Stand Structure, Biomass and Carbon Storage in Gmelina arborea Plantation at Agricultural Landscape in Foothills of Eastern Himalayas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Climate and Weather
2.3. Sampling and Inventory
2.4. Quantitative Parameters
2.5. Species Diversity Indices
2.6. Biomass and Carbon Stock Estimation
2.7. Soil Properties
2.8. Statistical Analysis
3. Results and Discussion
3.1. Diversity Indices and Species Composition
3.2. Vegetation Analysis
3.3. Soil Moisture, pH, Electrical Conductivity and Bulk Density
3.4. Soil Available Organic Carbon, Nitrogen, Potassium and Phosphorus
3.5. Biomass Production and Biomass Carbon Stock
3.6. Ecosystem Carbon Stock
4. Conclusions
5. Recommendations and Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raj, A.; Jhariya, M.K.; Harne, S.S. Threats to biodiversity and conservation strategies. In Forests, Climate Change and Biodiversity; Sood, K.K., Mahajan, V., Eds.; Kalyani: New Delhi, India, 2018; pp. 304–320. [Google Scholar]
- Kongmeesup, I.; Boonyanuphap, J. Estimation of carbon offset for teak plantation in lower northern Thailand. Songklanakarin J. Sci. Technol. 2019, 41, 580–586. [Google Scholar]
- Chakravarty, S.; Ghosh, S.K.; Suresh, C.P.; Dey, A.N.; Shukla, G. Deforestation: Causes, effects and control strategies. In Global Perspectives on Sustainable Forest Management; Okia, C.A., Ed.; Intech Publishers: Croatia, Rijeka, 2012; pp. 3–28. [Google Scholar]
- Kumar, A.; Sharma, M.P.; Taxak, A.K. Effect of vegetation communities and altitudes on the soc stock in Kotli Bhel-1a catchment, India. CSAWAC 2017, 45, 1–8. [Google Scholar]
- Chauhan, M.; Kumar, M.; Kumar, A. Impact of carbon stocks of Anogeissus latifolia on climate change and socio-economic development: A case study of Garhwal Himalaya, India. Water Air Soil Pollut. 2020, 231. [Google Scholar] [CrossRef]
- Lal, M.; Singh, R. Carbon sequestration potential of Indian forests. Environ. Monit. Assess. 2000, 60, 315–327. [Google Scholar] [CrossRef]
- Baishya, R.; Barik, S.K.; Upadhaya, K. Distribution pattern of aboveground biomass in natural and plantation forests of humid tropics in northeast India. Trop. Ecol. 2009, 50, 295–304. [Google Scholar]
- Verma, P.; Bijalwan, A.; Shankhwar, A.K.; Dobriyal, M.J.R.; Jacob, V.; Rathaude, S.K. Scaling up an indigenous tree based agroforestry system India. Int. J. Sci. Qual. Anal. 2017, 3, 73–77. [Google Scholar]
- Sarangle, S.; Rajasekaran, A.; Benbi, D.K.; Chauhan, S.K. Biomass and carbon stock, carbon sequestration potential under selected land use systems in Punjab. For. Res. Eng. Int. J. 2018, 9, 75–80. [Google Scholar] [CrossRef]
- Gyanaranjan, S.; Majid, W.A. Scaling up an indigenous tree based agroforestry system India. Ann. Hortic. 2019, 12, 139–149. [Google Scholar]
- Chauhan, S.K.; Sharma, R.; Singh, B.; Sharma, S.C. Biomass production, carbon sequestration and economics in on-farm poplar plantations in Punjab, India. J. Appl. Nat. Sci. 2015, 7, 452–458. [Google Scholar] [CrossRef]
- Secretariat of the United Nations Framework Convention on Climate Change. Report on the Workshop on Methodological Issues Relating to Reducing Emissions from Deforestation and Forest Degradation in Developing Countries; 29th Session; UNFCC: Tokyo, Japan, 2008; Volume 1, pp. 89–96. Available online: https://digitallibrary.un.org/record/640384?ln=en (accessed on 18 November 2020).
