Evaluation of Land Potential for Use of Biosolids in the Coastal Mediterranean Karst Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Land Resources Inventory
2.2. Laboratory Methods
2.3. Soil Types
2.4. Data Processing and Mapping
2.5. Legislation
3. Results
3.1. Land Resources and Agricultural Land Use
3.2. Soil Properties
3.3. Land Parcels Suitable for Biosolids Application
4. Discussion
4.1. Major Challenges in the Coastal Karst Region
4.2. Nutrient Value of Biosolids and Heavy Metals Concentrations
4.3. Karst Hydrology and Environmental Risk
4.4. Legislation: National or/and Regional Requirements
5. Conclusions and Perspectives
- -
- qualitative and quantitative control of biosolids based on current legislation;
- -
- environmental monitoring programs, mapping of land resources, land use and vulnerable areas, and the development of GIS-based models.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cieślik, B.M.; Namieśnik, J.; Konieczka, P. Review of sewage sludge management: Standards, regulations and analytical methods. J. Clean. Prod. 2015, 90, 1–15. [Google Scholar] [CrossRef]
- Fytili, D.; Zabaniotou, A. Utilization of sewage sludge in EU application of old and new methods—A review. Renew. Sustain. Energy Rev. 2008, 12, 116–140. [Google Scholar] [CrossRef]
- EPA. Available online: https://www.epa.gov/biosolids/biosolids-laws-and-regulations (accessed on 24 May 2021).
- Mei, X.; Tang, J.; Zhang, Y. Sludge stabilization: Characteristics of the end-products and an alternative evaluative methodology. Waste Manag. 2020, 105, 355–363. [Google Scholar] [CrossRef]
- EC—Environment. Available online: https://ec.europa.eu/environment/topics/waste-and-recycling/sewage-sludge_hr (accessed on 24 May 2021).
- Biosolids. Available online: https://www.epa.nsw.gov.au/your-environment/recycling-and-reuse/resource-recovery-framework/current-orders-and-exemption/resource-recovery-biosolids (accessed on 24 May 2021).
- Sewage Sludge Directive 86/278. Available online: https://ec.europa.eu/environment/topics/waste-and-recycling/sewage-sludge_en (accessed on 24 May 2021).
- WE. Available online: https://watereurope.eu/wp-content/uploads/WE-Position-Paper-on-the-Sewage-Sludge-Directive.pdf (accessed on 13 July 2021).
- Gianico, A.; Braguglia, C.; Gallipoli, A.; Montecchio, D.; Mininni, G. Land Application of Biosolids in Europe: Possibilities, Con-Straints and Future Perspectives. Water 2021, 13, 103. [Google Scholar] [CrossRef]
- Collivignarelli, M.; Abbà, A.; Frattarola, A.; Carnevale Miino, M.; Padovani, S.; Katsoyiannis, I.; Torretta, V. Legislation for the Reuse of Biosolids on Agricultural Land in Europe: Overview. Sustainancy 2019, 11, 6015. [Google Scholar] [CrossRef] [Green Version]
- Oplanić, M.; Černe, M.; Palčić, I.; Major, N.; Ban, D. Study on the Possibilities for Using Sewage Sludge and Olive Pomace in Agriculture; Institute of Agriculture and Tourism: Poreč, Croatia, 2019. (In Croatian) [Google Scholar]
- Legović, T.; Žutić, V.; Gržetić, Z.; Cauwet, G.; Precali, R.; Viličić, D. Eutrophication in the Krka estuary. Mar. Chem. 1994, 46, 203–215. [Google Scholar] [CrossRef]
- Jakelić, K.; Romić, M.; Cukrov, N.; Bakić, H. Marine sediment geochemistry influenced by the treated city effluents discharge in the coastal zone of the Adriatic Sea (Šibenik, Croatia). In Book of Abstracts 31 st SEGH 2015, Proceedings of the International Conference of the Society for Environmental Geochemistry and Health, Bratislava, Slovak Republic, 22–26 June 2015; Fajcíková, K., Cvecková, V., Zvarová, I., Rapant, S., Eds.; State Geological Institute of Dionýz Štúr: Bratislava, Slovak Republic, 2015. [Google Scholar]
- Kumar, V.; Chopra, A.K.; Kumar, A. A Review on Sewage Sludge (Biosolids) a Resource for Sustainable Agriculture. Arch. Agric. Environ. Sci. 2017, 2, 340–347. [Google Scholar] [CrossRef]
- Mininni, G.; Blanch, A.R.; Lucena, F.; Berselli, S. EU policy on sewage sludge utilization and perspectives on new approaches of sludge management. Environ. Sci. Pollut. Res. 2015, 22, 7361–7374. [Google Scholar] [CrossRef] [PubMed]
- Hudcová, H.; Vymazal, J.; Rozkošný, M. Present restrictions of sewage sludge application in agriculture within the European Union. Soil Water Res. 2019, 14, 104–120. [Google Scholar] [CrossRef]
- Narodne Novine NN 38/08. Pravilnik o Gospodarenju Muljem Iz Uređaja Za Pročišćavanje Otpadnih Voda Kada Se Mulj Koristi U Poljoprivredi. Available online: https://narodne-novine.nn.hr/clanci/sluzbeni/2008_04_38_1307.html (accessed on 24 May 2021).
