Fine Root Traits of Pinus koraiensis Varied with Soil Cation Exchange Capacity in Natural Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design
2.3. Sampling
2.4. Root Traits Measurement
2.5. Soil Properties Measurement
2.6. Data Analysis
3. Results
3.1. Soil Properties
3.2. Fine Roots Biomass
3.3. Specific Root Length (SRL) and Specific Root Surface Area (SRA)
3.4. Root Morphological Characteristics
3.5. Effects of Soil Properties on Fine Root Traits
4. Discussion
4.1. Stand Types
4.2. Seasonal Variations
4.3. Relationship between Root Traits and Soil Properties
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Olesinski, J.; Lavigne, M.B.; Kershaw, J.A.; Krasowski, M.J. Fine-root dynamics change during stand development and in response to thinning in balsam fir (Abies balsamea L. Mill.) forests. For. Ecol. Manag. 2012, 286, 48–58. [Google Scholar] [CrossRef]
- Finér, L.; Zverev, V.; Palviainen, M.; Romanis, T.; Kozlov, M.V. Variation in fine root biomass along a 1000 km long latitudinal climatic gradient in mixed boreal forests of North-East Europe. For. Ecol. Manag. 2019, 432, 649–655. [Google Scholar] [CrossRef]
- Clemmensen, K.E.; Bahr, A.; Ovaskainen, O.; Dahlberg, A.; Ekblad, A.; Wallander, H.; Stenlid, J.; Finlay, R.D.; Wardle, D.A.; Lindahl, B.D. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 2013, 340, 1615–1618. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.Y.; Chen, H.Y.H. Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: Literature review and metaanalyses. Crit. Rev. Plant. Sci. 2010, 29, 204–221. [Google Scholar] [CrossRef]
- Yan, G.; Chen, F.; Zhang, X.; Wang, J.; Han, S.; Xing, Y.; Wang, Q. Spatial and temporal effects of nitrogen addition on root morphology and growth in a boreal forest. Geoderma 2017, 303, 178–187. [Google Scholar] [CrossRef]
- Rasse, D.P. Nitrogen deposition and atmospheric CO2 interactions on fine root dynamics in temperate forests: A theoretical model analysis. Glob. Chang. Biol. 2002, 8, 486–503. [Google Scholar] [CrossRef]
- Freschet, G.T.; Valverde-Barrantes, O.J.; Tucker, C.M.; Craine, J.M.; McCormack, M.L.; Violle, C.; Fort, F.; Blackwood, C.B.; Urban-Mead, K.R.; Iversen, C.M.; et al. Climate, soil and plant functional types as drivers of global fine-root trait variation. J. Ecol. 2017, 105, 1182–1196. [Google Scholar] [CrossRef] [Green Version]
- Valverde-Barrantes, O.J.; Smemo, K.A.; Feinstein, L.M.; Kershner, M.W.; Blackwood, C.B. The distribution of below-ground traits is explained by intrinsic species differences and intraspecific plasticity in response to root neighbours. J. Ecol. 2013, 101, 933–942. [Google Scholar] [CrossRef]
- Eissenstat, D.M.; Kucharski, J.M.; Zadworny, M.; Adams, T.S.; Koide, R.T. Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest. New Phytol. 2015, 208, 114–124. [Google Scholar] [CrossRef]
- Ostonen, I.; Helmisaari, H.S.; Borken, W.; Tedersoo, L.; Kukumägi, M.; Bahram, M.; Lindroos, A.J.; Nöjd, P.; Uri, V.; Meril, P.; et al. Fine root foraging strategies in Norway spruce forests across a European climate gradient. Glob. Chang. Biol. 2011, 17, 3620–3632. [Google Scholar] [CrossRef]