- Anonymous, I.V. Working Plan for the Forests of Cooch Behar District and Jalpaiguri District (Part) Comprising Cooch Behar Forest Division and Cooch Behar, S.F. Division Volume–I, 2000-01 to 2009-10; Divisional Forest Officer, Working Plans (North) Division: Darjeeling, India, 2001; p. 87. [Google Scholar]
- Cintron, G.; Novelli, Y.S. Methods for studying mangrove structure. In The Mangrove Ecosystem: Research Methods; Snedaker, S.C., Snedaker, J.G., Eds.; United Nations Educational Scientific and Cultural Organization: Paris, France, 1984; pp. 91–113. [Google Scholar]
- Menhinick, E.F. A comparison of some species diversity indices applied to samples of field insects. Ecology 1964, 45, 858–861. [Google Scholar] [CrossRef]
- Simpson, E.H. Measurement of diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Shannon, C.E.; Wiener, W. The Mathematical Theory of Communication; University of Illinois Press, Urbana: Chicago, IL, USA, 1963. [Google Scholar]
- Pielou, E.C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 1966, 13, 131–144. [Google Scholar] [CrossRef]
- Nath, A.J.; Tiwari, B.K.; Sileshi, G.W.; Sahoo, U.K.; Brahma, B.; Deb, S.; Devi, N.B.; Das, A.K.; Reang, D.; Chaturvedi, S.S.; et al. Allometric models for estimation of forest biomass in north east India. Forests 2019, 10, 103. [Google Scholar] [CrossRef] [Green Version]
- Shukla, G.; Pala, N.A.; Moonis, M.; Chakravarty, S. Carbon accumulation and partitioning in sub-humid forest stands of West Bengal India. Indian Forest. 2018, 144, 229–233. [Google Scholar]
- Piper, C.S. Soil and Plant Analysis; International Public Inc.: New York, NY, USA, 1950. [Google Scholar]
- Piper, C.S. Soil and Plant Analysis; Maver Publisher: Bombay, India, 1966. [Google Scholar]
- Jackson, M.L. Soil Chemistry Analysis; Prentice Hall of India Pvt: New Delhi, India, 1967. [Google Scholar]
- Kumar, A.; Sharma, M.P. Estimation of carbon stocks of Balganga reserved forest, Uttarakhand, India. For. Sci. Technol. 2015, 11, 177–181. [Google Scholar] [CrossRef]
- Udayana, C.; Andreassen, H.P.; Skarpe, C. Understory diversity and composition after planting of teak and mahogany in Yogyakarta, Indonesia. J. Sustain. For. 2019, 39, 494–510. [Google Scholar] [CrossRef] [Green Version]
- Whittaker, R.H. Evolution and measurement of species diversity. Taxonomy 1972, 21, 213–251. [Google Scholar] [CrossRef] [Green Version]
- Shukla, G.K.; Manohar, A.; Rai, P.; Chakravarty, S. Diversity, biomass accumulation and carbon storage of shrub community in a foothill forest of Indian Eastern Himalayas. Indian Forest. 2019, 146, 309–314. [Google Scholar]
- Manhas, R.K.; Chauhan, P.S.; Singh, M.L.; Negi, J.D.S. Structure and diversity of 80-yr-old plantations after successional colonization of the natives. Curr. Sci. 2011, 100, 714–725. [Google Scholar]
