The Scenic Beauty of Geosites and Its Relation to Their Scientific Value and Geoscience Knowledge of Tourists: A Case Study from Southeastern Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
Geomorphological and Geological Setting of the Study Area
2.2. Data Collection and Analysis
3. Results
3.1. Scenic Beauty Rating and Socio-Demographic Background of Respondents
3.2. Relationship between Scenic Beauty and Scientific Value of Geosites
3.2.1. Correlation Analysis Results
3.2.2. Interesting Features Explaining Scenic Beauty and Scientific Value Ratings of the Geosites
3.3. Contribution of Geoscience Knowledge to Perceived Scenic Beauty
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Geosite Number a | Name of the Geosite, and/or Town | Major Features |
---|---|---|
1 | Boca Andarax, Almeria | Delta of the Andarax river, coastal erosion and Holocene environmental change. Viewpoint on sierras and pediments. |
2 | Torre Garcia, Retamar | Marine terraces, Palomares fault, vegetated sand dunes, Rambla de las Amoladeras, archaeological site where garum (fermented fish sauce) was produced in Roman times. |
3 | Las Salinas, La Fabriquilla | Lagoon with salt production basins (Salinas), alluvial fans at the foot of Sierra de Gata |
4 | Punta Baja, Cabo de Gata | Volcanic plug and quarry with exposure of andesitic columns. |
5 | Cerro Pistolas, El Nazareno | Viewpoint over Sierra de Gata and Nijar basin, traditional (Cortijo) and modern (greenhouses) land use (littoralisation) |
6 | Albaricoques | Sierra de Gata with ancient water harvesting cistern (aljibe) along a transhumance route |
7 | San Diego Mine, Rodalquilar | Sierra de Gata with an ancient gold mine, ignimbrites and mine dumps |
8 | Rodalquilar Mine, Rodalquilar | Sierra de Gata with an ancient gold mine and gold extraction factory, caldera |
9 | La Isleta del Moro | Coastal evolution, alluvial fans and basalt columns |
10 | Los Escullos | Fossil dunes, eolianite rock cliff with tafoni (honeycomb weathering) |
11 | El Puntal | Pleistocene alluvial fan with dated calcretes (petrocalcic horizon) |
12 | Rambla Nogalte, Puerto Lumbreras | Ephemeral river channel, impact of historical flash floods (up to 2500 m3/s) |
13 | Lorca Castle, Lorca | Horst and graben site, Lorca-Alhama fault, hogbacks, land use |
14 | Puentes Dam, La Parroquia | Impact of massive sedimentation in Puentes reservoir (storage capacity loss) |
15 | Rambla Salada, Zarcilla de Ramos | Ephemeral channel and exposure of gypsum-rich and (Quaternary) valley-fill deposits, present-day channel bank failures and bank gullies, gully erosion control using check dams |
16 | Sierra de la Torrecilla, La Fuensanta | Impact of land use (almond grove monoculture) on soil erosion by water and tillage, gully erosion control using large check dams and “clear water effects” in downstream gully channel |
17 | Rio Alias, Los Alamillos | Evolution of river terrace composition following a river capture |
18 | Rambla de los Feos, Los Arejos | River terraces on gypsum and marls |
19 | Los Perales | Viewpoint on Sorbas basin, Rio Aguas valley, wind gap (river capture site), large-scale landslides (including rock topple, rockfall and large and deep tension cracks), thick gypsum deposits resting on marls. |
20 | Los Molinos | Viewpoint on Sorbas basin, Rio Aguas valley, relief inversion, river capture, gypsum plateau and gypsum karst features (sinkholes and caves) |
21 | Lucainena de las Torres | Iron ore mines in Sierra Alhamilla (mica schists) and industrial archaeological site (furnaces to extract iron) |
22 | Los Yesos | Undissected Tabernas basin with large-scale irrigated olive monoculture |
23 | Los Millares | Viewpoint over dissected Tabernas basin, Rio Andarax and surrounding sierras. Copper-age (Chalcolithic) archaeological site on promontory near the Rio Andarax |
24 | Bar Alfaro, Tabernas | Badlands near rambla de Tabernas with exposures of flysch and marls, fault and travertine dam. |
25 | Mini Hollywood, Tabernas | Viewpoint on badlands near rambla de Tabernas, Sierra Alhamilla, and on Alfaro hogback. |
26 | Rambla Honda, Tabernas | Large-scale fan infilling valley cut into mica schists, hogbacks and remnants of historic settlements with traditional spate irrigation systems (terraces and canals). |
27 | La Calahorra castle, La Calahorra | Viewpoint on Sierra Nevada, open-pit iron mine of Marquesada and on Guadix basin. |
28 | Esfiliana | Large bank gullies dissecting gently sloping gravelly alluvial fans in the Guadix basin. |
29 | Gorafe | Viewpoint over Rio Gor valley cut in Guadix-Baza basin, with large-scale landslides, groundwater calcretes, Bronze-age megalithic park |
30 | Alicun de las Torres | Viewpoint over Rio Fardes valley and large travertine dams, hot water springs |
31 | Belerda | Viewpoint on Sierra Nevada, Guadix basin infill, large valley-bottom gully and groundwater calcretes |
32 | Rio Aguas, Sorbas | Ephemeral stream channel with heterogeneous bedload deposit. |
33 | Embalse de Isabel II, Níjar | Valley cut in mica schists of the Sierra de los Filabres, with completely infilled reservoir |
34 | El Hoyazo, Níjar | Eroded volcano with volcanic plug and coral reef deposits, ancient garnet mining site |
Geosite Number | Geosite Name | Features of Interest at the Geosite |