- Ford, D.; Williams, P. Karst Hydrogeology and Geomorphology; John Wiley & Sons Ltd.: Chichester, UK, 2007; ISBN 9781118684986. [Google Scholar]
- Burri, E.; Castiglioni, B.; Sauro, U. Agriculture, landscape and human impact in some karst areas of Italy. Int. J. Speleol. 1999, 28, 33–54. [Google Scholar] [CrossRef] [Green Version]
- Romić, D.; Karoglan Kontić, J.; Preiner, D.; Romić, M.; Lazarević, B.; Maletić, E.; Ondrašek, G.; Andabaka, Ž.; Bakić Begić, H.; Bubalo Kovačić, M.; et al. Performance of grapevine grown on reclaimed Mediterranean karst land: Appearance and duration of high temperature events and effects of irrigation. Agric. Water Manag. 2020, 236, 106166. [Google Scholar] [CrossRef]
- Méndez, A.; Gómez, A.; Paz-Ferreiro, J.; Gascó, G. Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil. Chemosphere 2012, 89, 1354–1359. [Google Scholar] [CrossRef]
- Chagas, J.K.M.; de Figueiredo, C.C.; da Silva, J.; Paz-Ferreiro, J. The residual effect of sewage sludge biochar on soil availability and bioaccumulation of heavy metals: Evidence from a three-year field experiment. J. Environ. Manag. 2021, 279, 111824. [Google Scholar] [CrossRef]
- Černe, M.; Palčić, I.; Pasković, I.; Major, N.; Romić, M.; Filipović, V.; Igrc, M.D.; Perčin, A.; Ban, S.G.; Zorko, B.; et al. The effect of stabilization on the utilization of municipal sewage sludge as a soil amendment. Waste Manag. 2019, 94, 27–38. [Google Scholar] [CrossRef]
- Pérez-Gimeno, A.; Navarro-Pedreño, J.; Almendro-Candel, M.B.; Gómez, I.; Zorpas, A.A. The use of wastes (organic and inorganic) in land restoration in relation to their characteristics and cost. Waste Manag. Res. J. A Sustain. Circ. Econ. 2019, 37, 502–507. [Google Scholar] [CrossRef] [Green Version]
- Jurun, E.; Ratković, N.; Ujević, I. A cluster analysis of Croatian counties as the base for an active demographic policy. Croat. Oper. Res. Rev. 2017, 8, 221–236. [Google Scholar] [CrossRef] [Green Version]
- ARKOD. Available online: http://preglednik.arkod.hr/ARKOD-Web/ (accessed on 24 May 2021).
- ISO 11466:1995. Soil Quality—Extraction of Trace Elements Soluble in Aqua Regia; Croatian Standards Institute: Zagreb, Croatia, 2004. [Google Scholar]
- Egner, H.; Riehm, H.; Domingo, W.R. Untersuchungen uber die chemische Bodenanalyse als Grundlage fur die Beurteilung des Nahrstoffzustandes der Boden, II: Chemische Extractionsmetoden zu Phosphorund Kaliumbestimmung. K. Lantbr. Annaler 1960, 26, 199–215. [Google Scholar]
- Cunniff, P. Association of Official Analytical Chemists. Official Methods of Analysis of AOAC International, 16th ed.; AOAC: Arlington, VA, USA, 1995; Volume 1. [Google Scholar]
- Bogunovic, M.; Vidacek, Z.; Racz, Z.; Husnjak, S.; Spoljar, A.; Sraka, M. Soil Map Croatia–Fao Unesco. Available online: https://esdac.jrc.ec.europa.eu/content/soil-map-croatia-fao-unesco (accessed on 26 May 2021).