- Whitmore, T.C. Tropical rain forest dynamics and its implications for management. In Rain Forest Regeneration and Management; Man and Biosphere Series 6; UNESCO: Paris, France; Parthenon Publishing Group: New Jersey, NJ, USA, 1991; pp. 67–90. [Google Scholar]
- Odum, E.P. Fundamentals of Ecology, 3rd ed.; W.B. Saunders Co.: Philadelphia, PA, USA, 1971. [Google Scholar]
- Bhat, J.A.; Kumar, M.; Negi, A.K.; Todaria, N.P.; Malik, Z.A.; Pala, N.A.; Kumar, A.; Shukla, G. Species diversity of woody vegetation along altitudinal gradient of the Western Himalayas. Glob. Ecol. Conserv. 2020, 24, e01302. [Google Scholar] [CrossRef]
- Campos-Arceiz, A.; Blake, S. Megagardeners of the forest–The role of elephants in seed dispersal. Acta Oecol. 2011, 37, 542–553. [Google Scholar] [CrossRef]
- Rai, P. Nutrient Status and Carbon Stock of Different Stands in a Foothill Humid Tropical Forest of Indian Eastern Himalaya. Ph. D. Thesis, Uttar Banga Krishi Viswavidyalaya, Pundibari, India, May 2017. Unpublished. [Google Scholar]
- Flinn, K.M.; Vellend, M. Recovery of forest plant communities in post-agricultural landscapes. Front. Ecol. Environ. 2005, 3, 243–250. [Google Scholar] [CrossRef]
- Brunet, J. Plant colonization in heterogeneous landscapes: An 80- year perspective on restoration of broadleaved forest vegetation. J. Appl. Ecol. 2007, 44, 563–572. [Google Scholar] [CrossRef]
- Shukla, G.; Pala, N.A.; Chakravarty, S. Quantification of organic carbon and primary nutrients in litter and soil at foothill forest stands of Eastern Himalaya. J. Forest. Res. 2012, 28, 1195–1202. [Google Scholar] [CrossRef]
- Shukla, G.; Biswas, R.; Das, A.P.; Chakravarty, S. Floristic diversity of Chilapatta Reserve Forest of West Bengal India. Int. J. Forest Usufructs Manag. 2016, 17, 46–57. [Google Scholar]
- Shukla, G.; Chakravarty, S. Biodiversity Cause and Pattern in the Foot Hills of Eastern Himalaya; Lambert Academic Publishing: Saarbrücken, Germany, 2012; p. 200. [Google Scholar]
- Kumar, M.; Rawat, S.; Nagar, B.; Kumar, A.; Pala, N.A.; Bhat, J.A.; Bussmann, R.W.; Cabral-Pinto, M.; Kunwar, R. Implementation of the use of ethnomedicinal plants for curing diseases in the Indian Himalayas and its role in sustainability of livelihoods and socioeconomic development. Int. J. Environ. Res. Public Health 2021, 18, 1509. [Google Scholar] [CrossRef]
- Kumar, A.; Marcot, B.G.; Saxena, A. Tree species diversity and distribution patterns in tropical forests of Garo hills. Curr. Sci. 2006, 91, 1370–1381. [Google Scholar]
- Pouyat, R.V.; Yesilonis, I.D.; Russell-Anelli, J.; Neerchal, K.N. Soil chemical and physical properties that differentiate urban land-use and cover types. Soil Sci. 2007, 71, 1010–1019. [Google Scholar] [CrossRef] [Green Version]
- Pouyat, R.V.; Szlavecz., K.; Yesilonis, I.D.; Groffman, P.M.; Schwarz, K. Chemical, physical, and biological characteristics of urban soils. In Agronomy Monograph 55. Urban. Ecosystem Ecology; Aitkenhead-Peterson, J., Volder, A., Eds.; American Society of Agronomy: Madison, WI, USA, 2010; pp. 119–152. [Google Scholar]