- Wang, G.L.; Fahey, T.J.; Xue, S.; Liu, F. Root morphology and architecture respond to N addition in Pinus tabuliformis, west China. Oecologia 2013, 171, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Jin, K.; White, P.J.; Whalley, W.R.; Shen, J.; Shi, L. Shaping an optimal soil by root-soil interaction. Trends Plant. Sci. 2017, 22, 823–829. [Google Scholar] [CrossRef] [PubMed]
- Ryser, P.; Eek, L. Consequences of phenotypic plasticity vs. interspecific differences in leaf and root traits for acquisition of aboveground and belowground resources. Am. J. Bot. 2000, 87, 402–411. [Google Scholar] [CrossRef] [PubMed]
- Comas, L.H.; Eissenstat, D.M. Linking fine root traits to maximum potential growth rate among 11 mature temperate tree species. Funct. Ecol. 2004, 18, 388–397. [Google Scholar] [CrossRef]
- Clark, L.J.; Whalley, W.R.; Barraclough, P.B. How do roots penetrate strong soil? Plant. Soil 2003, 255, 93–104. [Google Scholar] [CrossRef]
- Bengough, A.G.; McKenzie, B.M.; Hallett, P.D.; Valentine, T.A. Root elongation, water stress, and mechanical impedance: A review of limiting stresses and beneficial root tip traits. J. Exp. Bot. 2011, 62, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Coll, L.; Camarero, J.J.; Martínez De Aragón, J. Fine root seasonal dynamics, plasticity, and mycorrhization in 2 coexisting Mediterranean oaks with contrasting aboveground phenology. Ecoscience 2012, 19, 238–245. [Google Scholar] [CrossRef]
- Germon, A.; Laclau, J.P.; Robin, A.; Jourdan, C. Tamm Review: Deep fine roots in forest ecosystems: Why dig deeper? For. Ecol. Manag. 2020, 466, 118135. [Google Scholar] [CrossRef]
- Kalliokoski, T.; Pennanen, T.; Nygren, P.; Sievanen, R.; Helmisaari, H.S. Belowground interspecific competition in mixed boreal forests: Fine root and ectomycorrhiza characteristics along stand developmental stage and soil fertility gradients. Plant. Soil 2010, 330, 73–89. [Google Scholar] [CrossRef]
- Tobner, C.M.; Paquette, A.; Messier, C. Interspecific coordination and intraspecific plasticity of fine root traits in North American temperate tree species. Front. Plant. Sci. 2013, 4, 242. [Google Scholar] [CrossRef] [Green Version]
- Reich, P.B.; Tjoelker, M.G.; Walters, M.B.; Vanderklein, D.W.; Buschena, C. Close association of RGR, leaf and root morphology, seed mass and shade tolerance in seedlings of nine boreal tree species grown in high and low light. Funct. Ecol. 1998, 12, 327–338. [Google Scholar] [CrossRef]
- Bolte, A.; Villanueva, I. Interspecific competition impacts on the morphology and distribution of fine roots in European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.). Eur. J. For. Res. 2006, 125, 15–26. [Google Scholar] [CrossRef]
- Robertson, G.P.; Coleman, D.C.; Bledsoe, C.S.; Sollins, P. Standard Soil Methods for Long-Term Ecological Research, 1st ed.; Oxford University Press: New York, NY, USA, 1999; pp. 89–166. [Google Scholar]
- Mehlich, A. Mehlich 3 soil test extractant: A modification of the Melich 2 extractant. Commun. Soil Plan. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Kong, D.L.; Ma, C.E.; Zhang, Q.; Li, L.; Chen, X.; Zeng, H.; Guo, D. Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytol. 2014, 203, 863–872. [Google Scholar] [CrossRef] [PubMed]
- Berg, M.P.; Ellers, J. Trait plasticity in species interactions: A driving force of community dynamics. Evol. Ecol. 2010, 24, 617–629. [Google Scholar] [CrossRef] [Green Version]