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106.; FAO: Rome, Italy, 2015. [Google Scholar]
- SAS Institute. SAS Procedures Guide for Personal Computers Version 9th Edition; SAS Institute: Cary North Carolina, SUA, 1999. [Google Scholar]
- ESRI. ArcGIS Desktop: Release 10; Environmental Systems Research Institute: Redlands, CA, USA, 2011. [Google Scholar]
- Romic, D.; Romic, M.; Zovko, M.; Bakic, H.; Ondrasek, G. Trace metals in the coastal soils developed from estuarine floodplain sediments in the Croatian Mediterranean region. Environ. Geochem. Health 2012, 34, 399–416. [Google Scholar] [CrossRef] [PubMed]
- Romic, M.; Romic, D.; Dolanjski, D.; Stricevic, I. Heavy metals accumulation in topsoil from the winegrowing regions. Factors which Control retention. Agric. Conspec. Sci. 2004, 69, 1–10. [Google Scholar]
- Halamić, J.; Miko, S. Geochemical Atlas of the Republic of Croatia; Croatian Geological Survey: Zagreb, Croatia, 2009. [Google Scholar]
- Romić, M.; Matijević, L.; Bakić, H.; Romić, D. Copper Accumulation in Vineyard Soils: Distribution, Fractionation and Bioavailability Assessment. In Environmental Risk Assessment of Soil Contamination; Hernández-Soriano, M.C., Ed.; InTech: Rijeka, Croatia, 2014; pp. 799–825. [Google Scholar]
- Husnjak, S.; Romić, M.; Poljak, M.; Pernar, N. Recommendations for Soil Management in Croatia. Agric. Conspec. Sci. Cus. 2011, 76, 1–8. [Google Scholar]
- Romić, M.; Njavro, M.; Romić, D. Current and future challenges in agricultural land use and soil protection in Croatia. In Proceedings of the Central European Initiative on Agricultural Land Protection – CEILAND, Nitra, Slovak Republic, 2019; Lucia, P., Zuzana, L., Eds.; Slovak University of Agriculture in Nitra: Nitra, Slovak Republic, 2019; pp. 91–98. [Google Scholar]
- Singh, R.P.; Agrawal, M. Potential benefits and risks of land application of sewage sludge. Waste Manag. 2008, 28, 347–358. [Google Scholar] [CrossRef]
- Fuerhacker, M.; Haile, T.M. Treatment and reuse of sludge. In Waste Water Treatment and Reuse in the Mediterranean Region; Barceló, D., Petrovic, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 63–92. [Google Scholar]
- Islam, M.A.; Romić, D.; Akber, M.A.; Romić, M. Trace metals accumulation in soil irrigated with polluted water and assessment of human health risk from vegetable consumption in Bangladesh. Environ. Geochem. Health 2018, 40, 59–85. [Google Scholar] [CrossRef]
- Eggen, R.I.L.; Hollender, J.; Joss, A.; Schärer, M.; Stamm, C. Reducing the Discharge of Micropollutants in the Aquatic Environment: The Benefits of Upgrading Wastewater Treatment Plants. Environ. Sci. Technol. 2014, 48, 7683–7689. [Google Scholar] [CrossRef] [PubMed]
- Corradini, F.; Meza, P.; Eguiluz, R.; Casado, F.; Huerta-Lwanga, E.; Geissen, V. Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Sci. Total. Environ. 2019, 671, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Randazzo, W.; Truchado, P.; Cuevas-Ferrando, E.; Simón, P.; Allende, A.; Sánchez, G. SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area. Water Res. 2020, 181, 115942. [Google Scholar] [CrossRef]
- Roberta, M.H. Agriculture, Forestry And Fishery Statistics; Eurostat: Luxembourg, 2015; ISBN 9789279432026. [Google Scholar]
- Tran, N.H.; Reinhard, M.; Gin, K.Y.-H. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water Res. 2018, 133, 182–207. [Google Scholar] [CrossRef] [PubMed]
- Gilli, E. Karstology: Karsts, Caves And Springs; CRC Press: New York, NY, USA, 2015. [Google Scholar]
- de Brogniez, D.; Ballabio, C.; Stevens, A.; Jones, R.J.A.; Montanarella, L.; van Wesemael, B. A map of the topsoil organic carbon content of Europe generated by a generalized additive model. Eur. J. Soil Sci. 2015, 66, 121–134. [Google Scholar] [CrossRef]
- EC—EIP. Available online: https://ec.europa.eu/eip/agriculture/sites/default/files/eipagri_fg_soil_organic_matter_final_report_2015_en_0.pdf (accessed on 13 June 2021).
