Dynamics of the Condition of Reclaimed Agricultural Lands in the Russian Federation
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Benin, D.M.; Snezhko, V.L. Assessment of land reclamation systems by cluster analysis methods. Eurasian Sci. J. 2019, 4, 41–52. (In Russian) [Google Scholar]
- Dubenok, N.N. Efficiency of Water Resources Use in Irrigated Agriculture. In Proceedings of the Lower Volga Agricultural University Complex: Science and Higher Professional Education; Dubenok, N.N., Bolotin, D.A., Novikov, A.A., Bolotin, A.G., Eds.; Volgograd State Agricultural University: Volgograd, Russia, 2018; Volume 3, pp. 83–90. [Google Scholar]
- Shevchenko, V. Efficiency and unsolved problems of land reclamation in the Non-Black Earth Region. Rural. Mach. Oper. (Sel’skijMekhanizator) 2020, 9, 2–4. [Google Scholar] [CrossRef]
- Chekunov, A. Governmental Support of Implementing Land Reclamation. Act. Russ. Fed. 2019, 29, 461–475. [Google Scholar] [CrossRef]
- Minashina, N.G. Soil environmental changes and soil reclamation problems in the Aral Sea basin. Eurasian Soil Sci. 1996, 28, 184–195. [Google Scholar]
- Dedova, E.B.; Goldvarg, B.A.; Tsagan-Mandzhiev, N.L. Land Degradation of the Republic of Kalmykia: Problems and Reclamation Methods. Arid. Ecosyst. 2020, 10, 140–147. [Google Scholar] [CrossRef]
- Ustinov, M.; Glistin, M. Geosystem evaluation of genetic and meliorative peculiarities of soils of sodal salinization. Melior. Water Manag. 2020, 4, 31–34. [Google Scholar] [CrossRef]
- Bapгaca, P.п.y.з.п.П.p.P.; Пaнкoвoй, E.И.; Бaлюкa, C.A.; Kpacильникoвa, П.B.; Xacaнxaнoвoй, Г.M. Published by the Food and Agriculture Organization of the United Nations and Lo-monosov Moscow State University Пpoдoвoльcтвeннaя и ceльcкoxoзяйcтвeннaя opгaнизaция oбъeдинeнныx нaций. Pим. 2017. 153 c. Available online: http://www.fao.org/3/i7318r/i7318r.pdf (accessed on 1 September 2017).
- Sandu, G. Large reclamation systems of the Romanian plain and their effect on soil salinity. Pochvovedeniye 1978, 8, 90–98. [Google Scholar]
- Attia, F.A.R. Drainage problems in the Nile valley resulting from land reclamation. Irrig. Drain. Syst. 1989, 3, 153–167. [Google Scholar] [CrossRef]
- Abu-Gullal, K.A.; Abdullah, M.; Al-Ansari, N. Land Reclamation in Iraq. J. Earth Sci. Geotech. Eng. 2020, 11, 201–221. [Google Scholar] [CrossRef]
- Dekhtyar, O.O.; Voitovich, I.V.; Usatyi, S.; Voropai, G.V.; Briuzghina, N.D.; Shevchuk, Y.V. History of Development, Prospects of Construction, Reconstruction And Rehabilitation Of Reclamation Systems. Miжвiдoмчий Teмaтичний Hayкoвий Збipник Meлiopaцiяi Boднe Гocпoдapcтвo 2019, 2, 40–54. [Google Scholar] [CrossRef]
- Bhan, S. Land degradation and integrated watershed management in India. Int. Soil Water Conserv. Res. 2013, 1, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Chesnokov, Y.; Yanko, Y. Problems of land reclamation of the Leningrad region. Melior. Water Manag. 2020, 3, 18–22. [Google Scholar] [CrossRef]
- Katona, J.; Czimber, K.; Pődör, A. Land consolidation based on cluster analysis. Acta Polytech. Hung. 2017, 14, 141–154. [Google Scholar] [CrossRef]
