Mountain Watch: How LT(S)ER Is Safeguarding Southern Africa’s People and Biodiversity for a Sustainable Mountain Future
Abstract
:1. Introduction
2. Aims, Materials and Methods
3. Discussion
3.1. Value of Historical and Current LTER Initiatives
3.1.1. Adaptive Management of Mountain Catchments for Water Security
3.1.2. Fire Management and Policy That Optimises Grassland Biodiversity, Resilience and Water Production
3.1.3. Resuscitating the National Government LTER Platform in South Africa
3.1.4. Early Detection of Mountain Invasive Alien Plants and Understanding Species Redistributions
3.1.5. Understanding the Effects of Nutrient Enrichment on Biodiversity and Livelihoods
3.2. Value of LT(S)ER Initiatives Under Development
3.2.1. Understanding How Climate Warming Will Affect Sensitive Alpine Habitat: An Austral Perspective
3.2.2. Soil Knowledge for the Management and Conservation of Soil Resources to Sustain Livelihoods and Safeguard Biodiversity
3.2.3. Moving Towards Systems-Based, Landscape-Scaled LTSER
3.3. What about the Rest of Southern Africa?
3.4. Local Knowledge with Global Significance
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Site and Affiliation | Mountain Range and Country | Management Authority | Biome and Rainfall Zone | Recorded Parameters and Attributes | Elevation Range (m a.s.l.) |
---|---|---|---|---|---|
Cape Fold Belt | |||||
Baviaanskloof SAEON Fynbos node; proposed component of the Garden Route Gateway EFTEON landscape | Baviaans and Kouga Mountains, South Africa | Eastern Cape Parks and Tourism Agency | Intersection of Albany Thicket, Succulent Karoo, Fynbos; winter rainfall | Atmospheric parameters (2011–2015–current): air temperature, vapour pressure deficit, atmospheric pressure, precipitation, wind speed and direction Hydrological parameters (2012–current): groundwater and surface water elevation, depth and temperature, estimated streamflow Ecological parameters: vegetation surveyed in 1991/1992 and 2011/2012 † Land use/cover; disturbance; water abstraction * Hydrological functioning; biodiversity Baviaanskloof is affiliated with the Global Ecosystem Research Infrastructure (GERI) and the International Long-Term Ecological Research Network (ILTER). It is a LivingLands landscape and falls within the UNESCO Cape Floral Region Protected Areas World Heritage Site | 174–985 |
Cederberg SAEON Fynbos node | Cederberg Mountains, South Africa | CapeNature | Fynbos, Succulent Karoo; winter rainfall | Atmospheric parameters (2015–current): air temperature, relative humidity, wind speed and direction, precipitation, solar radiation, atmospheric pressure Ecological parameters: vegetation relevés surveyed in the 1980s, targeted floral species monitoring † Climate change; disturbance * Biodiversity | 1310–1576 |
Jonkershoek Valley (”Jonkershoek”) SAEON Fynbos node; proposed component of the Greater Cape Town EFTEON landscape | Boland Mountains, South Africa | CapeNature | Fynbos, Afrotemperate forest; winter rainfall | Six gauged research catchments (five afforested with Pinus radiata + one control) Atmospheric parameters (1925–2013/2014–current): atmospheric pressure, precipitation, air temperature, fog, vapour pressure, dew point temperature, relative humidity, wind speed and direction, net radiation, leaf wetness; (2019–current): CO2 and H2O flux, short- and long-wave incoming and outgoing radiation, albedo, soil heat flux Hydrological parameters (1935–1992; 2010–current): runoff amount, surface water level, quality and temperature; (2013–current): soil moisture Ecological parameters: plant species turnover † Climate change; land use/cover; disturbance; alien organisms * Hydrological functioning; biogeochemical cycling Jonkershoek is affiliated with the GERI, ILTER and the TRY plant trait and BioTIME global databases and falls within the UNESCO Cape Floral Region Protected Areas World Heritage Site | 239–1214 |
