The Role of Small Woody Landscape Features and Agroforestry Systems for National Carbon Budgeting in Germany
Abstract
:1. Introduction
2. Materials and Methods
2.1. Conceptual Approach
2.2. Data Collection and Geoprocessing
2.3. Calculations of Biomass Carbon Stocks
- Identify the above-ground (ABG) C stock in German temperate forests based on information from the National Forest Inventory (C stock equal to 103 Mg C ha−1 [39]).
- Assume further losses due to disturbance and/or harvest equal to 50% of the maximum ABG C in accordance with the IPCC Tier 1 assumption for agroforestry systems [27].
- Calculate carbon in below-ground (BLG) biomass as a fraction (0.23 ± 75%) of the mean ABG carbon [37].
- Sum up ABG C stock and BLG C stock to obtain TBC stock [37].
2.4. Calculations of the Soil Carbon Stocks
2.5. Agroforestry Scenarios
- Hedgerows: linear plantation around fields, including shelterbelts, windbreaks, boundary plantings, and live fences (tree density = 816 stems km−1).
- Silvoarable systems: woody species planted in parallel tree rows to allow for mechanization and intercropped with an annual crop; usually used for timber; low tree density per hectare (tree density = 202 stems ha−1).
- Silvopastoral systems: woody species planted on permanent grasslands, often grazed (tree density = 854 stems ha−1).
- Orchard systems: land planted with woody vegetation, often fruit trees. Understory vegetation is usually mowed or grazed (tree density = N/A).
- Vineyard systems: a plantation of vines, typically producing grapes used for winemaking, but also kiwifruit or passionfruit (tree density = N/A).
3. Results
3.1. Estimation of the Extent of SWFs
3.2. Quantification of C Stocks of Small Woody Landscape Features
3.3. The Carbon Benefit of Implementing Agroforestry Practices across Germany
4. Discussion
4.1. The Extent of SWFs in Germany
4.2. The Estimated Carbon Storage Potential of SWFs
4.3. The Carbon Sequestration Potential of Agroforestry Systems
4.4. Study Limitations and Data Needs for Future Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Agricultural System | Target AF System | Land Converted | ABG | BLG | SOC | MC |
---|---|---|---|---|---|---|
(%) | (Mg C ha−1 yr−1) | (yr) | ||||
Arable system | Hedgerow | 1, 5, 10 | 3.8 (ABG + BLG + SOC) ± 75% | 30 | ||
Silvoarable | 1, 5, 10 | 0.91 ± 0.49 | 0.23 ± 0.17 | 0.47 ± 1.34 | 30 ± 10 | |
Silvopastoral | 1, 5, 10 | 2.33 ± 1.21 | 0.70 ± 0.53 | 1.93 ± 1.54 | 30 ± 10 | |
Grassland system | Hedgerow | 1, 5, 10 | 3.5 (ABG + BLG + 0 Mg C SOC) | |||
Silvopastoral | 1, 5, 10 | 2.33 ± 1.21 | 0.70 ± 0.53 | 1.93 ± 1.54 | 30 ± 10 | |
Orchard system | Hedgerow | 1, 5, 10 | 3.8 (ABG + BLG + SOC) | |||
Vineyard system | Hedgerow | 1, 5, 10 | 3.8 (ABG + BLG + SOC) |
References
- Roe, S.; Streck, C.; Obersteiner, M.; Frank, S.; Griscom, B.; Drouet, L.; Fricko, O.; Gusti, M.; Harris, N.; Hasegawa, T.; et al. Contribution of the land sector to a 1.5 °C world. Nat. Clim. Chang. 2019, 9, 817–828. [Google Scholar] [CrossRef]
- Clark, M.A.; Domingo, N.G.G.; Colgan, K.; Thakrar, S.K.; Tilman, D.; Lynch, J.; Azevedo, I.L.; Hill, J.D. Global food system emissions could preclude achieving the 1.5° and 2 °C climate change targets. Science 2020, 370, 705–708. [Google Scholar] [CrossRef]
- Yu, L.; Xue, B.; Stückrad, S.; Thomas, H.; Cai, G. Indicators for energy transition targets in China and Germany: A text analysis. Ecol. Indic. 2020, 111, 106012. [Google Scholar] [CrossRef]
- Cabinet of Germany (Bundesregierung). Climate Action Program. Available online: https://www.bundesregierung.de/breg-de/themen/klimaschutz/klimaschutzgesetz-2021-1913672 (accessed on 15 September 2021).