- Dankevych, V.; Pyvovar, P. Agricultural land transactions: Cluster analysis. Èkon. APK 2019, 3, 42–51. [Google Scholar] [CrossRef]
- Wolff, S.; Lakes, T. Characterising Agricultural Landscapes using Landscape Metrics and Cluster Analysis in Brandenburg, Germany. GI_Forum 2020, 1, 89–98. [Google Scholar] [CrossRef]
- Tamaela, J.; Sediyono, E.; Setiawan, A. Cluster Analysis Menggunakan Algoritma Fuzzy C-means dan K-means Untuk Klasterisasi dan Pemetaan Lahan Pertanian di Minahasa Tenggara. J. Buana Inform. 2017, 8, 2087–2534. [Google Scholar] [CrossRef]
- Pereira, M.A.D.S.; Cavalheri, P.S.; de Oliveira, M.C.; Filho, F.J.C.M. A multivariate statistical approach to the integration of different land-uses, seasons, and water quality as water resources management tool. Environ. Monit. Assess. 2019, 191, 539. [Google Scholar] [CrossRef] [PubMed]
- Kändler, M.; Blechinger, K.; Seidler, C.; Pavlů, V.; Sanda, M.; Dostál, T.; Krása, J.; Vitvar, T.; Štich, M. Impact of land use on water quality in the upper Nisa catchment in the Czech Republic and in Germany. Sci. Total Environ. 2017, 586, 1316–1325. [Google Scholar] [CrossRef]
- Shrestha, S.; Kazama, F. Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environ. Model. Softw. 2007, 22, 464–475. [Google Scholar] [CrossRef]
- Snezhko, V.; Benin, D.; Lukyanets, A.; Kondratenko, L. Assessing the Pollution Level in the Kuban River Basin by Multivariate Cluster Analysis. Asian J. Water Environ. Pollut. 2020, 17, 73–80. [Google Scholar] [CrossRef]
- Singh, K.P.; Malik, A.; Mohan, D.; Sinha, S. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—A case study. Water Res. 2004, 38, 3980–3992. [Google Scholar] [CrossRef] [PubMed]
- Meлиopaтивный кoмплeкc Poccийcкoй Φeдepaции: инφopм. издaниe. – M.: ΦГБHУ«Pocинφopмaгpoтex». Rosinformagrotekh. Land-Reclamation System of the Russian Federation, Inform. Edition. Moscow, Russian. Available online: https://rosinformagrotech.ru/index.php?option=com_attachments&task=download&id=569 (accessed on 17 December 2020).
- Mukhopadhyay, R.; Sarkar, B.; Jat, H.S.; Sharma, P.C.; Bolan, N.S. Soil salinity under climate change: Challenges for sustainable agriculture and food security. J. Environ. Manag. 2020, 280, 111736. [Google Scholar] [CrossRef] [PubMed]
- Qadir, M.; Oster, J.D. Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture. Sci. Total Environ. 2004, 323, 1–19. [Google Scholar] [CrossRef] [PubMed]
1 January 2010 (thous·ha) | 1 January 2020 (thous·ha) | 2020 to 2010 (%) | |
---|---|---|---|
total surface of reclaimable agricultural lands | 9032.80 | 9045.38 | 0.1% |
Total surface of irrigated agricultural lands | 4237.10 | 4263.943 | 0.6% |
Reclamative condition of irrigated agricultural lands | |||
good | 2008.20 | 2252.50 | 12.2% |
satisfactory | 1141.20 | 1139.728 | −0.1% |
unsatisfactory | 1087.70 | 871.714 | −19.9% |
Total surface of drained agricultural lands | 4795.70 | 4781.437 | −0.3% |
reclamative condition of drained agricultural lands | |||
good | 878 | 924.338 | 5.3% |
satisfactory | 2380.20 | 2204.45 | −7.4% |
unsatisfactory | 1537.50 | 1652.649 | 7.5% |
Cluster 1 “Mostly Good Condition” | Cluster 2 “Mostly Satisfactory Condition” | Cluster 3 “Mostly Unsatisfactory Condition” |