Table Mountain National Park (”Table Mountain”) SAEON Fynbos node; proposed component of the Greater Cape Town EFTEON landscape | Cape Peninsula Mountains, South Africa | South African National Parks | Fynbos, Afrotemperate forest; winter rainfall | Atmospheric parameters (1962–2013–current): precipitation, air temperature, fog, atmospheric pressure, net radiation, relative humidity, wind speed and direction, leaf wetness, and soil temperature Hydrological parameters (2013–current): soil moisture Ecological parameters: vegetation relevés surveyed in 1966, 1999 and 2010 † Climate change; land use/cover; alien organisms * Hydrological functioning; biodiversity Falls within the UNESCO Cape Floral Region Protected Areas World Heritage Site | 40–966 |
Great Escarpment | |||||
Cathedral Peak Research Catchments (”Cathedral Peak”) SAEON Grasslands–Wetlands–Forests node; proposed component of the Northern Maloti-Drakensberg EFTEON landscape | Maloti-Drakensberg, South Africa | Ezemvelo KwaZulu-Natal Wildlife (previously Natal Parks Board, Department of Forestry/Forestek/Council for Scientific and Industrial Research) | Grassland; summer rainfall | Fifteen gauged research catchments (13–190 ha); one excluded from fire; one historically afforested with Pinus patula and one historically grazed by cattle Atmospheric parameters (1949–1995; 2012–current): atmospheric pressure, precipitation, dew point, relative humidity, air temperature, vapour pressure deficit, suspended solids, wind speed and direction, net radiation; (2019–current): CO2 and H2O flux, short- and long-wave incoming and outgoing radiation, albedo, and soil heat flux Hydrological parameters (1948–1995; 2013–current): surface water level, quality, temperature and volume, soil moisture Ecological parameters: vegetation relevés surveyed in 1975 and 1985 and by SAEON in 2013 † Climate change; land use/cover; disturbance * Hydrological functioning; biodiversity; biogeochemical cycling ** Long-term automated weather station and fixed camera vegetation monitoring site on an alpine inselberg summit near Vulture’s Retreat Cathedral Peak is affiliated with the GERI and ILTER. The site falls within the UNESCO Maloti-Drakensberg Park World Heritage Site The Research Catchments are located within the Cathedral Peak Research Area which also hosts the multi-decadal Brotherton Fire Experiment (BFE), a Nutrient Network (NutNet) site as well as planned Soil Biodiversity Observation Network (Soil BON) and Mountain Invasion Research Network (MIREN) sites | 1820–2463 3010** |
Compassberg SAEON Arid Lands node | Sneeuberge, South Africa | Compassberg Protected Environment Group and SAEON | Nama-Karoo, Grassland; autumn rainfall | Atmospheric parameters (2016–current): precipitation, air temperature, relative humidity, wind speed and direction, net radiation, atmospheric pressure, leaf wetness, and soil temperature Ecological parameters: vegetation relevés surveyed in 2014 and 2016 † Climate change * Biodiversity | 1200–2502 |
Haenertsburg SAEON Ndlovu node | Limpopo Drakensberg (Wolkberg section), South Africa | Limpopo Department of Economic Development, Environment and Tourism | Grassland, Savanna, Afrotemperate forest; summer rainfall | Atmospheric parameters (2014–current): air temperature, relative humidity, wind speed and direction, precipitation, net radiation, atmospheric pressure, and fog Ecological parameters: vegetation relevés surveyed triennially 2007–current, targeted floral species monitoring, high-resolution aerial imagery † Climate change; land use/cover; disturbance * Biodiversity | 1350–1459 |