- Rösemann, C.; Haenel, H.-D.; Vos, C.; Dämmgen, U.; Döring, U.; Wulf, S.; Eurich-Menden, B.; Freibauer, A.; Döhler, H.; Schreiner, C.; et al. Calculations of gaseous and particulate emissions from German agriculture 1990–2019: Report on methods and data (RMD) Submission 2021. Braunschweig: Johann Heinrich von Thünen-Institut. Thünen Rep. 2021, 84. [Google Scholar] [CrossRef]
- Federal Ministry for Environment Nature Conservation Climate Action Plan 2050—Principles and Goals of the German Government’s Climate Policy. Available online: https://www.bmu.de/fileadmin/Daten_BMU/Pools/Broschueren/klimaschutzplan_2050_en_bf.pdf (accessed on 5 July 2021).
- Federal Ministry for Environment, Nature Conservation and Nuclear Safety. Climate Pact Germany. Available online: https://www.bmu.de/fileadmin/Daten_BMU/Download_PDF/Klimaschutz/klimapakt_deutschland_bf.pdf (accessed on 12 September 2021).
- Jacobs, A.; Flessa, H.; Don, A.; Heidkamp, A.; Prietz, R.; Dechow, R.; Gensior, A.; Poeplau, C.; Riggers, C.; Schneider, F.; et al. Agriculturally used soil in Germany—Results of the soil condition survey. Braunschweig: Johann Heinrich von Thünen-Institut. Thünen Rep. 2018, 64. [Google Scholar] [CrossRef]
- Nair, P.R.; Nair, V.; Kumar, M.B.; Showalter, J.M. Carbon sequestration in agroforestry systems. Adv. Agron. 2010, 108, 237–307. [Google Scholar] [CrossRef]
- Zomer, R.J.; Trabucco, A.; Coe, R.; Place, F. Trees on Farm: Analysis of Global Extent and Geographical Patterns of Agroforestry; ICRAF Working Paper no. 89; World Agroforestry Centre: Nairobi, Kenya, 2009. [Google Scholar]
- Zomer, R.J.; Neufeldt, H.; Xu, J.; Ahrends, A.; Bossio, D.; Trabucco, A.; Van Noordwijk, M.; Wang, M. Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets. Sci. Rep. 2016, 6, 29987. [Google Scholar] [CrossRef] [PubMed]
- Nerlich, K.; Graeff-Hönninger, S.; Claupein, W. Agroforestry in Europe: A review of the disappearance of traditional systems and development of modern agroforestry practices, with emphasis on experiences in Germany. Agrofor. Syst. 2013, 87, 475–492. [Google Scholar] [CrossRef]
- Santiago-Freijanes, J.J.; Pisanelli, A.; Rois-Díaz, M.; Aldrey-Vázquez, J.A.; Rigueiro-Rodríguez, A.; Pantera, A.; Vityi, A.; Lojka, B.; Ferreiro-Domínguez, N.; Mosquera-Losada, M.R. Agroforestry development in Europe: Policy issues. Land Use Policy 2018, 76, 144–156. [Google Scholar] [CrossRef]
- De Stefano, A.; Jacobson, M.G. Soil carbon sequestration in agroforestry systems: A meta-analysis. Agrofor. Syst. 2018, 92, 285–299. [Google Scholar] [CrossRef]
- Shi, L.; Feng, W.; Xu, J.; Kuzyakov, Y. Agroforestry systems: Meta-analysis of soil carbon stocks, sequestration processes, and future potentials. Land Degrad. Dev. 2018, 29, 3886–3897. [Google Scholar] [CrossRef]
- Ma, Z.; Chen, H.Y.H.; Bork, E.W.; Carlyle, C.N.; Chang, S.X. Carbon accumulation in agroforestry systems is affected by tree species diversity, age and regional climate: A global meta-analysis. Glob. Ecol. Biogeogr. 2020, 29, 1817–1828. [Google Scholar] [CrossRef]
- Chatterjee, N.; Nair, P.K.R.; Chakraborty, S.; Nair, V.D. Changes in soil carbon stocks across the Forest-Agroforest-Agriculture/Pasture continuum in various agroecological regions: A meta-analysis. Agric. Ecosyst. Environ. 2018, 266, 55–67. [Google Scholar] [CrossRef]
- The World Bank. EUROSTAT (2018): Agriculture, Forestry and Fishery Statistics—2018 Edition. Available online: https://data.worldbank.org/indicator/AG.LND.FRST.ZS?locations=DE (accessed on 12 September 2021).