---|---|---|
Irrigated cultural lands | ||
Belgorod Region Bryansk Region Voronezh Region Kaluga Region Kursk Region Lipetsk Region Yaroslavl Region Republic of Adygea Krasnodar Region Volgograd Region Rostov Region Republic of Ingushetia Karachay-Cherkess Republic Republic of North Ossetia-Alania Stavropol Region Republic of Bashkortostan Republic of Mordovia Chuvash Republic Perm Krai Nizhny Novgorod Region Orenburg Region Penza Region Samara Region Saratov Region Chelyabinsk Region Altai Republic Tyva Republic The Republic of Khakassia Altai Region Irkutsk Region Kemerovo Region Novosibirsk Region Omsk Region Tomsk Region Kamchatka Krai Primorye Krai Amur Region | Vladimir Region Ivanovo Region Oryol Region Ryazan Region Tambov Region Tver Region Tula Region Leningrad Region Novgorod Region Kabardino-Balkar Republic Mari El Republic Republic of Tatarstan UdmurtiaKirov Region Ulyanovsk Region Kurgan Region Sverdlovsk Region Krasnoyarsk Region Republic of Buryatia Jewish Autonomous Region | Moscow Region Smolensk Region Vologda Region Kaliningrad Region Pskov Region Republic of Kalmykia Krasnodar Region The Republic of Dagestan Chechen Republic Tyumen Region Republic of Sakha (Yakutia) Trans-Baikal Krai Khabarovsk Region Magadan Region |
Drained agricultural lands | ||
Belgorod Region Bryansk Region Voronezh Region Kostroma Region Lipetsk Region Smolensk Region Murmansk Region Pskov Region Republic of Adygea Krasnodar Region Rostov Region Republic of North Ossetia-Alania Republic of Bashkortostan Republic of Mordovia Perm Krai Nizhny Novgorod Region Penza Region Altai Region Irkutsk Region Omsk Region Primorye Krai Amur Region | Ivanovo Region Kaluga Region Kursk Region Oryol Region Yaroslavl Region Arkhangelsk Region Vologda Region Kaliningrad Region Novgorod Region Republic of Tatarstan Udmurt Republic Kirov Region Ulyanovsk Region Kurgan Region Sverdlovsk Region Tyumen Region Kemerovo Region Novosibirsk Region Tomsk Region Republic of Buryatia Kamchatka Krai Sakhalin Region Jewish Autonomous Region | Vladimir Region Moscow Region Ryazan Region Tambov Region Tver Region Tula Region Republic of Karelia Komi Republic Leningrad Region Mari El Republic Chuvash Republic Chelyabinsk Region The Republic of Khakassia Krasnoyarsk Region The Republic of Sakha (Yakutia) Trans-Baikal Krai Khabarovsk Region Magadan Region |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Snezhko, V.L.; Benin, D.M. Dynamics of the Condition of Reclaimed Agricultural Lands in the Russian Federation. Land 2021, 10, 1288. https://doi.org/10.3390/land10121288
Snezhko VL, Benin DM. Dynamics of the Condition of Reclaimed Agricultural Lands in the Russian Federation. Land. 2021; 10(12):1288. https://doi.org/10.3390/land10121288
Chicago/Turabian StyleSnezhko, Vera L., and Dmitriy M. Benin. 2021. "Dynamics of the Condition of Reclaimed Agricultural Lands in the Russian Federation" Land 10, no. 12: 1288. https://doi.org/10.3390/land10121288
APA StyleSnezhko, V. L., & Benin, D. M. (2021). Dynamics of the Condition of Reclaimed Agricultural Lands in the Russian Federation. Land, 10(12), 1288. https://doi.org/10.3390/land10121288