Mariepskop SAEON Ndlovu node | Mpumalanga Drakensberg, South Africa | Department of Forestry, Fisheries and the Environment/ Mpumalanga Tourism and Parks Agency | Grassland; summer rainfall | Atmospheric parameters (2000–current): air temperature, precipitation, fog Hydrological parameters (2019–current): water level, quality, temperature and volume Ecological parameters: vegetation relevés surveyed triennially 2018–current, high-resolution aerial imagery, fish composition (2012/2013, 2021) † Climate change; land use/cover; disturbance; water abstraction * Hydrological functioning; biodiversity Gazetted for inclusion in the Blyde River Canyon Nature Reserve | 710–1947 |
Mont-aux-Sources LTSER node Afromontane Research Unit, University of the Free State [99] | Maloti-Drakensberg, South Africa and Lesotho | Ezemvelo KwaZulu-Natal Wildlife and Ingonyama Trust (South Africa); Basutho Royal Houses (Lesotho) | Grassland; summer rainfall | ca. 1200 km2; establishment in progress; will include Global Observation Research Initiative in Alpine Environments (GLORIA) and Mountain Invasion Research Network (MIREN)/RangeX sites † Alien plants; climate change; land-use change; degradation; disturbance * Biodiversity; livelihoods The site falls partly within the UNESCO Maloti-Drakensberg Park World Heritage Site (Royal Natal section) | 1300–3282 |
Sani Pass (South Africa) and Kotisephola Pass (Lesotho) Stellenbosch University; University of Johannesburg; University of Pretoria [89,91] | Maloti-Drakensberg, South Africa and Lesotho | Ezemvelo KwaZulu-Natal Wildlife (South Africa); Lesotho Government and Basutho Royal House (Lesotho) | Grassland; summer rainfall | MIREN sites established in 2007 along steep elevational gradients. Additional MIREN sites to be added by the Afromontane Research Unit † Alien plants; disturbance * Biodiversity The MIREN sites fall partly within the UNESCO Maloti-Drakensberg Park World Heritage Site (Cobham section) | 1500–2874 2874–3200 |
References
- Kylander, M.E.; Holm, M.; Fitchett, J.; Grab, S.; Cortizas, A.M.; Norström, E.; Bindler, R. Late glacial (17,060–13,400 cal yr BP) sedimentary and paleoenvironmental evolution of the Sekhokong Range (Drakensberg), Southern Africa. PLoS ONE 2021, 16, e0246821. [Google Scholar] [CrossRef] [PubMed]
- Grab, S.W.; Knight, J. Landscapes and landforms of South Africa–an overview. In Landscapes and Landforms of South Africa. World Geomorphological Landscapes; Grab, S.W., Knight, J., Eds.; Springer: Cham, Switzerland, 2015; pp. 1–9. [Google Scholar]
- De Wit, M.J. The deeptime treasure chest of the Makhonjwa Mountains. S. Afr. J. Sci. 2010, 106, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Clark, V.R.; Barker, N.P.; Mucina, L. The Great Escarpment of southern Africa: A new frontier for biodiversity exploration. Biodivers. Conserv. 2011, 20, 2543–2561. [Google Scholar] [CrossRef]
- Stewart, B.A.; Mitchell, P.J. Late Quaternary palaeoclimates and human-environment dynamics of the Maloti-Drakensberg region, southern Africa. Quat. Sci. Rev. 2018, 196, 1–20. [Google Scholar] [CrossRef]
- McCarthy, T.; Rubridge, B. The Story of Earth and Life, 1st ed.; Struik Publishers: Cape Town, South Africa, 2005; pp. 1–360. [Google Scholar]
- Knight, J.; Grab, S.W. The Drakensberg escarpment: Mountain processes at the edge. In Landscapes and Landforms of South Africa. World Geomorphological Landscapes; Grab, S.W., Knight, J., Eds.; Springer: Cham, Switzerland, 2015; pp. 47–55. [Google Scholar]
- Shone, R.W.; Booth, P.W.K. The Cape Basin, South Africa: A review. J. Afr. Earth Sci. 2005, 43, 196–210. [Google Scholar] [CrossRef]
- Blewett, S.C.J.; Phillips, D. An overview of Cape Fold Belt geochronology: Implications for sediment provenance and the timing of orogenesis. In Origin and Evolution of the Cape Mountains and Karoo Basin; Linol, B., de Wit, M.J., Eds.; Springer: Switzerland, 2016; pp. 44–55. [Google Scholar]
- Global Distribution of GLORIA Sites. Available online: https://www.gloria.ac.at/network/global-distribution/ (accessed on 3 May 2021).