---|---|---|
1 | Boca Andarax | Local geo-feature, viewpoint |
2 | Torre Garcia | Human–environment interaction, local geo-feature, viewpoint |
3 | Las Salinas | Human–environment interaction, local geo-feature, viewpoint |
4 | Punta Baja | Local geo-feature, viewpoint |
5 | Cerro Pistolas | Human–environment interaction, viewpoint |
6 | Albaricoques | Human–environment interaction, viewpoint |
7 | San Diego Mine | Human–environment interaction, viewpoint |
8 | Rodalquilar Mine | Human–environment interaction, local geo-feature, viewpoint |
9 | La Isleta del Moro | Local geo-feature, viewpoint |
10 | Los Escullos | Local geo-feature, viewpoint |
11 | El Puntal | Local geo-feature |
12 | Rambla Nogalte | Human–environment interaction |
13 | Lorca Castle | Local geo-feature, viewpoint |
14 | Puentes Dam | Human–environment interaction |
15 | Zarcilla de Ramos (Rambla Salada) | Local geo-feature |
16 | Sierra de la Torrecilla | Human–environment interaction, viewpoint |
17 | Rio Alias | Local geo-feature |
18 | Rambla de los Feos | Local geo-feature |
19 | Los Perales | Local geo-feature, viewpoint |
20 | Los Molinos | Local geo-feature, viewpoint |
21 | Lucainena de las Torres | Human–environment interaction, viewpoint |
22 | Los Yesos | Human–environment interaction, viewpoint |
23 | Los Millares | Human–environment interaction, viewpoint |
24 | Bar Alfaro | Local geo-feature, viewpoint |
25 | Mini Hollywood | Local geo-feature, viewpoint |
26 | Rambla Honda | Human–environment interaction, local geo-feature, viewpoint |
27 | La Calahorra | Human–environment interaction, viewpoint |
28 | Esfiliana | Local geo-feature, viewpoint |
29 | Gorafe | Human–environment interaction, viewpoint |
30 | Alicun de las Torres | Local geo-feature, viewpoint |
31 | Belerda | Local geo-feature, viewpoint |
32 | Rio Aguas | Local geo-feature |
33 | Embalse de Isabel II | Human–environment interaction, viewpoint |
34 | El Hoyazo | Local geo-feature, viewpoint |
Socio-Demographic Variables | NGB-NV Group (n = 104) | GB-NV Group (n = 43) | GB-V Group (n = 29) | Total Respondents (n = 176) | |
---|---|---|---|---|---|
Frequency n (%) | Frequency n (%) | Frequency n (%) | Frequency n (%) | ||
Gender a (n = 171) | Female | 51 (49) | 14 (32.6) | 7 (29.2) | 72 (42.1) |
Male | 53 (51) | 29 (67.4) | 17 (70.8) | 99 (57.9) | |
Age (n = 147) | 18–29 | 46 (44.2) | 25 (58.1) | NA b | 71 (48.3) |
30–49 | 25 (24.1) | 10 (23.3) | NA | 35 (23.8) | |
50–77 | 33 (31.7) | 8 (18.6) | NA | 41 (27.9) | |
Education level a (n = 169) | Bachelor’s degree (n = 54) | 34 (34.3) | 11 (25.6) | 9 (33.3) | 54 (32.0) |
Master’s degree | 58 (58.6) | 24 (55.8) | 16 (59.3) | 98 (58.0) | |
PhD degree | 7 (7.1) | 8 (18.6) | 2 (7.4) | 17 (10.0) | |
Country of residence (n = 176) | Belgium | 67 (64.4) | 29 (67.4) | 28 (96.6) | 125 (71.0) |
Other | 37 (35.6) | 14 (32.6) | 1 (3.4) | 52 (29.0) | |
Continents visited a (n = 175) | No travel outside my continent | 25 (24) | 14 (32.5) | 9 (32.1) | 48 (27.4) |
Visited one other continent | 41 (39.4) | 7 (16.3) | 6 (21.4) | 54 (30.9) | |
Visited 2–3 other continents | 21 (20.2) | 15 (34.9) | 8 (28.6) | 44 (25.1) | |
Visited 4–5 other continents | 17 (16.4) | 7 (16.3) | 5 (17.9) | 29 (16.6) | |
Primarily preferred attraction types (n = 173) | Biodiversity | 8 (7.7) | 1 (2.3) | 4 (15.4) | 13 (7.5) |
Biodiversity and culture-history | 11 (10.6) | 0 (0.0) | 0 (0.0) | 11 (6.4) | |
Biodiversity and geology-landscape | 2 (1.9) | 1 (2.3) | 0 (0.0) | 3 (1.7) | |
Biodiversity, culture- history and geology-landscape | 20 (19.2) | 11 (25.6) | 0 (0.0) | 31 (17.9) | |
Culture-history | 28 (26.9) | 4 (9.3) | 5 (19.2) | 37 (21.4) | |
Culture-history and geology-landscape | 17 (16.4) | 10 (23.3) | 0 (0.0) | 27 (15.6) | |
Geology-landscape | 18 (17.3) | 16 (37.2) | 17 (65.4) | 51 (29.5) |
Geosite Number | Name of the Geosite | Mean of the NGB-NV Group | Mean of the GB-NV Group | Mean of the GB-V Group | F Value |
---|---|---|---|---|---|
1 | Boca Andarax | 3.25 (0.93) | 3.02 (1.01) | 2.28 (0.92) | 11.92 *** |
2 | Torre Garcia | 3.04 (0.92) | 2.88 (0.88) | 2.97 (0.82) | 0.46 |
3 | Las Salinas | 2.61 (0.84) | 2.63 (1.05) | 3.31 (1) | 6.95 ** |
4 | Punta Baja | 3.85 (0.89) | 4.35 (0.61) | 4.79 (0.41) | 19.65 *** |
5 | Cerro Pistolas | 3.56 (0.9) | 3.65 (0.9) | 3.10 (1.11) | 3.35 * |
6 | Albaricoques | 2.62 (0.96) | 2.65 (1.02) | 2.83 (0.85) | 0.56 |
7 | San Diego Mine | 3.5 (0.91) | 3.74 (1.11) | 3.48 (0.95) | 1.06 |
8 | Rodalquilar Mine | 2.87 (1.01) | 3.12 (1.1) | 3.86 (0.79) | 11.35 *** |
9 | La Isleta del Moro | 4 (0.86) | 3.81 (1.03) | 3.69 (1.04) | 1.51 |
10 | Los Escullos | 4.28 (0.85) | 4.58 (0.7) | 4.45 (0.78) | 2.26 |
11 | El Puntal | 2.37 (0.89) | 2.05 (1.07) | 1.83 (1.07) | 4.20 * |
12 | Rambla Nogalte | 2.09 (1.06) | 2.26 (1.14) | 2.04 (0.95) | 0.39 |
13 | Lorca Castle | 2.93 (0.98) | 2.86 (1.04) | 3.86 (0.83) | 11.69 *** |
14 | Puentes Dam | 2.98 (0.9) | 2.95 (1.17) | 2.45 (1.02) | 3.38 * |
15 | Zarcilla de Ramos (Rambla Salada) | 3.54 (0.92) | 3.67 (0.99) | 3.59 (0.68) | 0.34 |
16 | Sierra de la Torrecilla | 3.4 (0.96) | 3.49 (1.05) | 3.45 (0.83) | 0.12 |
17 | Rio Alias | 2.86 (1) | 3.33 (0.94) | 3.21 (0.9) | 4.15 * |
18 | Rambla de los Feos | 3.07 (0.95) | 3.53 (0.93) | 2.69 (0.85) | 7.56 *** |
19 | Los Perales | 3.13 (0.98) | 3.65 (1.15) | 3.52 (1.02) | 4.45 * |