- Panagos, P.; Borrelli, P.; Poesen, J.; Ballabio, C.; Lugato, E.; Meusburger, K.; Montanarella, L.; Alewell, C. The new assessment of soil loss by water erosion in Europe. Environ. Sci. Policy 2015, 54, 438–447. [Google Scholar] [CrossRef]
- Gutierrez, F.; Kinney, K.A.; Katz, L.E. Phosphorus Speciation in Municipal Wastewater Solids and Implications for Phosphorus Recovery. Environ. Eng. Sci. 2020, 37, 316–327. [Google Scholar] [CrossRef]
- Antoniadis, V.; Koutroubas, S.D.; Fotiadis, S. Nitrogen, Phosphorus, and Potassium Availability in Manure—and Sewage Sludge–Applied Soil. Commun. Soil Sci. Plant Anal. 2015, 46, 393–404. [Google Scholar] [CrossRef]
- Bramryd, T. Impact of sewage sludge application on the long-term nutrient balance in acid soils of scots pine (Pinus sylvestris L.) forests. Water Air Soil Pollut. 2002, 140, 381–399. [Google Scholar] [CrossRef]
- Zhang, Z.; Lv, Y.; Zhang, W.; Zhang, Y.; Sun, C.; Marhaba, T. Phosphorus, organic matter and nitrogen distribution characteristics of the surface sediments in Nansi Lake, China. Environ. Earth Sci. 2015, 73, 5669–5675. [Google Scholar] [CrossRef]
- Casado-Vela, J.; Sellés, S.; Navarro, J.; Bustamante, M.A.; Mataix, J.; Guerrero, C.; Gomez, I. Evaluation of composted sewage sludge as nutritional source for horticultural soils. Waste Manag. 2006, 26, 946–952. [Google Scholar] [CrossRef]
- Korboulewsky, N.; Dupouyet, S.; Bonin, G. Environmental Risks of Applying Sewage Sludge Compost to Vineyards. J. Environ. Qual. 2002, 31, 1522–1527. [Google Scholar] [CrossRef]
- Khan, S.; Chao, C.; Waqas, M.; Arp, H.P.H.; Zhu, Y.-G. Sewage Sludge Biochar Influence upon Rice (Oryza sativa L) Yield, Metal Bioaccumulation and Greenhouse Gas Emissions from Acidic Paddy Soil. Environ. Sci. Technol. 2013, 47, 8624–8632. [Google Scholar] [CrossRef]
- Kidd, P.S.; Domínguez-Rodríguez, M.J.; Díez, J.; Monterroso, C. Bioavailability and plant accumulation of heavy metals and phosphorus in agricultural soils amended by long-term application of sewage sludge. Chemosphere 2007, 66, 1458–1467. [Google Scholar] [CrossRef] [PubMed]
- McDowell, R.W.; Sharpley, A.N. Approximating Phosphorus Release from Soils to Surface Runoff and Subsurface Drainage. J. Environ. Qual. 2001, 30, 508–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filipović, V.; Černe, M.; Šimůnek, J.; Filipović, L.; Romić, M.; Ondrašek, G.; Bogunović, I.; Mustać, I.; Krevh, V.; Ferenčević, A.; et al. Modeling Water Flow and Phosphorus Sorption in a Soil Amended with Sewage Sludge and Olive Pomace as Compost or Biochar. Agronomy 2020, 10, 1163. [Google Scholar] [CrossRef]
- Miah, M.Y.; Chiu, C.-Y.; Hayashi, H.; Chino, M. Barley growth in response to potassium fertilization of soil with long term application of sewage sludge. Soil Sci. Plant Nutr. 1999, 45, 499–504. [Google Scholar] [CrossRef]
- Junio, G.R.Z.; Sampaio, R.A.; Nascimento, A.L.; Carneiro, J.P.; Santos, L.D.T.; Fernandes, L.A. Corn yield response to residual effect of fertilization with sewage sludge compost and rock phosphate. Braz J Agric Env. 2013, 17, 706–712. [Google Scholar]
- Perez-Murcia, M.D.; Moral, R.; Moreno-Caselles, J.; Perez-Espinosa, A.; Paredes, C. Use of composted sewage sludge in growth media for broccoli. Bioresour. Technol. 2006, 97, 123–130. [Google Scholar] [CrossRef]
- Casado-Vela, J.; Sellés, S.; Díaz-Crespo, C.; Navarro-Pedreño, J.; Mataix-Beneyto, J.; Gómez, I. Effect of composted sewage sludge application to soil on sweet pepper crop (Capsicum annuum var. annuum) grown under two exploitation regimes. Waste Manag. 2007, 27, 1509–1518. [Google Scholar] [CrossRef] [PubMed]
- Sousa, A.A.T.C.; Figueiredo, C.C. Sewage sludge biochar: Effects on soil fertility and growth of radish. Biol. Agric. Hortic. 2016, 32, 127–138. [Google Scholar] [CrossRef]
- SWIM-H2020 SM—Sustainable Water Integrated Management and Horizon 2020 Support Mechanism. LDK Consultants Engineers & Planners SA. Available online: https://www.euneighbours.eu/en/south/stay-informed/projects/swim-h2020-sm-sustainable-water-integrated-management-and-horizon-2020 (accessed on 10 June 2021).