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soil, 15th ed.; Pearson Education: London, UK, 2016. [Google Scholar]
- Pande, P.K.; Negi, J.D.S.; Sharma, S.C. Plant species diversity and vegetation analysis in moist temperate Himalayan forest. Indian J. For. 2020, 24, 456–470. [Google Scholar]
- Ghosh, S.; Scharenbroch, B.; Ow, L.F. Soil organic carbon distribution in roadside soils of Singapore. Chemosphere 2019, 165, 163–172. [Google Scholar] [CrossRef] [PubMed]
- De Hann, S. Humus, its formation, its relation with the mineral part of the soil and its significance for soil productivity. In Organic Matter Studies; International Atomic Energy Agency: Vienna, Austria, 1977; Volume 1, pp. 21–30. [Google Scholar]
- Thuille, A.; Schulze, E.D. Carbon dynamics in succession and afforested spruce stands in Thuringia and the Alps. Glob. Chang. Biol. 2006, 12, 325–342. [Google Scholar] [CrossRef]
- Paudel, S.; Sah, J.P. Physiochemical characteristic of soil in Sal (Shorea robusta) forests in eastern Nepal. Himalayan J. Sci. 2003, 1, 107–110. [Google Scholar] [CrossRef] [Green Version]
- Alberti, M. Advances in Urban Ecology: Integrating Humans and Ecological Processes in Urban Ecosystems; Springer: New York, NY, USA, 2008; p. 366. [Google Scholar]
- Bardgett, R.D.; Wardle, D.A. Above ground-below ground linkages. In Biotic Interactions, Ecosystem Processes and Global Change; Oxford University Press: New York, NY, USA, 2010; p. 301. [Google Scholar]
- Deb, S.; Kumar, D.; Chakraborty, S.; Weindorf, D.C.; Choudhury, A.; Banik, P.; Deb, D.; De, P.; Saha, S.; Patra, A.K.; et al. Comparative carbon stability in surface soils and sub soils under submerged rice and upland non-rice crop ecologies: A physical fractionation study. Catena 2019, 7, 400–410. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, M.P.; Yang, T. Estimation of carbon stock for greenhouse gas emissions from hydropower reservoirs. Stoch. Environ. Res. Risk Asses. 2018, 32, 3183–3319. [Google Scholar] [CrossRef]
- Tandon, H.L.S. Methods of Analysis of Soils, Plants, Waters, Fertilizers and Organic Manures; Fertilizer Development and Consultation Organization: New Delhi, India, 2005; p. 204. [Google Scholar]
- Gairola, S.; Sharma, C.M.; Ghildiyal, S.K.; Suyal, S. Chemical properties of soils in relation to forest composition in moist temperate valley slopes of Garhwal Himalaya, India. Environmentalist 2012, 32, 512–523. [Google Scholar] [CrossRef]
- Gupta, J.P.; Sharma, M.P.; Gupta, G.D. Characterization of Kandi belt soils of Jammu region as affected by different land use patterns. J. Indian Soc. Soil Sci. 2001, 49, 770–773. [Google Scholar]