- IPCC. Summary for policymakers. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1–32. [Google Scholar]
- Bentley, L.K.; Robertson, M.P.; Barker, N.P. Range contraction to a higher elevation: The likely future of the montane vegetation in South Africa and Lesotho. Biodivers. Conserv. 2019, 28, 131–153. [Google Scholar] [CrossRef] [Green Version]
- Perrigo, A.; Hoorn, C.; Antonelli, A. Why mountains matter for biodiversity. J. Biogeogr. 2019, 47, 315–325. [Google Scholar] [CrossRef] [Green Version]
- Nahamo, L.; Matchaya, G.; Mabhaudhi, T.; Nhlengethwa, S.; Nhemachena, C.; Mpandeli, S. Cereal production trends under climate change: Impacts and adaptation strategies in southern Africa. Agriculture 2019, 9, 30. [Google Scholar] [CrossRef] [Green Version]
- Cattivelli, V. Climate adaptation strategies and associated governance structures in mountain areas. The case of the alpine areas. Sustainability 2021, 13, 2810. [Google Scholar] [CrossRef]
- Jiménez Hernández, A. Ecosystem-Based Adaptation Handbook; International Union for the Conservation of Nature: Amsterdam, The Netherlands, 2016; pp. 1–33. [Google Scholar]
- Adelabu, D.B.; Clark, V.R.; Bredenhand, E. Potential for sustainable mountain farming: Challenges and prospects for sustainable smallholder farming in the Maloti-Drakensberg Mountains. Mt. Res. Dev. 2020, 40, A1–A11. [Google Scholar] [CrossRef]
- Nsengiyumva, P. African mountains in a changing climate: Trends, impacts, and adaptation solutions. Mt. Res. Dev. 2019, 39, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Körner, C. Mountain biodiversity, its causes and function. Ambio 2004, 33, 11–17. [Google Scholar] [CrossRef]
- Carbutt, C. The Drakensberg Mountain Centre: A necessary revision of southern Africa’s high-elevation centre of plant endemism. S. Afr. J. Bot. 2019, 124, 508–529. [Google Scholar] [CrossRef]
- Carbutt, C. The imperiled alpine grasslands of the Afrotropic realm. In Imperiled: The Encyclopedia of Conservation. Reference Module in Earth Systems and Environmental Sciences; Goldstein, M.I., DellaSala, D.A., Eds.; Elsevier Inc: Amsterdam, The Netherlands, 2020; pp. 1–13. [Google Scholar]
- Wehrli, A. Why mountains matter for sustainable development. Mt. Res. Dev. 2014, 34, 405–409. [Google Scholar] [CrossRef] [Green Version]
- Beniston, M. Climatic change in mountain regions: A review of possible impacts. In Climate Variability and Change in High Elevation Regions: Past, Present & Future; Diaz, H.F., Ed.; Springer: Dordrecht, The Netherlands, 2003; pp. 5–31. [Google Scholar]
- Payne, D.; Spehn, E.M.; Snethlage, M.; Fischer, M. Opportunities for research on mountain biodiversity under global change. Curr. Opin. Environ. Sustain. 2017, 29, 40–47. [Google Scholar] [CrossRef]
- Knapp, A.K.; Smith, M.D.; Hobbie, S.E.; Collins, S.L.; Fahey, T.J.; Hansen, G.J.A.; Landis, D.A.; La Pierre, K.J.; Melillo, J.M.; Seastedt, T.R.; et al. Past, present and future roles of long-term experiments in the LTER network. BioScience 2012, 62, 377–389. [Google Scholar] [CrossRef] [Green Version]
- Lindenmayer, D.B.; Likens, G.E.; Andersen, A.; Bowman, D.; Bull, C.M.; Burns, E.; Dickman, C.R.; Hoffmann, A.A.; Keith, D.A.; Liddell, M.J.; et al. Value of long-term ecological studies. Austral Ecol. 2012, 37, 745–757. [Google Scholar] [CrossRef]
- Kueffer, C.; Daehler, C.; Dietz, H.; McDougall, K.; Parks, C.; Pauchard, A.; Rew, L. The Mountain Invasion Research Network (MIREN). Linking local and global scales for addressing an ecological consequence of global change. GAIA 2014, 23, 263–265. [Google Scholar] [CrossRef] [Green Version]