- Škorić, A.; Filipovski, G.; Ćirić, M. Klasifikacija zemljišta Jugoslavije; Posebna izdanja ANU BiH, knjiga LXXVII, Odjeljenje priodnih i matematiĉkih nauka; Akademija nauka i umjetnosti Bosne i Hercegovine: Sarajevo, Bosnia and Herzegovina, 1985. [Google Scholar]
- Miko, S.; Halamić, J.; Peh, Z.; Galović, L. Geochemical Baseline Mapping of Soils Developed on Diverse Bedrock from Two Regions in Croatia. Geol.Croat. 2001, 54, 53–118. [Google Scholar] [CrossRef]
- Urlić, B.; Dumičić, G.; Goreta Ban, S.; Romić, M. Mineral composition of kale genotypes grown in three soils. Acta Hortic. 2016, 1142, 247–252. [Google Scholar] [CrossRef]
- Xia, X.; Ji, J.; Yang, Z.; Han, H.; Huang, C.; Li, Y.; Zhang, W. Cadmium risk in the soil-plant system caused by weathering of carbonate bedrock. Chemosphere 2020, 254, 126799. [Google Scholar] [CrossRef] [PubMed]
- Miloš, B.; Bensa, A. Background Variation and Threshold Values for Cadmium Concentration in Terra Rossa Soil from Dalmatia, Croatia. Eurasian Soil Sc. 2019, 52, 1622–1631. [Google Scholar] [CrossRef]
- Quezada-Hinojosa, R.P.; Föllmi, K.B.; Verrecchia, E.; Adatte, T.; Matera, V. Speciation and multivariable analyses of geogenic cadmium in soils at Le Gurnigel, Swiss Jura Mountains. Catena 2015, 125, 10–32. [Google Scholar] [CrossRef]
- Fang, W.; Delapp, R.C.; Kosson, D.S.; van der Sloot, H.A.; Liu, J. Release of heavy metals during long-term land application of sewage sludge compost: Percolation leaching tests with repeated additions of compost. Chemosphere 2017, 169, 271–280. [Google Scholar] [CrossRef]
- Filipović, L.; Romić, M.; Romić, D.; Filipović, V.; Ondrašek, G. Organic matter and salinity modify cadmium soil (phyto)availability. Ecotoxicol. Environ. Saf. 2018, 147, 824–831. [Google Scholar] [CrossRef]
- Ščančar, J.; Milačič, R.; Stražar, M.; Burica, O. Total metal concentrations and partitioning of Cd, Cr, Cu, Fe, Ni and Zn in sewage sludge. Sci. Total. Environ. 2000, 250, 9–19. [Google Scholar] [CrossRef]
- Fang, W.; Qi, G.; Wei, Y.; Kosson, D.S.; van der Sloot, H.A.; Liu, J. Leaching characteristic of toxic trace elements in soils amended by sewage sludge compost: A comparison of field and labora-tory investigations. Environ. Pollut 2018, 237, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Guo, X. Hydroxyapatite reduces potential Cadmium risk by amendment of sludge compost to turf-grass grown soil in a consecutive two-year study. Sci. Total Environ. 2019, 661, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Ghallab, A.; Usman, A.R.A. Effect of Sodium Chloride-induced Salinity on Phyto-availability and Speciation of Cd in Soil Solution. Water. Air. Soil Pollut. 2007, 185, 43–51. [Google Scholar] [CrossRef]
- Perez-Espinosa, A.; Moreno-Caselles, J.; Moral, R.; Perez-Murcia, M.D.; Gomez, I. Effects of sewage sludge application on salinity and physico-chemical properties of a calcareous soil. Arch. Agron. Soil Sci. 2000, 45, 51–56. [Google Scholar] [CrossRef]
- Hanc, A.; Tlustos, P.; Szakova, J.; Habart, J. Changes in cadmium mobility during composting and after soil application. Waste Manag. 2009, 29, 2282–2288. [Google Scholar] [CrossRef]
- Qi, G.; Jia, Y.; Liu, W.; Wei, Y.; Du, B.; Fang, W.; Guo, Y.; Guo, F.; Wu, Y.; Zou, Q.; et al. Leaching behavior and potential ecological risk of heavy metals in Southwestern China soils applied with sewage sludge compost under acid precipitation based on lysimeter trials. Chemosphere 2020, 249, 126212. [Google Scholar] [CrossRef]
