Agricultural landscape pattern changes in response to urbanization at ecoregional scale. Ecol. Indic. 2014, 40, 10–18. [Google Scholar] [CrossRef]
- Su, S.; Xiao, R.; Li, D.; Hu, Y. Impacts of Transportation Routes on Landscape Diversity: A Comparison of Different Route Types and Their Combined Effects. Environ. Manag. 2013, 53, 636–647. [Google Scholar] [CrossRef] [PubMed]
- Weilenmann, B.; Seidl, I.; Schulz, T. The socio-economic determinants of urban sprawl between 1980 and 2010 in Switzerland. Landsc. Urban Plan. 2017, 157, 468–482. [Google Scholar] [CrossRef]
- Wei, B.; Yang, L. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem. J. 2010, 94, 99–107. [Google Scholar] [CrossRef]
- Cao, Y.; Bai, Z.; Zhou, W.; Zhang, X. Characteristic analysis and pattern evolution on landscape types in typical compound area of mine agriculture urban in Shanxi Province, China. Environ. Earth Sci. 2016, 75, 1–15. [Google Scholar] [CrossRef]
- Zhang, J.T.; Sun, H. Differences of Nemerow Index Method and Fuzzy Comprehensive Evaluation Method in Evaluation Heavy Metal Pollution in Soil. Environ. Monit. Manag. Technol. 2016, 28, 27–31. [Google Scholar]
- Fan, J.N.; Guo, L.; Zhang, M.J.; An, K.D.; Yang, X.; Shi, M.F.; He, X.M. Present Situation and Evaluation of Heavy Metals Pollution in Surface Soils of Key Areas and Surrounding Areas in Hubei. Environ. Monit. China 2020, 36, 96–104. [Google Scholar]
- Purves, D. Contamination of Urban Garden Soils with Copper and Boron. Nature 1966, 210, 1077–1078. [Google Scholar] [CrossRef]
- Ren, H.-Y.; Zhuang, D.-F.; Singh, A.; Pan, J.-J.; Qiu, D.-S.; Shi, R.-H. Estimation of As and Cu Contamination in Agricultural Soils Around a Mining Area by Reflectance Spectroscopy: A Case Study. Pedosphere 2009, 19, 719–726. [Google Scholar] [CrossRef]
- Rasheed, T.; Bilal, M.; Nabeel, F.; Adeel, M.; Iqbal, H.M. Environmentally-related contaminants of high concern: Potential sources and analytical modalities for detection, quantification, and treatment. Environ. Int. 2019, 122, 52–66. [Google Scholar] [CrossRef] [PubMed]
- Taiwo, A.M. A review of environmental and health effects of organochlorine pesticide residues in Africa. Chemosphere 2019, 220, 1126–1140. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Ma, Y.; Zhang, S.; Wei, D.; Zhu, Y.-G. An inventory of trace element inputs to agricultural soils in China. J. Environ. Manag. 2009, 90, 2524–2530. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, F.; Rodrigues, D.F. Investigation of acute effects of graphene oxide on wastewater microbial community: A case study. J. Hazard. Mater. 2013, 256-257, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Wang, X.; Liu, Y.; Gao, J.; Wang, Y. Variations in toxicity of semi-coking wastewater treatment processes and their toxicity prediction. Ecotoxicol. Environ. Saf. 2017, 138, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Gros, M.; Petrović, M.; Ginebreda, A.; Barceló, D. Removal of pharmaceuticals during wastewater treatment and environmental risk assessment using hazard indexes. Environ. Int. 2010, 36, 15–26. [Google Scholar] [CrossRef]
- Zhang, D.; Gersberg, R.M.; Ng, W.J.; Tan, S.K. Removal of pharmaceuticals and personal care products in aquatic plant-based systems: A review. Environ. Pollut. 2014, 184, 620–639. [Google Scholar] [CrossRef]
- Couture, R.-M.; Tominaga, K.; Starrfelt, J.; Moe, S.J.; Kaste, Ø.; Wright, R.F. Modelling phosphorus loading and algal blooms in a Nordic agricultural catchment-lake system under changing land-use and climate. Environ. Sci. Process. Impacts 2014, 16, 1588–1599. [Google Scholar] [CrossRef] [Green Version]