20 | Los Molinos | 3.44 (0.98) | 3.7 (1.08) | 4.14 (0.92) | 5.69 ** |
21 | Lucainena de las Torres | 3.93 (0.85) | 3.86 (1.08) | 3.48 (0.83) | 2.8 |
22 | Los Yesos | 3.07 (1.05) | 2.72 (1.05) | 2.07 (0.96) | 10.82 *** |
23 | Los Millares | 3.61 (0.95) | 3.6 (1.07) | 3.62 (1.08) | 0.00 |
24 | Bar Alfaro | 3.53 (0.99) | 4.21 (0.94) | 4.38 (0.86) | 13.19 *** |
25 | Mini Hollywood | 3.76 (1.03) | 4.51 (0.63) | 4 (0.89) | 10.08 *** |
26 | Rambla Honda | 3.23 (1.04) | 3.72 (0.91) | 3.79 (1.01) | 5.69 ** |
27 | La Calahorra | 3.23 (1.05) | 3.53 (0.98) | 4.21 (0.82) | 10.88 *** |
28 | Esfiliana | 3.37 (1.01) | 3.63 (1.05) | 2.76 (0.95) | 6.61 ** |
29 | Gorafe | 2.73 (0.93) | 2.67 (0.99) | 4.28 (0.7) | 35.61 *** |
30 | Alicun de las Torres | 3.57 (0.97) | 3.88 (0.79) | 4.83 (0.54) | 23.62 *** |
31 | Belerda | 3.37 (0.88) | 3.63 (1.16) | 3 (1) | 3.6 * |
32 | Rio Aguas | 2.3 (0.95) | 2.49 (0.96) | 2.14 (0.92) | 1.24 |
33 | Embalse de Isabel II | 2.89 (1) | 3.07 (0.99) | 3.1 (1.01) | 0.77 |
34 | El Hoyazo | 3.5 (1.01) | 3.65 (0.92) | 4.38 (0.56) | 10.10 *** |
Geosite Number | Geosite Name | Scientific Value Rating | Geosite Number | Geosite Name | Scientific Value Rating |
---|---|---|---|---|---|
1 | Boca Andarax | 3.03 | 18 | Rambla de los Feos | 3.28 |
2 | Torre Garcia | 3.25 | 19 | Los Perales | 3.72 |
3 | Las Salinas | 3.29 | 20 | Los Molinos | 3.89 |
4 | Punta Baja | 4.24 | 21 | Lucainena de las Torres | 3.00 |
5 | Cerro Pistolas | 3.45 | 22 | Los Yesos | 2.39 |
6 | Albaricoques | 2.83 | 23 | Los Millares | 3.72 |
7 | San Diego Mine | 3.10 | 24 | Bar Alfaro | 4.52 |
8 | Rodalquilar Mine | 3.59 | 25 | Mini Hollywood | 3.86 |
9 | La Isleta del Moro | 3.17 | 26 | Rambla Honda | 3.48 |
10 | Los Escullos | 4.32 | 27 | La Calahorra | 3.32 |
11 | El Puntal | 2.64 | 28 | Esfiliana | 3.29 |
12 | Rambla Nogalte | 3.52 | 29 | Gorafe | 4.14 |
13 | Lorca Castle | 3.79 | 30 | Alicun de las Torres | 4.59 |
14 | Puentes Dam | 2.86 | 31 | Belerda | 3.06 |
15 | Zarcilla de Ramos (Rambla Salada) | 3.64 | 32 | Rio Aguas | 2.82 |
16 | Sierra de la Torrecilla | 3.63 | 33 | Embalse de Isabel II | 3.62 |
17 | Rio Alias | 3.71 | 34 | El Hoyazo | 4.66 |
References
- Coratza, P.; Reynard, E.; Zwoliński, Z. Geodiversity and Geoheritage: Crossing Disciplines and Approaches. Geoheritage 2018, 10, 525–526. [Google Scholar] [CrossRef] [Green Version]
- Gray, M. Geodiversity: The backbone of Geoheritage and Geoconservation. In Geoheritage. Assessment, Protection, and Management; Reynard, E., Brilha, J., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 13–25. [Google Scholar]
- Gray, M. Valuing and Conserving Abiotic Nature; John Wiley & Sons: Chichester, England, 2004; ISBN 0470848952. [Google Scholar]
- Dowling, R.K. Global Geotourism—An Emerging Form of Sustainable Tourism. Czech J. Tour. 2013, 2, 59–79. [Google Scholar] [CrossRef] [Green Version]
- Kubalíková, L. Geomorphosite assessment for geotourism purposes. Czech J. Tour. 2013, 2, 80–104. [Google Scholar] [CrossRef]
- Schrodt, F.; Bailey, J.J.; Daniel Kissling, W.; Rijsdijk, K.F.; Seijmonsbergen, A.C.; Van Ree, D.; Hjort, J.; Lawley, R.S.; Williams, C.N.; Anderson, M.G.; et al. To advance sustainable stewardship, we must document not only biodiversity but geodiversity. Proc. Natl. Acad. Sci. USA 2019, 116, 16155–161658. [Google Scholar] [CrossRef] [Green Version]
- Brilha, J. Inventory and Quantitative Assessment of Geosites and Geodiversity Sites: A Review. Geoheritage 2016, 8, 119–134. [Google Scholar] [CrossRef] [Green Version]
- Huggett, R.J. Fundamentals of Geomorphology, 4th ed.; Routledge: New York, NY, USA, 2017; ISBN 9781138940642. [Google Scholar]
- Reynard, E. Geosite. In Encyclopedia of Geomorphology; Goudie, A.S., Ed.; Routledge: London, UK, 2004; p. 440. [Google Scholar]
- Newsome, D.; Dowling, R. The scope and nature of geotourism. In Geotourism; Dowling, R., Newsome, D., Eds.; Elsevier Butterworth Heinemann: Oxford, UK, 2006; pp. 3–25. [Google Scholar]
- Wimbledon, W.A.P. Geoheritage in Europe and its conservation. Episodes 2013, 36, 68. [Google Scholar] [CrossRef] [Green Version]
- Farsani, N.T.; de Carvalho, C.N.; Xu, K. Education as a key tenet of geotourism. In Handbook of Geotourism; Dowling, R., Newsome, D., Eds.; Edward Elgar Publishing Limited: Cheltenham, UK, 2018; pp. 234–243. [Google Scholar]
- Gajek, G.; Zgłobicki, W.; Kołodyńska-Gawrysiak, R. Geoeducational Value of Quarries Located Within the Małopolska Vistula River Gap (E Poland). Geoheritage 2019, 11, 1335–1351. [Google Scholar] [CrossRef] [Green Version]
- Sanz, J.; Zamalloa, T.; Maguregi, G.; Fernandez, L.; Echevarria, I. Educational Potential Assessment of Geodiversity Sites: A Proposal and a Case Study in the Basque Country (Spain). Geoheritage 2020, 12, 23. [Google Scholar] [CrossRef]
- Bentivenga, M.; Cavalcante, F.; Mastronuzzi, G.; Palladino, G.; Prosser, G. Geoheritage: The Foundation for Sustainable Geotourism. Geoheritage 2019, 11, 1367–1369. [Google Scholar] [CrossRef] [Green Version]
- Tessema, G.A.; van der Borg, J.; Minale, A.S.; Van Rompaey, A.; Adgo, E.; Nyssen, J.; Asrese, K.; Van Passel, S.; Poesen, J. Inventory and Assessment of Geosites for Geotourism Development in the eastern and southeastern Lake Tana region, Ethiopia. Geoheritage. accepted.