- Den Herder, M.; Moreno, G.; Mosquera-Losada, M.R. Current extent and trends of agroforestry in the EU27. 2016. Deliverable Report 1.2 for EU FP7 Research Project: AGFORWARD 613520. Available online: https://www.agforward.eu/index.php/en/current-extent-and-trends-of-agroforestry-in-the-eu27.html (accessed on 17 June 2021).
- Plieninger, T. Capitalizing on the carbon sequestration potential of agroforestry in Germany’s agricultural landscapes: Realigning the climate change mitigation and landscape conservation agendas. Landsc. Res. 2011, 36, 435–454. [Google Scholar] [CrossRef]
- European Commission. Land Use and Forestry Regulation for 2021–2030. Available online: https://ec.europa.eu/clima/policies/forests/lulucf_en#tab-0-0 (accessed on 10 June 2021).
- Close, O.; Petit, S.; Beaumont, B.; Hallot, E. Analysis Associated to LULUCF in Wallonia, Belgium. Land 2021, 10, 55. [Google Scholar] [CrossRef]
- Takimoto, A.; Nair, P.K.R.; Nair, V.D. Carbon stock and sequestration potential of traditional and improved agroforestry systems in the West African Sahel. Agric. Ecosyst. Environ. 2008, 125, 159–166. [Google Scholar] [CrossRef]
- Foster, D.; Swanson, F.; Aber, J.; Burke, I.C.; Brokaw, N.; Tilman, D.; Knapp, A. The Importance of Land-Use Legacies to Ecology and Conservation. Bioscience 2009, 53, 77–88. [Google Scholar] [CrossRef] [Green Version]
- Nair, P.K.R.; Kumar, B.M.; Nair, V.D. Agroforestry as a strategy for carbon sequestration. J. Plant Nutr. Soil Sci. 2009, 172, 10–23. [Google Scholar] [CrossRef]
- Cardinael, R.; Umulisa, V.; Toudert, A.; Olivier, A.; Bockel, L.; Bernoux, M. Revisiting IPCC Tier 1 coefficients for soil organic and biomass carbon storage in agroforestry systems. Environ. Res. Lett. 2018, 13, 124020. [Google Scholar] [CrossRef]
- IPCC. Cropland—Chapter 5. In Volume 4—Agriculture, Forestry and Other Land Use. 2019 Refinement to the 2006 Guidelines for National Greenhouse Gas Inventories; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Faucqueur, L.; Morin, N.; Masse, A.; Remy, P.-Y.; Hugé, J.; Kenner, C.; Dazin, F.; Desclée, B.; Sannier, C. A new Copernicus high resolution layer at pan-European scale: Small woody features. In Proceedings of the Remote Sensing for Agriculture, Ecosystems, and Hydrology XXI, Strasbourg, France, 9–11 September 2019; Neale, C.M.U., Maltese, A., Eds.; SPIE: Philadelphia, PA, USA, 2019; Volume 11149, pp. 268–278. [Google Scholar]
- European Environment Agency. Copernicus Land Monitoring Service—High Resolution Layer Small Woody Features—2015 Reference Year. 2016. Available online: https://land.copernicus.eu/pan-european/high-resolution-layers/small-woody-features/small-woody-features-2015?tab=download (accessed on 9 April 2021).
- Federal Agency for Cartography and Geodesy. CORINE Land Cover 5 ha CLC5 (Reference Year-2015). Available online: http://gdz.bkg.bund.de/index.php/default/corine-land-cover-5-ha-stand-2015-clc5-2015.html (accessed on 9 April 2021).