- Mirtl, M.; Borer, E.T.; Djukic, I.; Forsius, M.; Haubold, H.; Hugo, W.; Jourdan, J.; Lindenmayer, D.; McDowell, W.H.; Muraoka, H.; et al. Genesis, goals and achievements of Long-Term Ecological Research at the global scale: A critical review of LTER and future directions. Sci. Total Environ. 2018, 626, 1439–1462. [Google Scholar] [CrossRef] [PubMed]
- Hobbie, J.E.; Carpenter, S.R.; Grimm, N.B.; Gosz, J.R.; Seastedt, T.R. The US Long Term Ecological Research Programme. BioScience 2003, 53, 21–32. [Google Scholar] [CrossRef] [Green Version]
- Pauw, J.C.; Henschel, J.R.; Sitoe, A.A.; Chimphamba, J.B.; Kanyanga, J.K.; Ringrose, S. Ecological Networking in Southern Africa: The ELTOSA Experience. In Proceedings of the AIDCCD Active Exchange of Experience on Indicators and Development of Perspectives in the Context of UNCCD, Role of Information Circulation Systems in Scientific and Practical Approaches to Combat Desertification, Windhoek and Ondangwa, Namibia, 2–7 April 2006; pp. 70–80. [Google Scholar]
- Dirnböck, T.; Haase, P.; Mirtl, M.; Pauw, J.; Templer, P.H. Contemporary International Long-Term Ecological Research (ILTER)–from biogeosciences to socio-ecology and biodiversity research. Reg. Environ. Chang. 2019, 19, 309–311. [Google Scholar] [CrossRef]
- Parr, T.W.; Sier, A.R.J.; Battarbee, R.W.; Mackay, A.; Burgess, J. Detecting environmental change: Science and society–perspectives on long-term research and monitoring in the 21st century. Sci. Total Environ. 2003, 310, 1–8. [Google Scholar] [CrossRef]
- Haase, P.; Tonkin, J.D.; Stoll, S.; Burkhard, B.; Frenzel, M.; Geijzendorffer, I.R.; Häuser, C.; Klotz, S.; Kühn, I.; McDowell, W.H.; et al. The next generation of site-based long-term ecological monitoring: Linking essential biodiversity variables and ecosystem integrity. Sci. Total Environ. 2018, 613, 1376–1384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dynamic Ecological Information Management System–Site and Data Registry. Available online: https://www.deims.org/search/sites (accessed on 13 May 2021).
- Redman, C.L.; Grove, J.M.; Kuby, L.H. Integrating social science into the Long-Term Ecological Research (LTER) Network: Social dimensions of ecological change and ecological dimensions of social change. Ecosystems 2004, 7, 161–171. [Google Scholar] [CrossRef]
- Haber, H.; Winiwarter, V.; Andersson, K.; Ayres, R.U.; Boone, C.; Castillo, A.; Cunfer, G.; Fischer-Kowalski, M.; Freudenburg, W.R.; Furman, E.; et al. From LTER to LTSER: Conceptualizing the socio-economic dimension of Long-Term Socio-Ecological Research. Ecol. Soc. 2006, 11, 13. [Google Scholar] [CrossRef] [Green Version]
- Dick, J.; Orenstein, D.E.; Holzer, J.M.; Wohner, C.; Achard, A.-L.; Andrews, C.; Avriel-Avni, N.; Beja, P.; Blond, N.; Cabello, J.; et al. What is socio-ecological research delivering? A literature survey across 25 international LTSER platforms. Sci. Total Environ. 2018, 622, 1225–1240. [Google Scholar] [CrossRef] [PubMed]
- Körner, C.; Urbach, D.; Paulsen, J. Mountain definitions and their consequences. Alp. Bot. 2021. [Google Scholar] [CrossRef]
- Körner, C.; Paulsen, J.; Spehn, E.M. A definition of mountains and their bioclimatic belts for global comparison of biodiversity data. Alp. Bot. 2011, 121, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Taylor, S.J.; Ferguson, J.H.W.; Engelbrecht, F.A.; Clark, V.R.; Van Rensburg, S.; Barker, N. The Drakensberg Escarpment as the great supplier of water to South Africa. In Mountain Ice and Water: Investigations of the Hydrologic Cycle in Alpine Environments; Greenwood, G.B., Shroder, J.F., Jr., Eds.; Elsevier: Cambridge, UK, 2016; pp. 1–46. [Google Scholar]