- Zgłobicki, W.; Poesen, J.; Cohen, M.; Del Monte, M.; García-Ruiz, J.M.; Ionita, I.; Niacsu, L.; Machová, Z.; Martín-Duque, J.F.; Nadal-Romero, E.; et al. The Potential of Permanent Gullies in Europe as Geomorphosites. Geoheritage 2019, 11, 217–239. [Google Scholar] [CrossRef]
- Brilha, J. Geoheritage: Inventories and evaluation. Geoherit. Assess. Prot. Manag. 2018, 69–85. [Google Scholar] [CrossRef]
- Pereira, P.; Pereira, D.; Caetano Alves, M.I. Geomorphosite assessment in Montesinho Natural Park (Portugal). Geogr. Helv. 2007, 62, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Reynard, E.; Fontana, G.; Kozlik, L.; Scapozza, C. A method for assessing “scientific” and “additional values” of geomorphosites. Geogr. Helv. 2007, 62, 148–158. [Google Scholar] [CrossRef]
- Pereira, P.; Pereira, D. Methodological guidelines for geomorphosite assessment. Geomorphol. Relief Process. Environ. 2010, 2, 215–222. [Google Scholar] [CrossRef] [Green Version]
- Vujičić, M.D.; Vasiljević, D.A.; Marković, S.B.; Hose, T.A.; Lukić, T.; Hadžić, O.; Janićević, S. Preliminary geosite assessment model (GAM) and its application on fruška gora mountain, potential geotourism destination of Serbia. Acta Geogr. Slov. 2011, 51, 361–377. [Google Scholar] [CrossRef]
- Fassoulas, C.; Mouriki, D.; Dimitriou-Nikolakis, P.; Iliopoulos, G. Quantitative Assessment of Geotopes as an Effective Tool for Geoheritage Management. Geoheritage 2012, 4, 177–193. [Google Scholar] [CrossRef]
- The selection criteria. Available online: https://whc.unesco.org/en/criteria/ (accessed on 5 April 2020).
- Matthews, P. Scientific knowledge and the aesthetic appreciation of nature. J. Aesthet. Art Crit. 2002, 60, 37–48. [Google Scholar] [CrossRef]
- Ribe, R.G. Is scenic beauty a proxy for acceptable management? The influence of environmental attitudes on landscape perceptions. Environ. Behav. 2002, 34, 757–780. [Google Scholar] [CrossRef]
- Cassatella, C. Landscape Scenic Values: Protection and Management from a Spatial-Planning Perspective. In Nature Policies and Landscape Policies: Towards an Alliance; Gambino, R., Peano, A., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 341–352. [Google Scholar]
- Asur, F.; Sevimli Deniz, S.; Yazici, K. Visual preferences assessment of landscape character types using data mining methods (Apriori algorithm): The case of Altınsaç and Inkoy (Van/Turkey). J. Agric. Sci. Technol. 2020, 22, 247–260. [Google Scholar]
- Gosal, A.S.; Ziv, G. Landscape aesthetics: Spatial modelling and mapping using social media images and machine learning. Ecol. Indic. 2020, 117, 106638. [Google Scholar] [CrossRef]
- Williams, A.T. The concept of scenic beauty in a landscape. Coast. Res. Libr. 2019, 26, 17–41. [Google Scholar] [CrossRef]
- Ruban, D.A. Aesthetic properties of geological heritage landscapes: Evidence from the Lagonaki Highland (Western Caucasus, Russia). J. Geogr. Inst. “Jovan Cvijić” Sasa 2018, 68, 289–296. [Google Scholar] [CrossRef]
- Seresinhe, C.I.; Preis, T.; MacKerron, G.; Moat, H.S. Happiness is Greater in More Scenic Locations. Sci. Rep. 2019, 9, 4498. [Google Scholar] [CrossRef] [Green Version]
- Seresinhe, C.I.; Preis, T.; Moat, H.S. Quantifying the Impact of Scenic Environments on Health. Sci. Rep. 2015, 5, 16899. [Google Scholar] [CrossRef] [Green Version]
- Ruban, D.A.; Sallam, E.S.; Ermolaev, V.A.; Yashalova, N.N. Aesthetic Value of Colluvial Blocks in Geosite-Based Tourist Destinations: Evidence from SW Russia. Geoscience 2020, 10, 51. [Google Scholar] [CrossRef] [Green Version]
- Ribe, R.G. On the possibility of quantifying scenic beauty—A response. Landsc. Plan. 1982, 9, 61–74. [Google Scholar] [CrossRef]
- Lothian, A. Landscape and the philosophy of aesthetics: Is landscape quality inherent in the landscape or in the eye of the beholder? Landsc. Urban Plan. 1999, 44, 177–198. [Google Scholar] [CrossRef]
- Tveit, M.S.; Sang, A.O.; Hagerhall, C.M. Scenic beauty: Visual landscape assessment and human landscape perception. In Environmental Psychology: An Introduction, 1st ed.; Steg, L., van den Berg, A.E., de Groot, J.I.M., Eds.; Wiley-Blackwell: London, UK, 2013; pp. 34–46. [Google Scholar]
- Kalivoda, O.; Vojar, J.; Skřivanová, Z.; Zahradník, D. Consensus in landscape preference judgments: The effects of landscape visual aesthetic quality and respondents’ characteristics. J. Environ. Manag. 2014, 137, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Chang Chien, Y.-M.; Carver, S.; Comber, A. An Exploratory Analysis of Expert and Nonexpert-Based Land-scape Aesthetics Evaluations: A Case Study from Wales. Land 2021, 10, 192. [Google Scholar] [CrossRef]
- Daniel, T.C. Whither scenic beauty? Visual landscape quality assessment in the 21st century. Landsc. Urban Plan. 2001, 54, 267–281. [Google Scholar] [CrossRef]