- Bowes, M.; Jarvie, H.; Halliday, S.; Skeffington, R.; Wade, A.; Loewenthal, M.; Gozzard, E.; Newman, J.; Palmer-Felgate, E. Characterising phosphorus and nitrate inputs to a rural river using high-frequency concentration–flow relationships. Sci. Total Environ. 2015, 511, 608–620. [Google Scholar] [CrossRef] [Green Version]
- Meier, M.S.; Stoessel, F.; Jungbluth, N.; Juraske, R.; Schader, C.; Stolze, M. Environmental impacts of organic and conventional agricultural products—Are the differences captured by life cycle assessment? J. Environ. Manag. 2015, 149, 193–208. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef]
- Mao, D.; Wang, Z.; Wu, B.; Zeng, Y.; Luo, L.; Zhang, B. Land degradation and restoration in the arid and semiarid zones of China: Quantified evidence and implications from satellites. Land Degrad. Dev. 2018, 29, 3841–3851. [Google Scholar] [CrossRef]
- Lagny, C. The emissions of gases from abandoned mines: Role of atmospheric pressure changes and air temperature on the surface. Environ. Earth Sci. 2014, 71, 923–929. [Google Scholar] [CrossRef] [Green Version]
- Lagny, C. Noxious gas emissions above former coal and iron mines in Lorraine due to the presence of iron sulphides. Environ. Earth Sci. 2015, 74, 6303–6313. [Google Scholar] [CrossRef]
- Tan, W.-F.; Wang, L.-A.; Huang, C. Environmental effects of coal gangue and its utilization. Energy Source Part A Recovery Util. Environ. Eff. 2016, 38, 3716–3721. [Google Scholar] [CrossRef]
- Déportes, I.; Benoit-Guyod, J.-L.; Zmirou, D. Hazard to man and the environment posed by the use of urban waste compost: A review. Sci. Total Environ. 1995, 172, 197–222. [Google Scholar] [CrossRef]
- Venkatesan, A.K.; Done, H.Y.; Halden, R.U. United States National Sewage Sludge Repository at Arizona State University—A new resource and research tool for environmental scientists, engineers, and epidemiologists. Environ. Sci. Pollut. Res. 2015, 22, 1577–1586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.L.; Ortiz, R.; Steele, T.W.; Stuckey, D.C. Toxicants inhibiting anaerobic digestion: A review. Biotechnol. Adv. 2014, 32, 1523–1534. [Google Scholar] [CrossRef]
- Dou, X.S. A critical review of groundwater utilization and management in China’s inland water shortage areas. Water Policy 2016, 18, 1367–1383. [Google Scholar] [CrossRef]
- Khorrami, M.; Alizadeh, B.; Tousi, E.G.; Shakerian, M.; Maghsoudi, Y.; Rahgozar, P. How Groundwater Level Fluctuations and Geotechnical Properties Lead to Asymmetric Subsidence: A PSInSAR Analysis of Land Deformation over a Transit Corridor in the Los Angeles Metropolitan Area. Remote Sens. 2019, 11, 377. [Google Scholar] [CrossRef] [Green Version]
- Larssen, T.; Carmichael, G. Acid rain and acidification in China: The importance of base cation deposition. Environ. Pollut. 2000, 110, 89–102. [Google Scholar] [CrossRef]
- Larssen, T.; Lydersen, E.; Tang, D.; He, Y.; Gao, J.; Liu, H.; Duan, L.; Seip, H.M.; Vogt, R.D.; Mulder, J.; et al. Acid Rain in China. Environ. Sci. Technol. 2006, 40, 418–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, F.; Hu, H.; Wang, L.; Zhou, Q.; Huang, X. Effects of rare earth and acid rain pollution on plant chloroplast ATP synthase and element contents at different growth stages. Chemosphere 2018, 194, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Moharami, S.; Jalali, M. Effect of acid rain on the fractionation of heavy metals and major elements in contaminated soils. Chem. Ecol. 2014, 31, 160–172. [Google Scholar] [CrossRef]
- Singh, S.; Tripathi, D.K.; Singh, S.; Sharma, S.; Dubey, N.K.; Chauhan, D.K.; Vaculík, M. Toxicity of aluminium on various levels of plant cells and organism: A review. Environ. Exp. Bot. 2017, 137, 177–193. [Google Scholar] [CrossRef]