- Clark, V.R.; Vidal, J.D.; Grundy, I.M.; Fakarayi, T.; Childes, S.L.; Barker, N.P.; Linder, H.P. Bridging the divide between intuitive social-ecological value and sustainability in the Manica Highlands of southern Africa (Zimbabwe-Mozambique). Ecosyst. Serv. 2019, 39, 100999. [Google Scholar] [CrossRef]
- Johannsen, I.M.; Hengst, J.C.; Goll, A.; Hӧllermann, B.; Diekkrüge, B. Future of water supply and demand in the Middle Drâa Valley, Morocco, under climate and land use change. Water 2016, 8, 313. [Google Scholar] [CrossRef] [Green Version]
- Conley, A.H.; Midgley, D.C. National water management in the Republic of South Africa–towards a consultative partnership with diverse users in a semi-arid country. J. Hydrol. 1988, 100, 473–487. [Google Scholar] [CrossRef]
- Bennett, B.; Kruger, F. Forestry and Water Conservation in South Africa: History, Science and Policy; Australian National University Press: Canberra, Australia, 2015; pp. 1–269. [Google Scholar]
- Hewlett, J.D.; Pienaar, L. Design and Analysis of the Catchment Experiment. In Proceedings of the a Symposium on Use of Small Watersheds in Determining Effects of Forest Land Use on Water Quality; White, E.H., Ed.; University of Kentucky: Lexington, KY, USA, 1973; pp. 88–106. [Google Scholar]
- Slingsby, J.A.; de Buys, A.; Simmers, A.D.A.; Prinsloo, E.; Forsyth, G.G.; Glenday, J.; Allsopp, N. Jonkershoek: Africa’s oldest catchment experiment–80 years and counting. Hydrol. Process. 2021, 35, e14101. [Google Scholar] [CrossRef]
- Parry, M.S. The softwood plantations of the East Transvaal and Swaziland. East Afr. Agric. J. 1952, 17, 188–200. [Google Scholar] [CrossRef]
- Showers, K. Prehistory of Southern African forestry: From vegetable garden to tree plantation. Environ. Hist. 2010, 16, 295–322. [Google Scholar] [CrossRef] [Green Version]
- Kruger, F.J.; Bennett, B.M. Wood and water: An historical assessment of South Africa's past and present forestry policies as they relate to water conservation. Trans. R. Soc. S. Afr. 2013, 68, 163–174. [Google Scholar] [CrossRef]
- Wicht, C.L. Hydrological research in South African forestry. J. S. Afr. For. Assoc. 1948, 16, 4–21. [Google Scholar] [CrossRef]
- Wicht, C.L. The validity of conclusions from South African multiple watershed experiments. In Proceedings of the International Symposium on Forest Hydrology, Penn State University, Pennsylvania, USA, 29 August–10 September 1965; Lull, W.E., Sopper, W.H., Eds.; Pergamon Press: Oxford, UK, 1967; pp. 749–760. [Google Scholar]
- Scott, D.F.; Prinsloo, F.W.; Moses, G.; Mehlomakulu, M.; Simmers, A.D.A. A Re-analysis of the South African Catchment Afforestation Experimental Data, Water Research Commission Report No. 810/1/00; Water Research Commission: Pretoria, South Africa, 2000; pp. 1–138. [Google Scholar]
- Van Wyk, D.B. Influences of prescribed burning on nutrient budgets of mountain fynbos catchments in the S.W. Cape, Republic of South Africa. In Proceedings of the Symposium on Environmental Consequences of Fire and Fuel Management in Mediterranean-type Ecosystems, San Diego, CA, USA, June 1981; USDA Forest Service General Technical Report PSW-58. U.S. Department of Agriculture: Berkeley, CA, USA, 1982. [Google Scholar]
- Scott, D.F.; Van Wyk, D.B. The effects of wildfire on soil wettability and hydrological behaviour of an afforested catchment. J. Hydrol. 1990, 121, 239–256. [Google Scholar] [CrossRef]
- Scott, D.F. The hydrological effects of fire in South African mountain catchments. J. Hydrol. 1993, 150, 409–432. [Google Scholar] [CrossRef] [Green Version]