- Milačič, R.; Ščančar, J. Determination of hexavalent chromium in lime-treated sewage sludge by anion-exchange fast protein liquid chromatography with electrothermal atomic absorption spectrometry detection. Analyst 2000, 125, 1938–1942. [Google Scholar] [CrossRef]
- Černe, M.; Palčić, I.; Major, N.; Pasković, I.; Perković, J.; Užila, Z.; Filipović, V.; Romić, M.; Goreta Ban, S.; Jaćimović, R.; et al. Effect of sewage sludge derived compost or biochar amendment on the phytoaccumulation of potentially toxic elements and radionuclides by Chinese cabbage. J. Environ. Manage 2021, 293, 112955. [Google Scholar] [CrossRef]
- Martínez, C.E.; Motto, H.L. Solubility of lead, zinc and copper added to mineral soils. Environ. Pollut. 2000, 107, 153–158. [Google Scholar] [CrossRef]
- Torri, S.I.; Lavado, R.S. Dynamics of Cd, Cu and Pb added to soil through different kinds of sewage sludge. Waste Manag. 2008, 28, 821–832. [Google Scholar] [CrossRef]
- Lucchini, P.; Quilliam, R.S.; DeLuca, T.H.; Vamerali, T.; Jones, D.L. Does biochar application alter heavy metal dynamics in agricultural soil? Agric. Ecosyst. Environ. 2014, 184, 149–157. [Google Scholar] [CrossRef]
- Filipović, J.; Grčić, I.; Bermanec, V.; Kniewald, G. Monitoring of total metal concentration in sludge samples: Case study for the mechanical–biological wastewater treatment plant in Velika Gorica, Croatia. Sci. Total. Environ. 2013, 447, 17–24. [Google Scholar] [CrossRef]
- Sčančar, J.; Milačić, R.; Burica, O.; Stražar, M. Water and acetic acid leachable Cd, Cr, Cu, Fe, Ni, Pb and Zn in lime-treated sewage sludge. Ann. Chim. 2001, 9, 375–379. [Google Scholar]
- Zheljazkov, V.D.; Warman, P.R. Phytoavailability and fractionation of copper, manganese, and zinc in soil following application of two composts to four crops. Environ. Pollut. 2004, 131, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Liu, Y. Effects of sewage sludge compost application on crops and cropland in a 3-year field study. Chemosphere 2005, 59, 1257–1265. [Google Scholar] [CrossRef] [PubMed]
- Sterrett, S.B.; Chaney, R.L.; Gifford, C.H.; Mielke, H.W. Influence of fertilizer and sewage sludge compost on yield and heavy metal accumulation by lettuce grown in urban soils. Environ. Geochem. Health 1996, 18, 135–142. [Google Scholar] [CrossRef]
- Khanmohammadi, Z.; Afyuni, M.; Mosaddeghi, M.R. Effect of sewage sludge and its biochar on chemical properties of two calcareous soils and maize shoot yield. Arch. Agron. Soil Sci. 2017, 63, 198–212. [Google Scholar] [CrossRef]
- Yue, Y.; Cui, L.; Lin, Q.; Li, G.; Zhao, X. Efficiency of sewage sludge biochar in improving urban soil properties and promoting grass growth. Chemosphere 2017, 173, 551–556. [Google Scholar] [CrossRef]
- Boumaiza, L.; Chesnaux, R.; Drias, T.; Walter, J.; Huneau, F.; Garel, E.; Knoeller, K.; Stumpp, C. Identifying groundwater degradation sources in a Mediterranean coastal area experiencing significant multi-origin stresses. Sci. Total. Environ. 2020, 746, 141203. [Google Scholar] [CrossRef]
- Kralj, D.; Romic, D.; Romic, M.; Cukrov, N.; Mlakar, M.; Kontrec, J.; Barisic, D.; Sirac, S. Geochemistry of stream sediments within the reclaimed coastal floodplain as indicator of anthropogenic impact (River Neretva, Croatia). J. Soils Sediments 2016, 16, 1150–1167. [Google Scholar] [CrossRef]