- Kembel, S.W.; Cahill, J.F., Jr. Independent evolution of leaf and root traits within and among temperate grassland plant communities. PLoS ONE 2011, 6, e19992. [Google Scholar] [CrossRef]
- Comas, L.; Mueller, K.; Taylor, L.; Midford, P.E.; Callahan, H.S.; Beerling, D.J. Evolutionary patterns and biogeochemical significance of angiosperm root traits. Int. J. Plant. Sci. 2012, 173, 584–595. [Google Scholar] [CrossRef] [Green Version]
- Caldwell, M.M.; Manwaring, J.H.; Durham, S.L. Species interactions at the level of fine roots in the field: Influence of soil nutrient heterogeneity and plant size. Oecologia 1996, 106, 440–447. [Google Scholar] [CrossRef]
- Bezemer, T.M.; Fountain, M.; Barea, J.M.; Christensen, S.; Dekker, S.C.; Duyts, H.; van Hal, R.; Harvey, J.A.; Hedlund, K.; Maraun, M.; et al. Divergent composition but similar function of soil food webs beneath individual plants: Plant species and community effects. Ecology 2010, 91, 3027–3036. [Google Scholar] [CrossRef]
- Phillips, R.P.; Brzostek, E.; Midgley, M.G. The mycorrhizal-associated nutrient economy: A new framework for predicting carbon-nutrient couplings in temperate forests. New Phytol. 2013, 199, 41–51. [Google Scholar] [CrossRef]
- Weemstra, M.; Mommer, L.; Visser, E.J.W.; van Ruijven, J.; Kuyper, T.W.; Mohren, G.M.J.; Sterck, F.J. Towards a multidimensional root trait framework: A tree root review. New Phytol. 2016, 211, 1159–1169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambers, H.; John, A.R.; Shaver, G.R.; Smith, S.E. Plant nutrient-acquisition strategies change with soil age. Trends Ecol. Evol. 2008, 23, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Brundrett, M.C. Coevolution of roots and mycorrhizas of land plants. New Phytol. 2002, 154, 275–304. [Google Scholar] [CrossRef]
- Chen, W.; Koide, R.T.; Adams, T.S.; DeForest, J.L.; Cheng, L.; Eissenstat, D.M. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. Proc. Natl. Acad. Sci. USA 2016, 113, 8741–8746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bardgett, R.D.; Mommer, L.; De Vries, F.T. Going underground: Root traits as drivers of ecosystem processes. Trends Ecol. Evol. 2014, 29, 692–699. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.J. Ectomycorrhizal Colonization Rates of Root Tips of Larix gmelinii, Picea koraiensis and Pinus koraiensis in Pure Plantations and in Mixed Plantations with Fraxinus mandshurica. Master’s Thesis, Northeast Forestry University, Harbin, China, 2012. (In Chinese). [Google Scholar]
- Bauhus, J.; Khanna, P.K.; Menden, N. Aboveground and belowground interactions in mixed plantations of Eucalyptus globulus and Acacia mearnsii. Can. J. For. Res. 2000, 30, 1886–1894. [Google Scholar] [CrossRef]
- Eissenstat, D.M.; Wells, C.E.; Yanai, R.D.; Whitbeck, J.L. Building roots in a changing environment: Implications for root longevity. New Phytol. 2000, 147, 33–42. [Google Scholar] [CrossRef] [Green Version]
- McCormack, M.L.; Adams, T.S.; Smithwick, E.A.H.; Eissenstat, D.M. Predicting fine root lifespan from plant functional traits in temperate trees. New Phytol. 2012, 195, 823–831. [Google Scholar] [CrossRef]
- Hodge, A.; Berta, G.; Doussan, C.; Merchan, F.; Crespi, M. Plant root growth, architecture and function. Plant. Soil 2009, 321, 153–187. [Google Scholar] [CrossRef]