- QGIS Development Team. QGIS Geographic Information System: Open-Source Geospatial Foundation Project. 2021. Available online: https://qgis.org/en/site/ (accessed on 9 April 2021).
- O’Brien, J. rasterDT: Fast Raster Summary and Manipulation. 2020. Available online: https://cran.r-project.org/web/packages/rasterDT/rasterDT.pdf (accessed on 15 April 2021).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 18 May 2021).
- Nowosad, J. Motif: An open-source R tool for pattern-based spatial analysis. Landsc. Ecol. 2021, 36, 29–43. [Google Scholar] [CrossRef]
- Dietmar, R.; Michel, V.; Graf, R.; Ralf, N. Definition von Boden-Klima-Räumen für die Bundesrepublik. Nachr. Dtsch. Pflanzenschutzd. 2007, 59, 155–161. [Google Scholar]
- Willcock, S.; Phillips, O.L.; Platts, P.J.; Balmford, A.; Burgess, N.D.; Lovett, J.C.; Ahrends, A.; Bayliss, J.; Doggart, N.; Doody, K.; et al. Towards Regional, Error-Bounded Landscape Carbon Storage Estimates for Data-Deficient Areas of the World. PLoS ONE 2012, 7, e44795. [Google Scholar] [CrossRef]
- Drexler, S.; Gensior, A.; Don, A.; Don, A. Carbon sequestration in hedgerow biomass and soil in the temperate climate zone. Reg. Environ. Chang. 2021, 21, 74. [Google Scholar] [CrossRef]
- Strohbach, M.W.; Haase, D. Above-ground carbon storage by urban trees in Leipzig, Germany: Analysis of patterns in a European city. Landsc. Urban Plan. 2012, 104, 95–104. [Google Scholar] [CrossRef]
- Wellbrock, N.; Grüneberg, E.; Riedel, T.; Polley, H. Carbon stocks in tree biomass and soils of German forests. Cent. Eur. For. J. 2017, 63, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Bartholomé, E.; Belward, A.S. GLC2000: A new approach to global land cover mapping from Earth observation data. Int. J. Remote Sens. 2005, 26, 1959–1977. [Google Scholar] [CrossRef]
- Ruesch, A.; Gibbs, H.K. New IPCC Tier-1 Global Biomass Carbon Map for the Year 2000. Available online: https://cdiac.ess-dive.lbl.gov/epubs/ndp/global_carbon/tables.html#table1e (accessed on 10 June 2021).
- IPCC. Chapter 6—Grassland. In Volume 4—Agriculture, Forestry and Other Land Uses. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Geneva, Switzerland, 2006. [Google Scholar]
- Axe, M.S.; Grange, I.D.; Conway, J.S. Carbon storage in hedge biomass—A case study of actively managed hedges in England. Agric. Ecosyst. Environ. 2017, 250, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Hansen, M.C.; DeFries, R.S.; Townshend, J.R.G.; Carroll, M.; Dimiceli, C.; Sohlberg, R.A. Global Percent Tree Cover at a Spatial Resolution of 500 Meters: First Results of the MODIS Vegetation Continuous Fields Algorithm. Earth Interact. 2003, 7, 1–15. [Google Scholar] [CrossRef] [Green Version]
- den Herder, M.; Moreno, G.; Mosquera-Losada, R.M.; Palma, J.H.N.; Sidiropoulou, A.; Santiago Freijanes, J.J.; Crous-Duran, J.; Paulo, J.A.; Tomé, M.; Pantera, A.; et al. Current extent and stratification of agroforestry in the European Union. Agric. Ecosyst. Environ. 2017, 241, 121–132. [Google Scholar] [CrossRef] [Green Version]
- Jongman, R.H.G. Homogenisation and fragmentation of the European landscape: Ecological consequences and solutions. Landsc. Urban Plan. 2002, 58, 211–221. [Google Scholar] [CrossRef]
- Carey, P.D.; Wallis, S.; Chamberlain, P.M.; Cooper, A.; Emmett, B.A.; Maskell, L.C.; McCann, T.; Murphy, J.; Norton, L.R.; Reynolds, B.; et al. Countryside Survey: UK Results from 2007; 2008. Available online: http://www.countrysidesurvey.org.uk/sites/default/files/CS-UK-Results2007-Chapter01_0.pdf (accessed on 10 June 2021).