- Tveit, M.S. Indicators of visual scale as predictors of landscape preference; a comparison between groups. J. Environ. Manag. 2009, 90, 2882–2888. [Google Scholar] [CrossRef] [PubMed]
- Frank, S.; Fürst, C.; Koschke, L.; Witt, A.; Makeschin, F. Assessment of landscape aesthetics—Validation of a landscape metrics-based assessment by visual estimation of the scenic beauty. Ecol. Indic. 2013, 32, 222–231. [Google Scholar] [CrossRef]
- Ozkan, U.Y. Assessment of visual landscape quality using IKONOS imagery. Environ. Monit. Assess. 2014, 186, 4067–4080. [Google Scholar] [CrossRef]
- Othman, J. Assessing Scenic Beauty of Nature-based Landscapes of Fraser’s Hill. Procedia Environ. Sci. 2015, 30, 115–120. [Google Scholar] [CrossRef] [Green Version]
- Mo, L.; Chen, J.; Xie, Y. Assessment of landscape resource using the scenic beauty estimation method at compound ecological system. Environ. Sci. Pollut. Res. 2021, 28, 5892–5899. [Google Scholar] [CrossRef] [PubMed]
- Arriaza, M.; Cañas-Ortega, J.F.; Cañas-Madueño, J.A.; Ruiz-Aviles, P. Assessing the visual quality of rural landscapes. Landsc. Urban Plan. 2004, 69, 115–125. [Google Scholar] [CrossRef]
- Bevk, T.; Martinez, N.M.; Brereton, P.; Laloševi, M.; Peri, M. Iterative Digital Photo-based Assessment for Rural Landscape Perception: A Small Experiment from County Wicklow, Ireland. J. Digit. Landsc. Archit. 2017, 2, 18–27. [Google Scholar] [CrossRef]
- Wang, Y.; Zlatanova, S.; Yan, J.; Huang, Z.; Cheng, Y. Exploring the relationship between spatial morphology characteristics and scenic beauty preference of landscape open space unit by using point cloud data. Environ. Plan. B Urban Anal. City Sci. 2020, 0, 1–19. [Google Scholar] [CrossRef]
- Dramstad, W.E.; Tveit, M.S.; Fjellstad, W.J.; Fry, G.L.A. Relationships between visual landscape preferences and map-based indicators of landscape structure. Landsc. Urban Plan. 2006, 78, 465–474. [Google Scholar] [CrossRef]
- Svobodova, K.; Sklenicka, P.; Molnarova, K.; Salek, M. Visual preferences for physical attributes of mining and post-mining landscapes with respect to the sociodemographic characteristics of respondents. Ecol. Eng. 2012, 43, 34–44. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, R.; Cai, Y.; Luo, P. Effects of Visual Indicators on Landscape Preferences. J. Urban Plan. Dev. 2013, 139, 70–78. [Google Scholar] [CrossRef]
- Svobodova, K.; Sklenicka, P.; Vojar, J. How does the representation rate of features in a landscape affect visual preferences? A case study from a post-mining landscape. Int. J. Min. Reclam. Environ. 2015, 29, 266–276. [Google Scholar] [CrossRef]
- Wang, R.; Zhao, J.; Liu, Z. Consensus in visual preferences: The effects of aesthetic quality and landscape types. Urban For. Urban Green. 2016, 20, 210–217. [Google Scholar] [CrossRef]
- Chesnokova, O.; Nowak, M.; Purves, R.S. A crowdsourced model of landscape preference. Leibniz Int. Proc. Inform. LIPIcs 2017, 86, 1–13. [Google Scholar] [CrossRef]
- López-Martínez, F. Visual landscape preferences in Mediterranean areas and their socio-demographic influences. Ecol. Eng. 2017, 104, 205–215. [Google Scholar] [CrossRef]
- Eroğlu, E.; Kaya, S.; Dogan, T.G.; Meral, A.; Demirci, S.; Başaran, N.; Corbaci, O.L. Determination of the Visual Preferences of Different Habitat Types. Fresenius Environmental Bulletin. 2018, 27, 4889–4899. [Google Scholar]
- Unwin, K.I. The Relationship of Observer and Landscape in Landscape Evaluation. Trans. Inst. Br. Geogr. 1975, 66, 130. [Google Scholar] [CrossRef]
- Gungor, S.; Polat, A.T. Relationship between visual quality and landscape characteristics in urban parks. J. Environ. Prot. Ecol. 2018, 19, 939–948. [Google Scholar]
- Migoń, P. Geoheritage and World Heritage Sites. In Geoheritage. Assessment, Protection, and Management; Reynard, E., Brilha, J., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 237–250. [Google Scholar]
- Kirillova, K.; Fu, X.; Lehto, X.; Cai, L. What makes a destination beautiful? Dimensions of tourist aesthetic judgment. Tour. Manag. 2014, 42, 282–293. [Google Scholar] [CrossRef]
- Skřivanová, Z.; Kalivoda, O.; Sklenička, P. Driving factors for visual landscape preferences in protected landscape areas. Sci. Agric. Bohem. 2014, 2014, 36–43. [Google Scholar] [CrossRef]
- Gruehn, D.; Roth, M. Landscape preference study of agricultural landscapes in Germany. J. Landsc. Ecol. 2010, 67–78. [Google Scholar]
- Chen, Y.; Sun, B.; Liao, S.B.; Chen, L.; Luo, S.X. Landscape perception based on personal attributes in determining the scenic beauty of in-stand natural secondary forests. Ann. For. Res. 2016, 59, 91–103. [Google Scholar] [CrossRef] [Green Version]
- Baca, I.; Schuster, E. Listing, evaluation and touristic utilisation of geosites containing archaeological artefacts. Case study: Ciceu ridge (Bistrita-Nasaud Country, Romania). Rev. Geogr. Acad. 2011, 5, 5–20. [Google Scholar]