- Montagnoli, A.; Dumroese, R.K.; Terzaghi, M.; Onelli, E.; Gabriella, S.S.; Chiatante, D. Seasonality of fine root dynamics and activity of root and shoot vascular cambium in a Quercus ilex L. forest (Italy). For. Ecol. Manag. 2019, 431, 26–34. [Google Scholar] [CrossRef]
- Crang, R.; Lyons-Sobaski, S.; Wise, R. Plant. Anatomy: A Concept-Based Approach to the Structure of Seed Plants, 1st ed.; Springer Nature Switzerland AG: Cham, Switzerland, 2018; pp. 319–353, 479–507. [Google Scholar]
- Pierret, A.; Doussan, C.; Capowiez, Y.; Bastardie, F.; Pages, L. Root functional architecture: A framework for modeling the interplay between roots and soil. Vadose Zone J. 2007, 6, 269–281. [Google Scholar] [CrossRef]
- Rellán-Álvarez, R.; Lobet, G.; Dinneny, J.R. Environmental control of root system biology. Annu. Rev. Plant. Biol. 2016, 67, 619–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ostonen, I.; Truu, M.; Helmisaari, H.S.; Lukac, M.; Borken, W.; Vanguelova, E.; Godbold, D.L.; Lõhmus, K.; Zang, U.; Tedersoo, L.; et al. Adaptive root foraging strategies along a boreal-temperate forest gradient. New Phytol. 2017, 215, 977–991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meier, I.C.; Brunner, I.; Godbold, D.; Helmisaari, H.M.; Ostonen, I.; Soudzilovskaia, N.A.; Prescott, C.E. Roots and rhizospheres in forest ecosystems: Recent advances and future challenges. For. Ecol. Manag. 2019, 431, 1–5. [Google Scholar] [CrossRef]
- Chandra, S.; Singh, A.; Singh, C.P.; Nautiyal, M.C.; Rawat, L.S. Vascular plants distribution in relation to topography and environmental variables in alpine zone of Kedarnath Wild Life Sanctuary, West Himalaya, India. J. Mt. Sci. Engl. 2018, 15, 1936–1949. [Google Scholar] [CrossRef]
- Cantarel, A.M.; Pommier, T.; Desclos-Theveniau, M.; Diquélou, S.; Dumont, M.; Grassein, F.; Kastl, E.M.; Grigulis, K.; Lané, P.; Lavorel, S. Using plant traits to explain plant–microbe relationships involved in nitrogen acquisition. Ecology 2015, 96, 788–799. [Google Scholar] [CrossRef]
- Zwetsloot, M.J.; Kessler, A.; Bauerle, T.L. Phenolic root exudate and tissue compounds vary widely among temperate forest tree species and have contrasting effects on soil microbial respiration. New Phytol. 2018, 218, 530–541. [Google Scholar] [CrossRef] [Green Version]
- Comas, L.H.; Callahan, H.S.; Midford, P.E. Patterns in root traits of woody species hosting arbuscular and ectomycorrhizas: Implications for the evolution of belowground strategies. Ecol. Evol. 2014, 4, 2979–2990. [Google Scholar] [CrossRef] [Green Version]
- Valverde-Barrantes, O.J.; Horning, A.L.; Smemo, K.A.; Blackwood, C.B. Phylogenetically structured traits in root systems influence arbuscular mycorrhizal colonization in woody angiosperms. Plant. Soil 2016, 404, 1–12. [Google Scholar] [CrossRef]
Forest Type | Broadleaf Mixed Forest (BP) | P. koraiensis Forest (MP) | Coniferous Forest (CP) |
---|---|---|---|
Stand density (plants·hm−2) | 450 ± 5 a | 350 ± 6 b | 550 ± 3 c |
Tree height (m) | 25.3 ± 0.4 a | 23.5 ± 0.3 a | 22.7 ± 0.2 ab |
DHB (cm) | 48.4 ± 0.2 a | 48.5 ± 0.3 a | 44.6 ± 0.4 b |
Soil sand (%) | 0.59 ± 0.04 a | 0.34 ± 0.13 a | 0.55 ± 0.16 a |
Soil silt (%) | 63.30 ± 6.30 a | 62.01 ± 6.75 a | 63.93 ± 2.80 a |
Soil clay (%) | 36.11 ± 6.30 a | 37.66 ± 6.79 a | 35.53 ± 2.69 a |