- Nänni, U.W. Forest hydrological research at the Cathedral Peak Research Station. S. Afr. For. J. 1956, 27, 2–35. [Google Scholar] [CrossRef]
- Nänni, U.W. The effect of afforestation on streamflow at Cathedral Peak. S. Afr. For. J. 1970, 74, 6–12. [Google Scholar]
- Bosch, J.M. Treatment effects on annual and dry period streamflow at Cathedral Peak. S. Afr. For. J. 1979, 108, 29–38. [Google Scholar] [CrossRef]
- Bosch, J.M.; Hewlett, J.D. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J. Hydrol. 1982, 55, 3–23. [Google Scholar] [CrossRef]
- Van Wyk, D.B. The effects of catchment management on sediment and nutrient exports in the Natal Drakensberg. In Proceedings of the Second South African National Hydrology Symposium, Pietermaritzburg, South Africa, September 1985; Schulze, R.E., Ed.; Agricultural Catchments Research Unit Report No. 22, 1986. pp. 266–274. [Google Scholar]
- Stuart-Hill, S.I.; Schulze, R.E. Does South Africa’s water law and policy allow for climate change adaptation? Clim. Dev. 2010, 2, 128–144. [Google Scholar] [CrossRef]
- Toucher, M.L.; Clulow, A.; Van Rensburg, S.J.; Morris, F.; Gray, B.; Majozi, S.; Everson, C.; Jewitt, G.P.W.; Taylor, M.A.; Mfeka, S.; et al. Establishment of and Demonstration of the Potential of the Cathedral Peak Research Catchments as a Living Laboratory, Water Research Commission Report No. 2236/1/16; Water Research Commission: Gezina, South Africa, 2016; pp. 1–150. [Google Scholar]
- Körner, C. Alpine Treelines: Functional Ecology of the Global High Elevation Tree Limits, 1st ed.; Springer: Basel, Switzerland, 2012; pp. 1–220. [Google Scholar]
- Bader, M.Y.; Llambí, L.D.; Case, B.S.; Buckley, H.L.; Toivonen, J.M.; Camarero, J.J.; Cairns, D.M.; Brown, C.D.; Wiegand, T.; Resler, L.M. A global framework for linking alpine-treeline ecotone patterns to underlying processes. Ecography 2021, 44, 265–292. [Google Scholar] [CrossRef]
- Bond, W.J. Open Ecosystems: Ecology and Evolution Beyond the Forest Edge, 1st ed.; Oxford University Press: Oxford, UK, 2019; pp. 1–192. [Google Scholar]
- Uys, R.G.; Bond, W.J.; Everson, T.M. The effect of different fire regimes on plant diversity in southern African grasslands. Biol. Conserv. 2004, 118, 489–499. [Google Scholar] [CrossRef]
- Everson, T.M.; Everson, C.S.; Morris, C.D. How stable is the tuft structure of a mesic Drakensberg grassland under various burning regimes? Afr. J. Range Forage Sci. 2021, 38, 14–22. [Google Scholar] [CrossRef]
- Nänni, U.W. Veld management in the Natal Drakensberg. S. Afr. For. J. 1969, 68, 5–15. [Google Scholar] [CrossRef]
- Morris, C.D.; Everson, C.S.; Everson, T.M.; Gordijn, P.J. Frequent burning maintained a stable grassland over four decades in the Drakensberg, South Africa. Afr. J. Range Forage Sci. 2021, 38, 39–52. [Google Scholar] [CrossRef]
- Gordijn, P.J.; O’Connor, T.G. Multidecadal effects of fire in a grassland biodiversity hotspot: Does pyrodiversity enhance plant diversity? Ecol. Appl. 2021, e02391. [Google Scholar]
- Gordijn, P.; Krüger, S. Brotherton Burning Trial Surveillance Plan; Ezemvelo KZN Wildlife and South African Environmental Observation Network: Pietermaritzburg, South Africa, 2019; pp. 1–21. [Google Scholar]
- Morris, C.D.; Dicks, H.M.; Everson, T.M.; Everson, C.S. Brotherton Burning Trial: Effect of Treatment on Species Composition and Diversity; Range and Forage Institute, Agricultural Research Council: Pietermaritzburg, South Africa, 1999. [Google Scholar]
- Short, A.D. Guest editorial–special feature: Revisiting the Brotherton burning trial. Afr. J. Range Forage Sci. 2007, 24, iii–v. [Google Scholar] [CrossRef]