- Kumar, A.; Sharma, M.P. Estimation of soil organic carbon in the forest catchment of two hydroelectric reservoirs in Uttarakhand, India. Hum. Ecol. Risk Assess. An Int. J. 2017, 22, 991–1001. [Google Scholar] [CrossRef]
- Fernández-Moya, J.; Alvarado, A.; Miguel-Ayanz, A.S.; Marchamalo-Sacristán, M. Forest nutrition and fertilization in teak (Tectona grandis L. f.) plantations in Central America. N. Z. J. Forest. Sci. 2014, 44, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Pal, D.K.; Wani, S.P.; Sahrawat, K.L. Carbon sequestration in Indian soils: Present status and the potential. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2015, 85, 337–358. [Google Scholar] [CrossRef] [Green Version]
- Jerabkova, L.; Prescott, C.E.; Kishchuk, B.E. Nitrogen availability in soil and forest floor of contrasting types of boreal mixed wood forests. Can. J. Forest. Res. 2006, 36, 112–122. [Google Scholar] [CrossRef]
- Scotti, R.; Bonanomi, G.; Scelza, R.; Zoina, A.; Rao, M.A. Organic amendments as sustainable tool to recovery fertility in intensive agricultural systems. J. Soil Sci. Plant. Nutr. 2015, 15, 333–352. [Google Scholar] [CrossRef] [Green Version]
- Sariyildiz, T.; Kuçuk, M. Litter mass loss rates in deciduous and coniferous trees in Artvin, northeast Turkey: Relationships with litter quality, microclimate and soil characteristics. Turk. J. Agric. Forest. 2008, 32, 547–559. [Google Scholar]
- Sidhu, G.S.; Bhattacharyya, T.; Sarkar, D.; Ray, S.K.; Chandran, P.; Mandal, D.K.; Prasad, J.; Mandal, C.; Srivastava, R.; Sen, T.K.; et al. Impact of management levels and land-use changes on soil properties in rice-wheat cropping system of the Indo-Gangetic plains. Curr. Sci. 2014, 107, 1487–1501. [Google Scholar]
- Vrscaj, B.; Poggio, L.; Marsan, F.A. A method for soil environmental quality evaluation for management and planning in urban areas. Landsc. Urban Plan. 2008, 88, 81–94. [Google Scholar] [CrossRef]
- Livesley, S.J.; Ossola, A.; Threlfall, C.G.; Hahs, A.K.; Williams, N.S.G. Soil carbon and carbon/nitrogen ratio change under tree canopy, tall grass, and turf grass areas of urban green space. J. Environ. Qual. 2016, 45, 215–223. [Google Scholar] [CrossRef]
- Subba, M.; Pala, A.N.; Shukla, G.; Chakravarty, S. Study of the variability of home gardens influencing carbon stock under sub-humid tropical zone of West Bengal, India. Indian Forest. 2018, 144, 66–72. [Google Scholar]
- Tamang, B.; Sarkar, B.C.; Pala, N.A.; Shukla, G.; Patra, P.S.; Bhat, J.A.; Dey, A.N.; Chakravarty, S. Uses and ecosystem services of trees outside forest (TOF)-A case study from Uttar Banga Krishi Viswavidyalaya, West Bengal, India. Acta Ecol. Sinica 2019, 39, 431–437. [Google Scholar] [CrossRef]
- Tang, Y.J.; Chen, A.P.; Zhao, S.Q. Carbon storage and sequestration of urban street trees in Beijing, China. Front. Ecol. Evol. 2016, 4, 53–61. [Google Scholar]