- Fuentes-Montemayor, E.; Goulson, D.; Cavin, L.; Wallace, J.M.; Park, K.J. Fragmented woodlands in agricultural landscapes: The influence of woodland character and landscape context on bats and their insect prey. Agric. Ecosyst. Environ. 2013, 172, 6–15. [Google Scholar] [CrossRef]
- Lomba, A.; Vicente, J.; Moreira, F.; Honrado, J. Effects of multiple factors on plant diversity of forest fragments in intensive farmland of Northern Portugal. For. Ecol. Manag. 2011, 262, 2219–2228. [Google Scholar] [CrossRef]
- Hofmeister, J.; Hošek, J.; Brabec, M.; Kočvara, R. Spatial distribution of bird communities in small forest fragments in central Europe in relation to distance to the forest edge, fragment size and type of forest. For. Ecol. Manag. 2017, 401, 255–263. [Google Scholar] [CrossRef]
- De Smedt, P.; Baeten, L.; Proesmans, W.; Berg, M.P.; Brunet, J.; Cousins, S.A.O.; Decocq, G.; Deconchat, M.; Diekmann, M.; Gallet-Moron, E.; et al. Linking macrodetritivore distribution to desiccation resistance in small forest fragments embedded in agricultural landscapes in Europe. Landsc. Ecol. 2018, 33, 407–421. [Google Scholar] [CrossRef]
- Bavarian State Ministry for Food, Agriculture and Forests. Funding programs for orchards in Bavaria. Available online: https://www.bmu.de/fileadmin/Daten_BMU/Download_PDF/Klimaschutz/klimapakt_deutschland_bf.pdf (accessed on 12 September 2021).
- German Bundestag. Bundestag Advocates Promoting Agroforestry. Available online: https://www.bundestag.de/dokumente/textarchiv/2021/kw02-de-agroforstwirtschaft-814222 (accessed on 12 September 2021).
- European Commission. The New Common Agricultural Policy: 2023–2027. Available online: https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-agricultural-policy/future-cap_en (accessed on 29 July 2021).
- European Commission. List of Potential Agricultural Practices That Eco-Schemes Could Support. Available online: https://ec.europa.eu/info/sites/default/files/food-farming-fisheries/key_policies/documents/factsheet-agri-practices-under-ecoscheme_en.pdf (accessed on 12 September 2021).
- Van Den Berge, S.; Vangansbeke, P.; Baeten, L.; Vanneste, T.; Vos, F.; Verheyen, K. Soil carbon of hedgerows and ‘ghost’ hedgerows. Agrofor. Syst. 2021, 95, 1087–1103. [Google Scholar] [CrossRef]
- Kort, J.; Turnock, R. Carbon reservoir and biomass in Canadian prairie shelterbelts. Agrofor. Syst. 1998, 44, 175–186. [Google Scholar] [CrossRef]
- Kay, S.; Graves, A.; Palma, J.H.N.; Moreno, G.; Roces-Díaz, J.V.; Aviron, S.; Chouvardas, D.; Crous-Duran, J.; Ferreiro-Domínguez, N.; García de Jalón, S.; et al. Agroforestry is paying off—Economic evaluation of ecosystem services in European landscapes with and without agroforestry systems. Ecosyst. Serv. 2019, 36, 2–22. [Google Scholar] [CrossRef] [Green Version]