- Fan, J.; Xu, Y.; Chen, Z.; Xiao, J.; Liu, D.; Luo, J.; Bolan, N.; Ding, W. Sulfur deposition suppressed nitrogen-induced soil N2O emission from a subtropical forestland in southeastern China. Agric. For. Meteorol. 2017, 233, 163–170. [Google Scholar] [CrossRef]
- Townsend, P.A.; Helmers, D.P.; Kingdon, C.C.; McNeil, B.E.; de Beurs, K.M.; Eshleman, K.N. Changes in the extent of surface mining and reclamation in the Central Appalachians detected using a 1976–2006 Landsat time series. Remote Sens. Environ. 2009, 113, 62–72. [Google Scholar] [CrossRef]
- Dynesius, M.; Nilsson, C. Fragmentation and Flow Regulation of River Systems in the Northern Third of the World. Science 1994, 266, 753–762. [Google Scholar] [CrossRef]
- Wang, F.; Ge, Q.; Yu, Q.; Wang, H.; Xu, X. Impacts of land-use and land-cover changes on river runoff in Yellow River basin for period of 1956–2012. Chin. Geogr. Sci. 2017, 27, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Lal, R.; Ahmadi, M.; Bajracharya, R.M. Erosional impacts on soil properties and corn yield on Alfisols in central Ohio. Land Degrad. Dev. 2000, 11, 575–585. [Google Scholar] [CrossRef]
- Vaezi, A.R.; Ahmadi, M.; Cerdà, A. Contribution of raindrop impact to the change of soil physical properties and water erosion under semi-arid rainfalls. Sci. Total Environ. 2017, 583, 382–392. [Google Scholar] [CrossRef]
- Singh, A. Alternative management options for irrigation-induced salinization and waterlogging under different climatic conditions. Ecol. Indic. 2018, 90, 184–192. [Google Scholar] [CrossRef]
- Pulido-Bosch, A.; Rigol-Sanchez, J.P.; Vallejos, A.; Andreu, J.M.; Ceron, J.C.; Molina-Sanchez, L.; Sola, F. Impacts of agricultural irrigation on groundwater salinity. Environ. Earth Sci. 2018, 77, 197. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, M.J.; Lovett, G.; Bailey, S.; Beall, F.; Burns, D.; Buso, D.; Clair, T.A.; Courchesne, F.; Duchesne, L.; Eimers, C.; et al. Comparisons of watershed sulfur budgets in southeast Canada and northeast US: New approaches and implications. Biogeochem. 2010, 103, 181–207. [Google Scholar] [CrossRef]
- Vet, R.; Artz, R.S.; Carou, S.; Shaw, M.; Ro, C.-U.; Aas, W.; Baker, A.; Bowersox, V.C.; Dentener, F.; Galy-Lacaux, C.; et al. A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus. Atmos. Environ. 2014, 93, 3–100. [Google Scholar] [CrossRef]
- Quina, M.J.; Bordado, J.C.; Quinta-Ferreira, R.M. The influence of pH on the leaching behaviour of inorganic components from municipal solid waste APC residues. Waste Manag. 2009, 29, 2483–2493. [Google Scholar] [CrossRef]
- Wang, B.; Peng, Y. The effect of saline water on mineral flotation—A critical review. Miner. Eng. 2014, 66–68, 13–24. [Google Scholar] [CrossRef]
- Aschonitis, V.; Gavioli, A.; Lanzoni, M.; Fano, E.; Feld, C.; Castaldelli, G. Proposing priorities of intervention for the recovery of native fish populations using hierarchical ranking of environmental and exotic species impact. J. Environ. Manag. 2018, 210, 36–50. [Google Scholar] [CrossRef]
- Santini, A.; Ghelardini, L.; De Pace, C.; Desprez-Loustau, M.L.; Capretti, P.; Chandelier, A.; Cech, T.; Chira, D.; Diamandis, S.; Gaitniekis, T.; et al. Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytol. 2013, 197, 238–250. [Google Scholar] [CrossRef] [Green Version]
- Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-based estimates of groundwater depletion in India. Nature 2009, 460, 999–1002. [Google Scholar] [CrossRef] [Green Version]
- Aiken, J.K.; Findlay, C.S.; Chapleau, F. Long-term assessment of the effect of introduced predatory fish on minnow diversity in a regional protected area. Can. J. Fish. Aquat. Sci. 2012, 69, 1798–1805. [Google Scholar] [CrossRef]