- Felja, I.; Romić, M.; Romić, D.; Bakić, H.; Pikelj, K.; Juračić, M. Application of empirical model to predict background metal concentration in mixed carbonate-alumosilicate sediment (Adriatic Sea, Croatia). Mar. Pollut. Bull. 2016, 106, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Romić, D.; Castrignanò, A.; Romić, M.; Buttafuoco, G.; Bubalo Kovačić, M.; Ondrašek, G.; Zovko, M. Modelling spatial and temporal variability of water quality from different monitoring stations using mixed effects model theory. Sci. Total. Environ. 2020, 704, 135875. [Google Scholar] [CrossRef]
- Petitta, M.; Tallini, M. Groundwater Resources and Human Impacts in a Quaternary Intramontane Basin (L’Aquila Plain, Central Italy). Water Int. 2003, 28, 57–69. [Google Scholar] [CrossRef]
- Dinelli, E.; Cortecci, G.; Lucchini, F.; Zantedeschi, E. Sources of major and trace elements in the stream sediments of the Arno river catchment (northern Tuscany, Italy). Geochem. J. 2005, 39, 531–545. [Google Scholar] [CrossRef] [Green Version]
- Lu, Q.; He, Z.L.; Stoffella, P.J. Land Application of Biosolids in the USA: A Review. Appl. Environ. Soil Sci. 2012, 2012, 256–263. [Google Scholar] [CrossRef] [Green Version]
- Zovko, M.; Romic, M. Soil contamination by trace metals: Geochemical behaviour as an element of risk assessment. In Earth and Environmental Sciences; Dar, I.A., Ed.; InTech: Rijeka, Croatia, 2011; pp. 437–456. [Google Scholar]
- Romic, M.; Bragato, G.; Zovko, M.; Romic, D.; Mosetti, D.; Galovic, L.; Bakic, H. The characteristics of cultivated soils developed from coastal paleosand (Korcula Island, Croatia). CATENA 2014, 113, 281–291. [Google Scholar] [CrossRef]
- Bradl, H.B. Adsorption of heavy metal ions on soils and soils constituents. J. Colloid Interface Sci. 2004, 277, 1–18. [Google Scholar] [CrossRef]
- EC—Eurostat. Available online: https://ec.europa.eu/eurostat/databrowser/view/ENV_WW_SPD/default/table?lang=en (accessed on 10 June 2021).
- Narodne Novine NN 71/19. Pravilnik o Zaštiti Poljoprivrednog Zemljišta od Onečišćenja. Available online: https://narodne-novine.nn.hr/clanci/sluzbeni/2019_07_71_1507.html (accessed on 24 May 2021).
Limit Value (mg kg−1 d.w. of Sewage Sludge) | ||
---|---|---|
Heavy Metal | Cadmium (Cd) Copper (Cu) Nickel (Ni) Lead (Pb) Zink (Zn) Mercury (Hg) Chromium (Cr) | 5 600 80 500 2000 5 500 |
PCBs | 2,4,4’-Trichlorobiphenyl 2,2’,5,5’-Tetrachlorobiphenyl 2,2′,4,5,5′-Pentachlorobifenyl 2,2′,3,4,5,5′-Hexachlorobifenyl 2,2′,3,4,4′,5,5′-Heptachlorobifenyl | 0.2 0.2 0.2 0.2 0.2 |
Parameter | Limit Values (mg kg−1 d.w. of Soil for Soil Heavy Metals Concentration) | ||
---|---|---|---|
pHKCl | 5.0 < pH < 5.5 | 5.5 < pH < 6.5 | pH > 6.5 |
Cadmium (Cd) | 0.5 | 1 | 1.5 |
Copper (Cu) | 40 | 50 | 100 |
Nickel (Ni) | 30 | 50 | 70 |
Lead (Pb) | 50 | 70 | 100 |
Zink (Zn) | 100 | 150 | 200 |
Mercury (Hg) | 0.2 | 0.5 | 1 |
Chromium (Cr) | 50 | 75 | 100 |
Agricultural Land Categories | Land Area (in Hectares) | Number of Parcels |
---|---|---|
Arable land | 1752 | 5108 |
Greenhouses | 2 | 55 |
Meadows | 2762 | 6695 |
Karst pastures | 16,871 | 6820 |
Vineyards | 951 | 3289 |
Abandoned vineyards | 19 | 7 |
Olive groves | 2662 | 14,404 |
Orchards | 221 | 1074 |
Perennial crops | 476 | 2358 |
Other | 20 | 20 |
Total | 25,736 | 39,830 |
Descriptive Statistics | Threshold Value | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Variable | Symbol | Unit | Mean | Median | Std. Dev. | Min | Max | Skewness | Kurtosis | NN 71/19 a | EU b |