- Graves, A.R.; Burgess, P.J.; Palma, J.; Keesman, K.J.; van der Werf, W.; Dupraz, C.; van Keulen, H.; Herzog, F.; Mayus, M. Implementation and calibration of the parameter-sparse Yield-SAFE model to predict production and land equivalent ratio in mixed tree and crop systems under two contrasting production situations in Europe. Ecol. Model. 2010, 221, 1744–1756. [Google Scholar] [CrossRef] [Green Version]
- Young, K.J. Mimicking Nature: A Review of Successional Agroforestry Systems as an Analogue to Natural Regeneration of Secondary Forest Stands. In Integrating Landscapes: Agroforestry for Biodiversity Conservation and Food Sovereignty; Montagnini, F., Ed.; Springer: New Haven, CT, USA, 2017; ISBN 978-3-319-69371-2. [Google Scholar]
- Garratt, M.P.D.; Senapathi, D.; Coston, D.J.; Mortimer, S.R.; Potts, S.G. The benefits of hedgerows for pollinators and natural enemies depends on hedge quality and landscape context. Agric. Ecosyst. Environ. 2017, 247, 363–370. [Google Scholar] [CrossRef] [Green Version]
- Tsonkova, P.; Mirck, J.; Böhm, C.; Fütz, B. Addressing farmer-perceptions and legal constraints to promote agroforestry in Germany. Agrofor. Syst. 2018, 92, 1091–1103. [Google Scholar] [CrossRef]
- Rigueiro-Rodríguez, A.; Fernández-Núñez, E.; González-Hernández, P.; McAdam, J.H.; Mosquera-Losada, M.R. Agroforestry Systems in Europe: Productive, Ecological and Social Perspectives. In Agroforestry in Europe: Current Status and Future Prospects; Rigueiro-Rodróguez, A., McAdam, J., Mosquera-Losada, M.R., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 43–65. ISBN 978-1-4020-8272-6. [Google Scholar]
- Nair, P.K.R. Carbon sequestration studies in agroforestry systems: A reality-check. Agrofor. Syst. 2012, 86, 243–253. [Google Scholar] [CrossRef]
- Zhang, Y.; Long, H.; Wang, M.Y.; Li, Y.; Ma, L.; Chen, K.; Zheng, Y.; Jiang, T. The hidden mechanism of chemical fertiliser overuse in rural China. Habitat Int. 2020, 102, 102210. [Google Scholar] [CrossRef]
- Angelidis, I.; Levin, G.; Díaz-Varela, R.A.; Malinowski, R. Assessment of changes in formations of non-forest woody vegetation in southern Denmark based on airborne LiDAR. Environ. Monit. Assess. 2017, 189, 437. [Google Scholar] [CrossRef]
- Sileshi, G.W.; Mafongoya, P.L.; Nath, A.J. Agroforestry systems for improving nutrient recycling and soil fertility on degraded lands. In Agroforestry for Degraded Landscapes; Dagar, J.C., Gupta, S.R., Teketay, D., Eds.; Springer: Singapore, 2020; pp. 225–254. ISBN 9789811541360. [Google Scholar]
- Plexida, S.; Solomou, A.; Poirazidis, K.; Sfougaris, A. Factors affecting biodiversity in agrosylvopastoral ecosystems with in the Mediterranean Basin: A systematic review. J. Arid Environ. 2018, 151, 125–133. [Google Scholar] [CrossRef]
- van Noordwijk, M.; Coe, R.; Sinclair, F.L.; Luedeling, E.; Bayala, J.; Muthuri, C.W.; Cooper, P.; Kindt, R.; Duguma, L.; Lamanna, C.; et al. Climate Change Adaptation in and through Agroforestry: Four Decades of Research Initiated by Peter Huxley; Springer: Dordrecht, The Netherlands, 2021; Volume 26, ISBN 0123456789. [Google Scholar]
SWF Structure/Agricultural System | Maximum ABG C Stock | Mean ABG C Stock | Mean BLG C Stock | Mean TBC Stock | Literature |