- Fridley, J.D.; Sax, D.F. The imbalance of nature: Revisiting a Darwinian framework for invasion biology. Glob. Ecol. Biogeogr. 2014, 23, 1157–1166. [Google Scholar] [CrossRef] [Green Version]
- Warren, R.J.; Candeias, M.; Labatore, A.; Olejniczak, M.; Yang, L. Multiple mechanisms in woodland plant species invasion. J. Plant Ecol. 2019, 12, 201–209. [Google Scholar] [CrossRef]
- Aumen, N.G.; Keddy, P.A. Wetland ecology: Principles and conservation. J. N. Am. Benthol. Soc. 2001, 20, 683–685. [Google Scholar] [CrossRef]
- Liu, Y.; Li, W.; Wu, G.; Xu, X. Feasibility of estimating heavy metal contaminations in floodplain soils using laboratory-based hyperspectral data—A case study along Le’an River, China. Geo-Spatial Inf. Sci. 2011, 14, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Chen, Y. Feasibility of Estimating Cu Contamination in Floodplain Soils using VNIR Spectroscopy—A Case Study in the Le’an River Floodplain, China. Soil Sediment Contam. Int. J. 2012, 21, 951–969. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, X.; Vitousek, P. Chinese agriculture: An experiment for the world. Nature 2013, 497, 33–35. [Google Scholar] [CrossRef]
- Liu, E.K.; He, W.Q.; Yan, C.R. ’White revolution’ to ’white pollution’—Agricultural plastic film mulch in China. Environ. Res. Lett. 2014, 9, 091001. [Google Scholar] [CrossRef] [Green Version]
- Bi, X.; Pan, X.; Zhou, S. Soil Security Is Alarming in China’s Main Grain Producing Areas. Environ. Sci. Technol. 2013, 47, 7593–7594. [Google Scholar] [CrossRef]
- Liu, Y.L.; Wen, C.; Liu, X.J. China’s Food Security Soiled by Contamination. Science 2013, 339, 1382–1383. [Google Scholar] [CrossRef]
- Tang, W.; Wang, D.; Wang, J.; Wu, Z.; Li, L.; Huang, M.; Xu, S.; Yan, D. Pyrethroid pesticide residues in the global environment: An overview. Chemosphere 2018, 191, 990–1007. [Google Scholar] [CrossRef]
- Siebert, S.; Burke, J.; Faures, J.M.; Frenken, K.; Hoogeveen, J.; Döll, P.; Portmann, F.T. Groundwater use for irrigation—A global inventory. Hydrol. Earth Syst. Sci. 2010, 14, 1863–1880. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Choi, M.-S.; Lee, C.-B. Atmospheric metal and phosphorus concentrations, inputs, and their biogeochemical significances in the Japan/East Sea. Sci. Total Environ. 2009, 407, 2270–2284. [Google Scholar] [CrossRef]
- Urrutia-Goyes, R.; Hernandez, N.; Carrillo-Gamboa, O.; Nigam, K.; Ornelas-Soto, N. Street dust from a heavily-populated and industrialized city: Evaluation of spatial distribution, origins, pollution, ecological risks and human health repercussions. Ecotoxicol. Environ. Saf. 2018, 159, 198–204. [Google Scholar] [CrossRef]
Id | Heavy Metal Content | Nemero Single Value | Nemerow Composite Index | ||||||
---|---|---|---|---|---|---|---|---|---|
Cu | As | Cd | Pb | Cu | As | Cd | Pd | ||
2 | 20.99 | 16.87 | 1.05 | 19.25 | 0.68 | 1.37 | 6.18 | 0.72 | 4.65 |
8 | 26.95 | 12.23 | 1.05 | 62.55 | 0.88 | 0.99 | 6.18 | 2.34 | 4.74 |
6 | 59.72 | 33.09 | 1.32 | 75.59 | 1.95 | 2.69 | 7.76 | 2.83 | 6.12 |
3 | 13.26 | 22.19 | 1.12 | 58.84 | 0.43 | 1.80 | 6.59 | 2.20 | 5.05 |
5 | 34.79 | 18.40 | 1.09 | 78.33 | 1.13 | 1.50 | 6.41 | 2.93 | 5.00 |
4 | 24.88 | 23.00 | 1.10 | 83.65 | 0.81 | 1.87 | 6.47 | 3.13 | 5.06 |
7 | 22.03 | 15.79 | 1.21 | 74.27 | 0.72 | 1.28 | 7.12 | 2.78 | 5.45 |
1 | 20.38 | 4.03 | 1.17 | 69.65 | 0.66 | 0.33 | 6.88 | 2.61 | 5.21 |
72 | 21.06 | 14.35 | 1.48 | 15.44 | 0.69 | 1.17 | 8.71 | 0.58 | 6.46 |
76 | 22.28 | 11.46 | 1.18 | 78.85 | 0.73 | 0.93 | 6.94 | 2.95 | 5.32 |
… | … | … |