- Mucivuna, V.C.; Reynard, E.; Garcia, M.d.G.M. Geomorphosites Assessment Methods: Comparative Analysis and Typology. Geoheritage 2019, 11, 1799–1815. [Google Scholar] [CrossRef]
- Carlson, A. Appreciation and the Natural Environment. J. Aesthet. Art Crit. 1979, 37, 267. [Google Scholar] [CrossRef]
- Stecker, R. The correct and the appropriate in the appreciation of nature. Br. J. Aesthet. 1997, 37, 393–402. [Google Scholar] [CrossRef]
- Salazar, A.; Carcavilla, L.; Díez-Herrero, A. Geomorphological Heritage and Conservation in Spain. In Landscapes and Landforms of Spain; Gutiérrez, F., Gutiérrez, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 307–318. [Google Scholar]
- Hose, T.A. A Geoheritage Case Study: Andalucía, Spain. In Geoheritage and Geotourism. A European Perspective; Hose, T.A., Ed.; Boydell Press: Woodbridge, UK, 2016; pp. 245–257. [Google Scholar]
- Oyarzun, R.; Romero, E.G.; García, J.A.L.; Regueiro, M.; Molina, J.A. Teaching field geology in SE Spain: An alternative approach. European geologist. Eur. Geol. 2007, 25, 9–12. [Google Scholar]
- Villalobos-Megía, M. Prologue. In Geology of the Arid Zone of Almería, Southeast Spain: An Educational Guide, 2nd ed.; Villalobos-Megía, M., Ed.; Fundación Gypaetus: Granada, Spain, 2003; p. 10. [Google Scholar]
- Alexander, R. Some Observations on Human-Landscape interactions in Almeria. In Proceedings of the the International Symposium in memory of Prof Juan Puigdefabregas (EcoDesert), Almeria, Spain, 20–21 February 2020; pp. 131–133. [Google Scholar]
- Ureña-Amate, M.D.; Boutarbouch, N.D.; Socias-Viciana, M.d.M.; González-Pradas, E. Controlled release of nitrate from hydrotalcite modified formulations. Appl. Clay Sci. 2011, 52, 368–373. [Google Scholar] [CrossRef]
- Gutiérrez, F.; Harvey, A.; García-Ruiz, J.M.; Silva, P.; Cendrero, A. Geomorphological research in Spain. Geomorphology 2013, 196, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Bellin, N.; Vanacker, V.; Kubik, P.W. Denudation rates and tectonic geomorphology of the Spanish Betic Cordillera. Earth Planet. Sci. Lett. 2014, 390, 19–30. [Google Scholar] [CrossRef]
- Stokes, M.; Mather, A.; Rodes, A.; Kearsey, S.; Lewin, S. Anatomy, Age and Origin of an Intramontane Top Basin Surface (Sorbas Basin, Betic Cordillera, SE Spain). Quaternary 2018, 1, 15. [Google Scholar] [CrossRef] [Green Version]
- Martín-Martín, M.; Guerrera, F.; Tramontana, M. Tectono-Sedimentary Evolution of the Cenozoic Basins in the Eastern External Betic Zone (SE Spain). Geosciences 2020, 10, 394. [Google Scholar] [CrossRef]
- Carranza, E.J.M.; van Ruitenbeek, F.J.A.; Hecker, C.; van der Meijde, M.; van der Meer, F.D. Knowledge-guided data-driven evidential belief modeling of mineral prospectivity in Cabo de Gata, SE Spain. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 374–387. [Google Scholar] [CrossRef]
- Rodríguez-Fernández, J.; Azor, A.; Azañón, J.M. The Betic Intramontane Basins (SE Spain): Stratigraphy, Subsidence, and Tectonic History. In Tectonics of Sedimentary Basins: Recent Advances, 1st ed.; Busby, C., Azor, A., Eds.; Blackwell Publishing Ltd: Chichester, UK, 2012; pp. 461–479. [Google Scholar]
- Mattei, M.; Riggs, N.R.; Giordano, G.; Guarnieri, L.; Cifelli, F.; Soriano, C.C.; Jicha, B.; Jasim, A.; Marchionni, S.; Franciosi, L.; et al. Geochronology, geochemistry and geodynamics of the Cabo de Gata volcanic zone, Southeastern Spain. Ital. J. Geosci. 2014, 133, 341–361. [Google Scholar] [CrossRef] [Green Version]
- Soriano, C.C.; Giordano, G.; Riggs, N.R.; Porreca, M.; Bonamico, A.; Iosimi, D.; Cifelli, F.; Mattei, M.; De Benedetti, A.; Guarnieri, L.; et al. Geologic map, volcanic stratigraphy and structure of the Cabo de Gata volcanic zone, Betic-Rif orogen, SE Spain. Ital. J. Geosci. 2014, 133, 325–340. [Google Scholar] [CrossRef] [Green Version]
- Valetti, L.; Rutter, E.; McCabe, A.; Mecklenburgh, J. On the structure and evolution of the Sorbas basin, S.E. Spain. Tectonophysics 2019, 773, 228230. [Google Scholar] [CrossRef]
- Pérez-Peña, J.V.; Azor, A.; Azañón, J.M.; Keller, E.A. Active tectonics in the Sierra Nevada (Betic Cordillera, SE Spain): Insights from geomorphic indexes and drainage pattern analysis. Geomorphology 2010, 119, 74–87. [Google Scholar] [CrossRef]
- Giaconia, F.; Booth-Rea, G.; Martínez-Martínez, J.M.; Azañón, J.M.; Pérez-Peña, J.V.; Pérez-Romero, J.; Villegas, I. Geomorphic evidence of active tectonics in the Sierra Alhamilla (eastern Betics, SE Spain). Geomorphology 2012, 145–146, 90–106. [Google Scholar] [CrossRef]
- Alfaro, P.; Delgado, J.; García-Tortosa, F.J.; Lenti, L.; López, J.A.; López-Casado, C.; Martino, S. Widespread landslides induced by the Mw 5.1 earthquake of 11 May 2011 in Lorca, SE Spain. Eng. Geol. 2012, 137–138, 40–52. [Google Scholar] [CrossRef]