pH | pH | 7.89 | 7.89 | 0.25 | 7.23 | 8.33 | −0.132 | −0.63 | |||
Electrical conductivity | EC | dS m−1 | 0.16 | 0.15 | 0.05 | 0.04 | 0.42 | 1.99 | 9.41 | ||
Calcium carbonate | CaCO3 | % | 17.1 | 11.0 | 16.9 | 0.83 | 59.8 | 1.09 | 0.10 | ||
Organic matter | OM | g kg−1 | 29.7 | 26.7 | 16.7 | 11.0 | 117 | 2.54 | 10.2 | ||
Clay | % | 32.4 | 35.0 | 10.8 | 6.00 | 51.0 | −0.74 | −0.02 | |||
Available phosphorus | P2O5 | mg 100 g−1 | 30.4 | 6.25 | 79.4 | 0.05 | 618 | 6.22 | 44.7 | ||
Available potassium | K2O | mg 100 g−1 | 48.5 | 33.9 | 34.2 | 9.54 | 186 | 1.66 | 2.97 | ||
Cadmium | Cd | mg kg−1 | 1.52 | 1.36 | 1.07 | 0.08 | 8.43 | 4.01 | 24.9 | 1,5 | 20–40 |
Chromium | Cr | mg kg−1 | 67.1 | 67.9 | 27.5 | 13.2 | 129 | 0.22 | −0.46 | 100 | / |
Copper | Cu | mg kg−1 | 96.0 | 42.6 | 162 | 9.01 | 1165 | 4.75 | 27.8 | 100 | 1000–1750 |
Mercury | Hg | mg kg−1 | 0.10 | 0.06 | 0.18 | 0.00 | 1.39 | 6.14 | 43.1 | 1 | 16–25 |
Nickel | Ni | mg kg−1 | 46.6 | 44.9 | 20.3 | 11.1 | 126 | 1.20 | 2.97 | 70 | 300–400 |
Lead | Pb | mg kg−1 | 37.1 | 32.6 | 25.5 | 7.12 | 172 | 2.79 | 11.4 | 100 | 750–1200 |
Zinc | Zn | mg kg−1 | 90.0 | 88.5 | 33.0 | 24.7 | 208 | 0.60 | 1.38 | 200 | 2500–4000 |
Polycyclic aromatic hydrocarbon | PAH | mg kg−1 | 0.21 | 0.05 | 0.39 | 0.05 | 1.01 | 2.45 | 6.00 | 0.2 | |
Polychlorinated biphenyl | PCB | mg kg−1 | 0.10 | 0.10 | 0.00 | 0.10 | 0.10 | 1.37 | −3.33 | 0.2 |
Agricultural Land Use | Area (in Hectares) | Number of Parcels |
---|---|---|
Arable land | 1752 | 5108 |
Vineyards | 951 | 3289 |
Olives | 2662 | 14,404 |
Orchards | 221 | 1074 |
Combined permanent crops | 476 | 2358 |
Total | 6032 | 26,233 |
Nutrient | pH | Organic C (%) | Total N (%) | Total K b (g kg−1) | Total P b (g kg−1) |
---|---|---|---|---|---|
Mean | 6.9 | 37.0 | 5.9 | 3.3 | 26.2 |
Range | 6.6–7.2 | 25.8–44.5 | 3.3–7.7 | 1.7–4.6 | 20.7–36.1 |
Std. Dev. | 0.2 | 7.7 | 1.8 | 1.2 | 6.27 |
Heavy metal b | Cd | Cr | Cu | Hg | Ni | Pb | Zn |
---|---|---|---|---|---|---|---|
mg kg−1 | |||||||
Mean | 0.9 | 55.3 | 275 | 1.3 | 30.7 | 46.0 | 1001 |
Range | 0.7–1.3 | 22.9–109 | 156–660 | 0.4–1.9 | 17.6–52.6 | 11.8–72.1 | 801–1254 |
Std. Dev. | 0.2 | 35.7 | 185 | 0.7 | 13.4 | 22.1 | 170 |
NN (38/08) c | 5 | 500 | 600 | 5 | 80 | 500 | 2000 |
EU Directive 86/278/EEC d | 20–40 | / | 1000–1750 | 16–25 | 300–400 | 750–1200 | 2500–4000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horvatić, V.; Begić, H.B.; Romić, D.; Černe, M.; Goreta Ban, S.; Zovko, M.; Romić, M. Evaluation of Land Potential for Use of Biosolids in the Coastal Mediterranean Karst Region. Land 2021, 10, 1035. https://doi.org/10.3390/land10101035
Horvatić V, Begić HB, Romić D, Černe M, Goreta Ban S, Zovko M, Romić M. Evaluation of Land Potential for Use of Biosolids in the Coastal Mediterranean Karst Region. Land. 2021; 10(10):1035. https://doi.org/10.3390/land10101035
Chicago/Turabian StyleHorvatić, Vito, Helena Bakić Begić, Davor Romić, Marko Černe, Smiljana Goreta Ban, Monika Zovko, and Marija Romić. 2021. "Evaluation of Land Potential for Use of Biosolids in the Coastal Mediterranean Karst Region" Land 10, no. 10: 1035. https://doi.org/10.3390/land10101035
APA StyleHorvatić, V., Begić, H. B., Romić, D., Černe, M., Goreta Ban, S., Zovko, M., & Romić, M. (2021). Evaluation of Land Potential for Use of Biosolids in the Coastal Mediterranean Karst Region. Land, 10(10), 1035. https://doi.org/10.3390/land10101035