- Kumar, P.; Mishra, A.K.; Chaudhari, S.K.; Sharma, D.K.; Rai, A.K.; Singh, K.; Rai, P.; Singh, R. Carbon sequestration and soil carbon build-up under Eucalyptus plantation in semi-arid regions of north west India. J. Sustain. Forestry. 2020. [Google Scholar] [CrossRef]
- Velasco, E.; Roth, M.; Tan, S.H.; Quak, M.; Nabarro, S.D.; Norford, L. The role of vegetation in the CO2 flux from a tropical urban neighbourhood. Atmos. Chem. Phys. 2013, 13, 185–202. [Google Scholar] [CrossRef] [Green Version]
- Velesco, E.; Matthias, R.; Luisa, T.M. Does urban vegetation enhance carbon sequestration? Landsc. Urban. Plan. 2013, 148, 99–107. [Google Scholar] [CrossRef]
- Minasny, B.; Malone, B.P.; McBratney, A.B.; Angers, D.A.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.-S.; Cheng, K.; Das, B.S.; et al. Soil carbon 4 per mile. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, M. Assessment of biomass and soil carbon stock in the hydroelectric catchment of Uttarakhand Himalayas, India. J. Sustan. Forest. 2020, 36. [Google Scholar] [CrossRef]
- Martin, P.H.; Sherman, R.E.; Fahey, T.J. Forty years of tropical forest recovery from agriculture: Structure and floristics of secondary and old-growth riparian forests in the Dominican Republic. Biotropica 2004, 36, 297–317. [Google Scholar]
- Yirdaw, E.; Monge, A.M.; Austin, D.; Toure, I. Recovery of floristic diversity, composition and structure of regrowth forests on fallow lands: Implications for conservation and restoration of degraded forest lands in Laos. New For. 2019, 50, 1007–1026. [Google Scholar] [CrossRef] [Green Version]
- Ito, S.; Nakagawa, M.; Buckley, G.P.; Nogami, K. Species richness in sugi (Cryptomeria japonica D. DON) plantations in southeastern Kyushu, Japan: The effects of stand type and age on understorey trees and shrubs. J. Forest. Res. 2003, 8, 49–57. [Google Scholar] [CrossRef]
- Devi, L.S.; Yadava, P.S. Above ground biomass and net primary production of semi-evergreen tropical forest of Manipur, north-eastern India. J. Forest. Res. 2009, 20, 151–155. [Google Scholar] [CrossRef]
- Rana, K.; Kumar, M.; Kumar, A. Assessment of annual shoot biomass and carbon storage potential of Grewia optiva: An approach to combat Climate Change in Garhwal Himalaya. Water Air Soil Pollut. 2020, 231. [Google Scholar] [CrossRef]
- Zhu, Z.L.; Bouchard, M.; Butman, D.; Hawbaker, T.; Li, Z.; Liu, J.; Liu, S.; McDonald, C.; Reker, R.; Sayler, K.; et al. Baseline and projected future carbon storage and greenhouse-gas fluxes in the Great Plains region of the United States. In US Geological Survey Professional Paper 1787; Zhu, Z.L., Ed.; USGS: Reston, VA, USA, 2011. [Google Scholar]
Parameters | Overall | Age Classes (Year) | ||
---|---|---|---|---|
≤5 | 5–10 | 10–15 | ||
Species richness | 51 | 35 | 37 | 43 |
Genera richness | 46 | 35 | 35 | 42 |
Family richness | 33 | 25 | 25 | 30 |
Species diversity index | 1.18 | 0.54 | 0.62 | 0.59 |
Concentration of dominance | 0.03 | 0.04 | 0.05 | 0.04 |