- Do Couto, D.; Gumiaux, C.; Augier, R.; Lebret, N.; Folcher, N.; Jouannic, G.; Jolivet, L.; Suc, J.P.; Gorini, C. Tectonic inversion of an asymmetric graben: Insights from a combined field and gravity survey in the sorbas basin. Tectonics 2014, 33, 1360–1385. [Google Scholar] [CrossRef] [Green Version]
- Silva, P.G.; Goy, J.L.; Zazo, C.; Bardají, T. Faulth-generated mountain fronts in southeast Spain: Geomorphologic assessment of tectonic and seismic activity. Geomorphology 2003, 50, 203–225. [Google Scholar] [CrossRef]
- Oyarzun, R.; Cubas, P.; Higueras, P.; Lillo, J.; Llanos, W. Environmental assessment of the arsenic-rich, Rodalquilar gold-(copper-lead-zinc) mining district, SE Spain: Data from soils and vegetation. Environ. Geol. 2009, 58, 761–777. [Google Scholar] [CrossRef]
- Brotons, J.M.; Díaz, A.R.; Sarría, F.A.; Serrato, F.B. Wind erosion on mining waste in southeast Spain. L. Degrad. Dev. 2010, 21, 196–209. [Google Scholar] [CrossRef]
- Rytuba, J.J.; Arribas, A.; Cunningham, C.G.; McKee, E.H.; Podwysocki, M.H.; Smith, J.G.; Kelly, W.C.; Arribas, A. Mineralized and unmineralized calderas in Spain; Part II, evolution of the Rodalquilar caldera complex and associated gold-alunite deposits. Miner. Depos. 1990, 25, 28–35. [Google Scholar] [CrossRef]
- Bedini, E. Application of WorldView-3 imagery and ASTER TIR data to map alteration minerals associated with the Rodalquilar gold deposits, southeast Spain. Adv. Sp. Res. 2019, 63, 3346–3357. [Google Scholar] [CrossRef]
- De Baets, S.; Meersmans, J.; Vanacker, V.; Quine, T.A.; Van Oost, K. Spatial variability and change in soil organic carbon stocks in response to recovery following land abandonment and erosion in mountainous drylands. Soil Use Manag. 2013, 29, 65–76. [Google Scholar] [CrossRef]
- Castillo, C.P.; Aliaga, E.C.; Lavalle, C.; Llario, J.C.M. An assessment and spatial modelling of agricultural land abandonment in spain (2015–2030). Sustain. 2020, 12, 560. [Google Scholar] [CrossRef] [Green Version]
- Quintas-Soriano, C.; Castro, A.J.; Castro, H.; García-Llorente, M. Impacts of land use change on ecosystem services and implications for human well-being in Spanish drylands. Land Use Policy 2016, 54, 534–548. [Google Scholar] [CrossRef]
- Garcia-caparros, P.; Contreras, J.I.; Baeza, R.; Segura, M.L.; Lao, M.T. Integral Management of Irrigation Water in Intensive Horticultural Systems of Almería. Sustainability 2017, 9, 2271. [Google Scholar] [CrossRef] [Green Version]
- Castro, A.J.; López-Rodríguez, M.D.; Giagnocavo, C.; Gimenez, M.; Céspedes, L.; La Calle, A.; Gallardo, M.; Pumares, P.; Cabello, J.; Rodríguez, E.; et al. Six Collective Challenges for Sustainability of Almería Greenhouse Horticulture. Int. J. Environ. Res. Public Health 2019, 16, 4097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luis Caparrós-Martínez, J.; Rueda-Lópe, N.; Milán-García, J.; de Pablo Valenciano, J. Public policies for sustainability and water security: The case of Almeria (Spain). Glob. Ecol. Conserv. 2020, 23, 1–17. [Google Scholar] [CrossRef]
- De Andrés, M.; Barragán, J.M.; García Sanabria, J. Relationships between coastal urbanization and ecosystems in Spain. Cities 2017, 68, 8–17. [Google Scholar] [CrossRef]
- Custodio, E.; Andreu-Rodes, J.M.; Aragón, R.; Estrela, T.; Ferrer, J.; García-Aróstegui, J.L.; Manzano, M.; Rodríguez-Hernández, L.; Sahuquillo, A.; del Villar, A. Groundwater intensive use and mining in south-eastern peninsular Spain: Hydrogeological, economic and social aspects. Sci. Total Environ. 2016, 559, 302–316. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Valderrama, J.; Guirado, E.; Maestre, F.T. Unraveling misunderstandings about desertification: The paradoxical case of the Tabernas-Sorbas basin in Southeast Spain. Land 2020, 9, 269. [Google Scholar] [CrossRef]
- Reynard, E.; Giusti, C. The landscape and the cultural value of geoheritage. In Geoheritage. Assessment, Protection, and Management; Reynard, E., Brilha, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 147–165. [Google Scholar]
- Hull IV, R.B.; Stewart, W. Validity of photo-based scenic beauty judgments. J. Environ. Psychol. 1992, 12, 101–114. [Google Scholar] [CrossRef]
- Erikstad, L. Geoheritage and geodiversity management—The questions for tomorrow. Proc. Geol. Assoc. 2013, 124, 713–719. [Google Scholar] [CrossRef]
- Beck, L.; Cable, T.T.; Knudson, D.M. Interpreting Cultural and Natural Heritage: For a Better World; Sagamore Publishing: Champaign, IL, USA, 2018; ISBN 9781571678652. [Google Scholar]
- Newsome, D.; Dowling, R. Setting an agenda for geotourism. In Geotourism: The Tourism of Geology and Landscape; Newsome, D., Dowling, R., Eds.; Goodfellow Publishers Ltd.: Oxford, UK, 2010; pp. 1–12. [Google Scholar]
- Vegas, J.; Díez-herrero, A. An Assessment Method for Urban Geoheritage as a Model for Environmental Awareness and Geotourism (Segovia, Spain). Geoheritage 2021, 13, 1–7. [Google Scholar] [CrossRef]