Soil total N (g·kg−1) | 7.61 ± 0.04 a | 7.42 ± 0.54 a | 7.13 ± 0.38 a |
Soil total P (g·kg−1) | 1.35 ± 0.09 a | 0.98 ± 0.03 b | 1.44 ± 0.08 a |
Soil total K (g·kg−1) | 15.62 ± 0.26 a | 16.31 ± 0.70 a | 15.52 ± 0.47 a |
Soil pH | 5.32 ± 0.12 a | 4.91 ± 0.07 b | 5.18 ± 0.06 a |
CEC (cmol·kg−1) | 53.56 ± 1.14 a | 38.74 ± 3.06 b | 50.64 ± 0.86 a |
Soil alkalotic N (mg·kg−1) | 810.88 ± 9.67 a | 565.04 ± 7.01 b | 856.80 ± 34.97 a |
Soil available P (mg·kg−1) | 25.69 ± 2.99 a | 17.53 ± 1.03 b | 29.13 ± 2.49 a |
Soil available K (mg·kg−1) | 183.32 ± 14.49 a | 165.08± 5.83 a | 159.19 ±10.10 a |
Soil bulk density (g·cm−3) | 0.62 ± 0.03 a | 0.65 ± 0.02 a | 0.62 ± 0.02 a |
Soil infiltration rate (10−3cm·s−1) | 12.75 ± 1.32 a | 8.81 ± 0.56 b | 9.41 ± 1.45 ab |
Source | Dependent Variable | df | Mean Square | F | Sig. |
---|---|---|---|---|---|
Sampling time (S) | Root diameter (cm) | 2 | 0.001 | 0.512 | 0.608 |
Specific root length (m·g−1) | 2 | 0.115 | 6.479 | 0.008 | |
Specific root area (cm2·g−1) | 2 | 0.093 | 11.828 | 0.001 | |
Root tissue density (g·cm−3) | 2 | 0.003 | 7.739 | 0.004 | |
Root length density (cm·cm−3) | 2 | 0.003 | 1.040 | 0.374 | |
Root area density (m2·m−3) | 2 | 0.013 | 2.066 | 0.156 | |
Root volume density (mm3·cm−3) | 2 | 0.026 | 3.014 | 0.074 | |
Root biomass (kg·m−3) | 2 | 0.123 | 13.274 | 0.001 | |
Forest type (F) | Root diameter (cm) | 2 | 0.001 | 0.897 | 0.425 |
Specific root length (m·g−1) | 2 | 0.054 | 3.013 | 0.074 | |
Specific root area (cm2·g−1) | 2 | 0.033 | 4.253 | 0.031 | |
Root tissue density (g·cm−3) | 2 | 0.001 | 2.359 | 0.123 | |
Root length density (cm·cm−3) | 2 | 0.062 | 23.690 | <0.001 | |
Root area density (m2·m−3) | 2 | 0.072 | 11.377 | 0.001 | |
Root volume density (mm3·cm−3) | 2 | 0.031 | 3.629 | 0.047 | |
Root biomass (kg·m−3) | 2 | 0.159 | 6.201 | 0.009 | |
S × F | Root diameter (cm) | 4 | 0.001 | 2.176 | 0.113 |
Specific root length (m·g−1) | 4 | 0.030 | 1.684 | 0.197 | |
Specific root area (cm2·g−1) | 4 | 0.005 | 0.633 | 0.646 | |
Root tissue density (g·cm−3) | 4 | 0.001 | 1.378 | 0.281 | |
Root length density (cm·cm−3) | 4 | 0.006 | 2.418 | 0.086 | |
Root area density (m2·m−3) | 4 | 0.009 | 1.371 | 0.283 | |
Root volume density (mm3·cm−3) | 4 | 0.039 | 4.503 | 0.011 | |
Root biomass (kg·m−3) | 4 | 0.017 | 0.920 | 0.474 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, S.; Li, X.; Sun, W.; Wang, Q.; Liu, H.; Zhou, C.; Zhang, W.; Li, F. Fine Root Traits of Pinus koraiensis Varied with Soil Cation Exchange Capacity in Natural Forests. Land 2021, 10, 363. https://doi.org/10.3390/land10040363
Jia S, Li X, Sun W, Wang Q, Liu H, Zhou C, Zhang W, Li F. Fine Root Traits of Pinus koraiensis Varied with Soil Cation Exchange Capacity in Natural Forests. Land. 2021; 10(4):363. https://doi.org/10.3390/land10040363
Chicago/Turabian StyleJia, Shuxia, Xingpeng Li, Wensheng Sun, Qian Wang, Hongwen Liu, Chunyan Zhou, Weina Zhang, and Feng Li. 2021. "Fine Root Traits of Pinus koraiensis Varied with Soil Cation Exchange Capacity in Natural Forests" Land 10, no. 4: 363. https://doi.org/10.3390/land10040363
APA StyleJia, S., Li, X., Sun, W., Wang, Q., Liu, H., Zhou, C., Zhang, W., & Li, F. (2021). Fine Root Traits of Pinus koraiensis Varied with Soil Cation Exchange Capacity in Natural Forests. Land, 10(4), 363. https://doi.org/10.3390/land10040363