Shannon–Wiener index | 1.29 | 1.54 | 1.59 | 2.00 |
Evenness index | 8.69 | 3.35 | 3.92 | 3.65 |
AC | Moisture (%) | pH | EC (m mhos cm−1) | Bulk Density (g cm−3) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
D1 | D2 | D3 | D1 | D2 | D3 | D1 | D2 | D3 | D1 | D2 | D3 | |
I | 28.23 | 24.56 | 21.22 | 5.56 | 6.19 | 6.59 | 0.31 | 0.29 | 0.17 | 1.73 | 1.66 | 1.56 |
II | 26.94 | 23.36 | 21.01 | 5.28 | 5.65 | 6.24 | 0.25 | 0.16 | 0.09 | 1.54 | 1.62 | 1.55 |
III | 29.59 | 25.84 | 22.93 | 5.39 | 5.81 | 6.27 | 0.28 | 0.20 | 0.17 | 1.53 | 1.58 | 1.63 |
Mean | 28.25 | 24.59 | 21.72 | 5.42 | 5.88 | 6.37 | 0.28 | 0.22 | 0.14 | 1.6 | 1.62 | 1.58 |
Sem | 1.10 | 1.15 | 1.02 | 0.22 | 0.21 | 0.19 | 0.05 | 0.05 | 0.05 | 0.65 | 0.23 | 0.25 |
CD | 3.38 | 3.54 | 3.13 | 0.66 | 0.65 | 0.59 | 0.15 | 0.17 | 0.15 | NS | NS | NS |
AC | pH | EC | N | P | K | SOC | TBD | |
---|---|---|---|---|---|---|---|---|
AC | 1 | |||||||
pH | −0.266 * | 1 | ||||||
EC | −0.120 | 0.616 ** | 1 | |||||
N | 0.060 | −0.445 ** | −0.170 | 1 | ||||
P | −0.077 | −0.072 | −0.142 | 0.002 | 1 | |||
K | 0.253 | −0.045 | −0.018 | 0.063 | 0.020 | 1 | ||
SOC | −0.051 | 0.043 | 0.382 ** | −0.121 | −0.120 | −0.043 | 1 | |
TBD | 0.795 ** | −0.128 | −0.009 | 0.025 | −0.135 | −0.107 | −0.067 | 1 |
AC. | SOC (Mgha−1) | Available N (Kg ha−1) | Available P (Kg ha−1) | Available K (Kg ha−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
D1 | D2 | D3 | D1 | D2 | D3 | D1 | D2 | D3 | D1 | D2 | D3 | |
I | 25.64 | 18.74 | 11.35 | 157.1 | 93.63 | 60.78 | 14.63 | 15.08 | 14.88 | 65.11 | 57.34 | 54.36 |
II | 22.15 | 14.75 | 11.28 | 172.0 | 126.8 | 73.62 | 14.15 | 13.23 | 11.84 | 86.37 | 71.68 | 72.28 |
III | 22.11 | 15.57 | 13.18 | 141.7 | 108.7 | 73.42 | 14.76 | 16.76 | 13.76 | 86.98 | 78.58 | 71.20 |
Mean | 23.3 | 16.35 | 11.94 | 156.9 | 109.7 | 69.27 | 14.51 | 15.02 | 13.49 | 79.49 | 69.2 | 65.95 |
Sem | 1.87 | 1.46 | 0.58 | 15.45 | 17.60 | 16.39 | 0.92 | 1.93 | 0.89 | 8.30 | 10.14 | 9.79 |
CD | 5.77 | 4.50 | 1.79 | 47.59 | 54.22 | 50.50 | 2.84 | 5.95 | 2.76 | 25.59 | 31.24 | 30.18 |
Component | AGB | BGB | TB | AGC | BGC | TC |
---|---|---|---|---|---|---|
Age class I (≤ 5 years) | ||||||
Gmelina arborea | 31.6 | 4.74 | 36.34 | 15.8 | 2.37 | 18.17 |
Bombax ceiba | 12.24 | 1.84 | 14.08 | 6.12 | 0.92 | 7.04 |
Melia azaderach | 2.20 | 0.33 | 2.53 | 1.1 | 0.16 | 1.26 |
Ailanthus grandis | 5.36 | 0.80 | 6.16 | 2.68 | 0.4 | 3.08 |
Chukrasia velutina | 2.15 | 0.32 | 2.47 | 1.07 | 0.16 | 1.23 |
Tectona grandis | 10.26 | 1.54 | 11.8 | 5.13 | 0.77 | 5.59 |
Swietenia macrophylla | 13.45 | 2.02 | 15.47 | 6.72 | 1.01 | 7.73 |
Dalbergia sissoo | 2.72 | 0.41 | 3.13 | 1.36 | 0.20 | 1.56 |
Albizia lebbeck | 12.42 | 1.86 | 14.28 | 6.21 | 0.93 | 7.14 |
Shrub | 0.045 | 0.007 | 0.052 | 0.0225 | 0.0035 | 0.026 |
Herb | 0.053 | 0.008 | 0.061 | 0.0265 | 0.004 | 0.031 |
Litter | 2.65 | - | 2.65 | 1.32 | - | 1.32 |