- Mikhailenko, A.V.; Ruban, D.A. Environment of viewpoint geosites: Evidence from the Western Caucasus. Land 2019, 8, 93. [Google Scholar] [CrossRef] [Green Version]
- Abellán, F.C.; Martínez, C.G. Landscape and tourism as tools for local development in mid-mountain rural areas in the southeast of spain (Castilla–la mancha). Land 2021, 10, 221. [Google Scholar] [CrossRef]
Socio-Demographic Factor | Mean | F Value | p Value | |
---|---|---|---|---|
Gender | Female (n = 71) | 3.35 (0.51) | 1.73 | 0.19 |
Male (n = 99) | 3.25 (0.52) | |||
Age a | 18–29 (n = 71) | 3.31 (0.57) | 0.83 | 0.48 |
30–49 (n = 35) | 3.25 (0.46) | |||
50 and above (n = 41) | 3.22 (0.55) | |||
Education level | Bachelor’s degree (n = 54) | 3.34 (0.53) | 0.31 | 0.74 |
Master’s degree (n = 98) | 3.28 (0.51) | |||
PhD degree (n = 17) | 3.26 (0.49) | |||
Country of residence b | Belgium (n = 125) | 3.46 (0.6) | 1.39 | 0.25 |
Other (n = 51) | 3.33 (0.52) | |||
Continents visited | No travel outside my continent (n = 48) | 3.42 (0.47) | 1.76 | 0.16 |
Visited one other continent (n = 54) | 3.24 (0.53) | |||
Visited 2–3 other continents (n = 44) | 3.29 (0.54) | |||
Visited 4–5 other continents (n = 29) | 3.16 (0.46) | |||
Respondent group c | NGB-NV (n = 104) | 3.22 (0.53) | 2.50 | 0.08 d |
GB-NV (n = 43) | 3.39 (0.53) | |||
GB-V (n = 29) | 3.40 (0.34) | |||
Primarily preferred attraction type/s | Biodiversity (n = 13) | 3.35 (0.48) | ||
Biodiversity and culture-history (n = 11) | 3.1 (0.49) | |||
Biodiversity, culture-history, and geology-landscape (n = 31) | 3.44 (0.58) | |||
Biodiversity and geology-landscape (n = 3) | 3.6 (0.56) | |||
Culture-history (n = 37) | 3.09 (0.56) | |||
Culture-history and geology-landscape (n = 27) | 3.37 (0.43) | |||
Geology-landscape (n = 51) | 3.31 (0.45) | 2.05 | 0.06 d |
Geosite Number | Geosite Name | Mean of NGB-NV (a) | Mean of GB-NV (b) | Mean of GB-V (c) | Mean Difference | ||
---|---|---|---|---|---|---|---|
(b–a) | (c–a) | (c–b) | |||||
1 | Boca Andarax | 3.25 (0.93) | 3.02 (1.01) | 2.28 (0.92) | −0.23 | −0.97 *** | −0.74 ** |
3 | Las Salinas | 2.61 (0.84) | 2.63 (1.05) | 3.31 (1) | 0.02 | 0.70 *** | 0.68 ** |
4 | Punta Baja | 3.85 (0.89) | 4.35 (0.61) | 4.79 (0.41) | 0.50 ** | 0.95 *** | 0.44 ** |
5 | Cerro Pistolas | 3.56 (0.9) | 3.65 (0.9) | 3.10 (1.11) | 0.09 | −0.45 * | −0.55 * |
8 | Rodalquilar Mine | 2.87 (1.01) | 3.12 (1.1) | 3.86 (0.79) | 0.25 | 0.99 *** | 0.75 ** |
11 | El Puntal | 2.37 (0.89) | 2.05 (1.07) | 1.83 (1.07) | −0.32 | −0.54 ** | −0.22 |
13 | Lorca Castle | 2.93 (0.98) | 2.86 (1.04) | 3.86 (0.83) | −0.07 | 0.93 *** | 1.00 *** |
14 | Puentes Dam | 2.98 (0.9) | 2.95 (1.17) | 2.45 (1.02) | −0.03 | −0.53 * | 0.50 |
17 | Rio Alias | 2.86 (1) | 3.33 (0.94) | 3.21 (0.9) | 0.47 * | 0.35 | −0.11 |
18 | Rambla de los Feos | 3.07 (0.95) | 3.53 (0.93) | 2.69 (0.85) | 0.46 * | −0.38 | −0.85 *** |
19 | Los Perales | 3.13 (0.98) | 3.65 (1.15) | 3.52 (1.02) | 0.52 * | 0.38 | −0.13 |
20 | Los Molinos | 3.44 (0.98) | 3.7 (1.08) | 4.14 (0.92) | 0.26 | 0.70 ** | 0.44 |
22 | Los Yesos | 3.07 (1.05) | 2.72 (1.05) | 2.07 (0.96) | −0.35 | −0.99 *** | −0.65 * |
24 | Bar Alfaro | 3.53 (0.99) | 4.21 (0.94) | 4.38 (0.86) | 0.68 *** | 0.85 *** | 0.17 |
25 | Mini Hollywood | 3.76 (1.03) | 4.51 (0.63) | 4 (0.89) | 0.75 *** | 0.24 | −0.51 |
26 | Rambla Honda | 3.23 (1.04) | 3.72 (0.91) | 3.79 (1.01) | 0.49 * | 0.56 * | 0.02 |
27 | La Calahorra | 3.23 (1.05) | 3.53 (0.98) | 4.21 (0.82) | 0.30 | 0.98 *** | 0.67 * |
28 | Esfiliana | 3.37 (1.01) | 3.63 (1.05) | 2.76 (0.95) | 0.26 | −0.61 * | −0.87 ** |
29 | Gorafe | 2.73 (0.93) | 2.67 (0.99) | 4.28 (0.7) | −0.06 | 1.55 *** | 1.60 *** |
30 | Alicun de las Torres | 3.57 (0.97) | 3.88 (0.79) | 4.83 (0.54) | 0.32 | 1.26 *** | 0.94 *** |
31 | Belerda | 3.37 (0.88) | 3.63 (1.16) | 3 (1) | 0.26 | −0.37 | −0.63 * |
34 | El Hoyazo | 3.5 (1.01) | 3.65 (0.92) | 4.38 (0.56) | 0.15 | 0.88 *** | 0.73 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tessema, G.A.; Poesen, J.; Verstraeten, G.; Van Rompaey, A.; van der Borg, J. The Scenic Beauty of Geosites and Its Relation to Their Scientific Value and Geoscience Knowledge of Tourists: A Case Study from Southeastern Spain. Land 2021, 10, 460. https://doi.org/10.3390/land10050460
Tessema GA, Poesen J, Verstraeten G, Van Rompaey A, van der Borg J. The Scenic Beauty of Geosites and Its Relation to Their Scientific Value and Geoscience Knowledge of Tourists: A Case Study from Southeastern Spain. Land. 2021; 10(5):460. https://doi.org/10.3390/land10050460
Chicago/Turabian StyleTessema, Getaneh Addis, Jean Poesen, Gert Verstraeten, Anton Van Rompaey, and Jan van der Borg. 2021. "The Scenic Beauty of Geosites and Its Relation to Their Scientific Value and Geoscience Knowledge of Tourists: A Case Study from Southeastern Spain" Land 10, no. 5: 460. https://doi.org/10.3390/land10050460