Candidate Cause | Co-Occurrence (Spatial and Temporal) | Temporal Sequence | Exposure-Response Relationship | Causal Pathway | Evidence of Exposure Mechanism | Manipulation of Exposure | Set of Symptoms | Expose-Response Relationships from Other Field Studies | Analogous Causes | Conclusions of Consistency of Evidence | |
---|---|---|---|---|---|---|---|---|---|---|---|
Field | Laboratory | ||||||||||
Altered hydrology | - - - | 0 | / | / | + | - - | / | - - - | 0 | / | Unlikely |
Destroyed earth surface | + | + | + | + | ++ | + | 0 | + | ++ | + | Probable |
Habitat remove | + | + | ++ | + | + | ++ | ++ | + | ++ | + | Probable |
Altered earth-surface runoff | - - - | 0 | - | / | + | + | - - | 0 | - | - | Unlikely |
Altered underground runoff | + | 0 | + | / | - | + | 0 | + | + | - | Possible |
Desertification | - - - | 0 | 0 | / | + | 0 | / | + | - - | + | Unlikely |
Soil erosion | 0 | 0 | - | - - | 0 | - - | / | + | - - | - | Unlikely |
Space occupation | 0 | - - - | + | 0 | + | + | - - | 0 | + | + | Unlikely |
Division of landscape | + | + | 0 | + | + | + | / | + | ++ | + | Probable |
Edge effect | + | 0 | ++ | + | 0 | + | / | - | 0 | - | Possible |
Atmospheric deposition | 0 | 0 | + | / | + | 0 | +++ | + | 0 | / | Possible |
Soil salinization | + | 0 | / | / | + | 0 | / | 0 | 0 | + | Delayed |
Soil acidification | + | 0 | + | + | + | + | / | + | + | + | Probable |
Solubility inorganic salt | 0 | 0 | + | 0 | 0 | + | 0 | 0 | 0 | - | Delayed |
Nutrient runoff | + | + | ++ | + | + | + | / | + | + | + | Probable |
Organic pollutants | + | + | ++ | ++ | + | ++ | + | + | ++ | + | Probable |
Heavy metals accumulation | + | + | ++ | ++ | + | ++ | +++ | D | ++ | ++ | Probable |
Toxicants | 0 | 0 | + | + | - | + | 0 | 0 | + | + | Possible |
Leaching | 0 | 0 | ++ | 0 | 0 | + | +++ | D | + | + | Probable |
Water eutrophication | + | + | + | + | + | ++ | +++ | + | ++ | + | Probable |
Sulphur deposition | + | - - - | 0 | 0 | 0 | 0 | / | + | - | - | Delayed |
Noxious gas | 0 | + | + | / | - | + | / | + | 0 | - | Possible |
Acid rain | 0 | 0 | + | / | + | + | / | 0 | + | - | Possible |
Changes in sedimentation patterns | 0 | 0 | 0 | / | 0 | + | / | + | 0 | - | Unlikely |
Pathogens | 0 | 0 | / | / | - - - | 0 | / | + | - - | + | Delayed |
Biological species invasion | 0 | 0 | + | / | 0 | + | / | 0 | 0 | + | Delayed |
Changes of the food chain | 0 | 0 | / | / | 0 | 0 | 0 | 0 | - | + | Delayed |
Geological disasters | + | + | + | + | + | ++ | / | + | + | + | Probable |
Population aggregation | - - - | 0 | / | / | + | + | / | 0 | - | - | Unlikely |
Farmland abandoned | + | R | + | / | + | + | - - - | - - - | - | + | Unlikely |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, K.; Chen, Y.; Chen, M.; Wang, C.; Chen, Z.; Cai, W.; Li, R.; Feng, W.; Jiang, M. Causal Analysis of Ecological Impairment in Land Ecosystem on a Regional Scale: Applied to a Mining City Daye, China. Land 2021, 10, 530. https://doi.org/10.3390/land10050530
Guo K, Chen Y, Chen M, Wang C, Chen Z, Cai W, Li R, Feng W, Jiang M. Causal Analysis of Ecological Impairment in Land Ecosystem on a Regional Scale: Applied to a Mining City Daye, China. Land. 2021; 10(5):530. https://doi.org/10.3390/land10050530
Chicago/Turabian StyleGuo, Kai, Yiyun Chen, Min Chen, Chaojun Wang, Zeyi Chen, Weinan Cai, Renjie Li, Weiming Feng, and Ming Jiang. 2021. "Causal Analysis of Ecological Impairment in Land Ecosystem on a Regional Scale: Applied to a Mining City Daye, China" Land 10, no. 5: 530. https://doi.org/10.3390/land10050530
APA StyleGuo, K., Chen, Y., Chen, M., Wang, C., Chen, Z., Cai, W., Li, R., Feng, W., & Jiang, M. (2021). Causal Analysis of Ecological Impairment in Land Ecosystem on a Regional Scale: Applied to a Mining City Daye, China. Land, 10(5), 530. https://doi.org/10.3390/land10050530