Total | 95.15 | 13.88 | 109.03 | 47.57 | 6.94 | 54.51 |
Age class II (5–10 years) | ||||||
Gmelina arborea | 34.56 | 5.18 | 39.74 | 17.28 | 2.59 | 19.87 |
Melia azaderach | 2.68 | 0.4 | 3.08 | 1.34 | 0.2 | 1.36 |
Chukrasia velutina | 9.1 | 1.36 | 10.46 | 4.55 | 0.68 | 5.23 |
Bombax ceiba | 17.22 | 2.58 | 19.8 | 8.61 | 1.29 | 9.9 |
Tectona grandis | 20.64 | 3.1 | 23.74 | 10.32 | 1.55 | 11.87 |
Ailanthus grandis | 7.16 | 1.07 | 8.23 | 3.58 | 0.53 | 4.11 |
Syzygium cumini | 3.59 | 0.54 | 4.13 | 1.79 | 0.27 | 2.06 |
Shrub | 0.054 | 0.008 | 0.062 | 0.027 | 0.004 | 0.031 |
Herb | 0.062 | 0.009 | 0.071 | 0.031 | 0.004 | 0.035 |
Litter | 3.95 | - | 3.95 | 1.97 | - | 1.97 |
Total | 99.02 | 14.25 | 113.27 | 49.51 | 7.12 | 56.63 |
Age class III (10–15 years) | ||||||
Gmelina arborea | 41.26 | 6.19 | 47.45 | 20.63 | 3.09 | 23.72 |
Melia azaderach | 7.21 | 1.08 | 8.29 | 3.6 | 0.54 | 4.14 |
Chukrasia velutina | 6.32 | 0.95 | 7.27 | 3.16 | 0.47 | 3.63 |
Bombax ceiba | 16.68 | 2.50 | 19.18 | 8.34 | 1.25 | 9.59 |
Tectona grandis | 20.36 | 3.05 | 23.41 | 10.18 | 1.52 | 11.7 |
Ailanthus grandis | 12.4 | 1.86 | 14.26 | 6.2 | 0.93 | 7.13 |
Syzygium cumini | 10.84 | 1.63 | 12.47 | 5.42 | 0.81 | 6.23 |
Shrub | 0.057 | 0.008 | 0.065 | 0.028 | 0.004 | 0.032 |
Herb | 0.073 | 0.011 | 0.084 | 0.036 | 0.0055 | 0.042 |
Litter | 4.80 | − | 4.80 | 2.40 | − | 2.40 |
Total | 120.0 | 17.28 | 137.28 | 60.0 | 8.64 | 68.64 |
Mean of all age classes | 104.72 | 15.14 | 119.86 | 52.36 | 7.55 | 59.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamang, M.; Chettri, R.; Vineeta; Shukla, G.; Bhat, J.A.; Kumar, A.; Kumar, M.; Suryawanshi, A.; Cabral-Pinto, M.; Chakravarty, S. Stand Structure, Biomass and Carbon Storage in Gmelina arborea Plantation at Agricultural Landscape in Foothills of Eastern Himalayas. Land 2021, 10, 387. https://doi.org/10.3390/land10040387
Tamang M, Chettri R, Vineeta, Shukla G, Bhat JA, Kumar A, Kumar M, Suryawanshi A, Cabral-Pinto M, Chakravarty S. Stand Structure, Biomass and Carbon Storage in Gmelina arborea Plantation at Agricultural Landscape in Foothills of Eastern Himalayas. Land. 2021; 10(4):387. https://doi.org/10.3390/land10040387
Chicago/Turabian StyleTamang, Mendup, Roman Chettri, Vineeta, Gopal Shukla, Jahangeer A. Bhat, Amit Kumar, Munesh Kumar, Arpit Suryawanshi, Marina Cabral-Pinto, and Sumit Chakravarty. 2021. "Stand Structure, Biomass and Carbon Storage in Gmelina arborea Plantation at Agricultural Landscape in Foothills of Eastern Himalayas" Land 10, no. 4: 387. https://doi.org/10.3390/land10040387
APA StyleTamang, M., Chettri, R., Vineeta, Shukla, G., Bhat, J. A., Kumar, A., Kumar, M., Suryawanshi, A., Cabral-Pinto, M., & Chakravarty, S. (2021). Stand Structure, Biomass and Carbon Storage in Gmelina arborea Plantation at Agricultural Landscape in Foothills of Eastern Himalayas. Land, 10(4), 387. https://doi.org/10.3390/land10040387