---|---|---|---|---|---|
Mg C ha−1 | |||||
Linear 1 | - | 24.0 ± 15.0 | 22.0 ± 14.0 | 46.0 ± 29.0 | [37] |
Patchy and additional | 52.0 ± 37.0 | 26.0 ± 19.0 | 6.0 ± 4.0 | 32.0 ± 23.0 | Own estimation |
Cropland | - | - | - | 5.0 | [42] |
Grassland | - | - | - | 7.0 | [42] |
Vineyard | 5.5 ± 0.99 | 2.8 ± 0.5 | 0.6 ± 0.5 | 3.4 ± 0.7 | [27] |
Orchard | 16.0 ± 3.6 | 8.0 ± 1.8 | 1.8 ± 1.5 | 9.8 ± 2.3 | [38] |
Agricultural System | Total Area (ha) | Area (No SWFs) (ha) | SWF Area (ha) | SWF Cover (%) |
---|---|---|---|---|
Cropland (211) | 12,880,136 | 12,513,463 | 366,672 | 2.8 |
Grassland (231) | 6,433,403 | 5,915,784 | 517,619 | 8.0 |
Vineyard (221) | 127,033 | 122,610 | 4423 | 3.5 |
Orchard (222) | 195,770 | 178,241 | 17,528 | 9.0 |
Total | 19,636,342 | 18,730,098 | 906,243 | 4.6 |
Agricultural System | SOC | Other TBC 1 | SWF TBC | SWF SOC | Revised C Stocks |
---|---|---|---|---|---|
Tg C | |||||
Cropland (211) | 763.3 ± 312.8 | 62.6 ± 46.9 | 14.8 ± 9.7 | 27.6 ± 13.0 | 868.3 ± 382.5 |
Grassland (231) | 520.6 ± 189.3 | 41.4 ± 31.1 | 20.6 ± 11.9 | 45.6 ± 16.6 | 628.1 ± 248.8 |
Vineyard (221) | 7.6 ± 3.1 | 0.4 ± 0.1 | 0.2 ± 0.1 | 0.3 ± 0.2 | 8.5 ± 3.4 |
Orchard (222) | 11.1 ± 4.5 | 1.7 ± 0.4 | 0.7 ± 0.4 | 1.3 ± 0.6 | 14.8 ± 5.9 |
Total (Tg C) | 1302.6 ± 510 | 106.1 ± 78.5 | 36.3 ± 22.2 | 74.8 ± 30.3 | 1519.8 ± 640.6 |
Land Converted | ||||
---|---|---|---|---|
Agricultural System | Target Agroforestry System | 1% | 5% | 10% |
C Sequestration Potential (Tg C) over 30 Years | ||||
Cropland (211) | Hedgerow | 14 ± 11 | 73 ± 55 | 143 ± 107 |
Silvoarable | 6.0 ± 3.3 | 30.2 ± 16.4 | 60.4 ± 32.9 | |
Grassland (231) | Hedgerow | 6 ± 5 | 34 ± 25 | 62 ± 47 |
Silvopastoral | 5.5 ± 3.1 | 27.5 ± 15.7 | 55.0 ± 31.3 | |
Vineyard (221) | Hedgerow | 0.1 ± 0.1 | 0.7 ± 0.5 | 1.4 ± 1 |
Orchard (222) | Hedgerow | 0.2 ± 0.2 | 1.1 ± 0.8 | 2.0 ± 1.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golicz, K.; Ghazaryan, G.; Niether, W.; Wartenberg, A.C.; Breuer, L.; Gattinger, A.; Jacobs, S.R.; Kleinebecker, T.; Weckenbrock, P.; Große-Stoltenberg, A. The Role of Small Woody Landscape Features and Agroforestry Systems for National Carbon Budgeting in Germany. Land 2021, 10, 1028. https://doi.org/10.3390/land10101028
Golicz K, Ghazaryan G, Niether W, Wartenberg AC, Breuer L, Gattinger A, Jacobs SR, Kleinebecker T, Weckenbrock P, Große-Stoltenberg A. The Role of Small Woody Landscape Features and Agroforestry Systems for National Carbon Budgeting in Germany. Land. 2021; 10(10):1028. https://doi.org/10.3390/land10101028
Chicago/Turabian StyleGolicz, Karolina, Gohar Ghazaryan, Wiebke Niether, Ariani C. Wartenberg, Lutz Breuer, Andreas Gattinger, Suzanne R. Jacobs, Till Kleinebecker, Philipp Weckenbrock, and André Große-Stoltenberg. 2021. "The Role of Small Woody Landscape Features and Agroforestry Systems for National Carbon Budgeting in Germany" Land 10, no. 10: 1028. https://doi.org/10.3390/land10101028