- Manson, A.D.; Jewitt, D.; Short, A.D. Effects of season and frequency of burning on soils and landscape functioning in a moist montane grassland. Afr. J. Range Forage Sci. 2007, 24, 9–18. [Google Scholar] [CrossRef]
- Uys, C.; Hamer, M. The effect of long-term fire treatments on invertebrates: Results from experimental plots at Cathedral Peak, South Africa. Afr. J. Range Forage Sci. 2007, 24, 1–7. [Google Scholar] [CrossRef]
- te Beest, M.; Kleinjan, A.; Tuijnman, V.; Findlay, N.; Mvelase, T.; le Roux, E.; Tedder, M.; Gordijn, P.; van Rensburg, S.J. Grass functional trait responses to experimental warming and fire in Afromontane grasslands. Afr. J. Range Forage Sci. 2021, 38, 88–101. [Google Scholar] [CrossRef]
- Tainton, N.M. Veld Management in South Africa, 1st ed.; University of Natal Press: Pietermaritzburg, South Africa, 1999; pp. 1–472. [Google Scholar]
- Everson, C.S.; Everson, T.M.; Morris, C.D. The population dynamics of four grass species in relation to burning in the KwaZulu-Natal Drakensberg. Afr. J. Range Forage Sci. 2021, 38, 23–38. [Google Scholar] [CrossRef]
- Ott, J.P.; Klimešová, J.; Hartnett, D.C. The ecology and significance of below-ground bud banks in plants. Ann. Bot. 2019, 123, 1099–1118. [Google Scholar] [CrossRef] [PubMed]
- Krüger, S.C. The challenge of wilderness fire stewardship in a time of change. A South African perspective. Int. J. Wilderness 2006, 12, 44–47. [Google Scholar]
- SANBI. Grazing and Burning Guidelines: Managing Grasslands for Biodiversity and Livestock Production; Lechmere-Oertel, R.G., Ed.; South African National Biodiversity Institute: Pretoria, South Africa, 2014; pp. 1–42. [Google Scholar]
- Henschel, J.R.; Pauw, J.C. Environmental Observatories: LTER á-la-Africa. In Rebirth of Science in Africa: A Shared Vision for Life and Environmental Sciences; Baijnath, H., Singh, Y., Eds.; Umdaus Press: Pretoria, South Africa, 2002; pp. 149–159. [Google Scholar]
- Henschel, J.R.; Pauw, J.C.; Banyikwa, F.; Brito, R.; Chabwela, H.; Palmer, T.; Ringrose, S.; Santos, L.; Sitoe, A.; Van Jaarsveld, A. Developing the Environmental Long-term Observatories Network of Southern Africa (ELTOSA). S. Afr. J. Sci. 2003, 99, 100–108. [Google Scholar]
- Van Jaarsveld, A.S.; Pauw, J.C.; Mundree, S.; Mecenero, S.; Coetzee, B.W.T.; Alard, G.F. South African Environmental Observation Network: Vision, design and status. S. Afr. J. Sci. 2007, 103, 289–294. [Google Scholar]
- Van Rensburg, S.J. (South African Environmental Observation Network, Pietermaritzburg, South Africa). Personal communication. 2019. [Google Scholar]
- Mecenero, S. An inventory of long-term environmental datasets in South Africa. Grassroots 2005, 5, 18–19. [Google Scholar]
- Simberloff, D. Effects and distribution of introduced species. In Encyclopedia of Biodiversity, 3rd ed.; Levin, S.A., Ed.; Academic Press: San Diego, CA, USA, 2001; pp. 517–529. [Google Scholar]
- Richardson, D.M.; van Wilgen, B.W. Invasive alien plants in South Africa: How well do we understand the ecological impacts? S. Afr. J. Sci. 2004, 100, 45–52. [Google Scholar]
- Kalwij, J.M.; Robertson, M.P.; Van Rensburg, B.J. Human activity facilitates altitudinal expansion of exotic plants along a road in montane grassland, South Africa. Appl. Veg. Sci. 2008, 11, 491–498. [Google Scholar] [CrossRef] [Green Version]
- Carbutt, C. The emerging invasive alien plants of the Drakensberg Alpine Centre, southern Africa. Bothalia 2012, 42, 71–85. [Google Scholar] [CrossRef] [Green Version]
- Kalwij, J.M.; Robertson, M.P.; Van Rensburg, B.J. Annual monitoring reveals rapid upward movement of exotic plants in a montane ecosystem. Biol. Invasions 2015, 17, 3517–3529. [Google Scholar] [CrossRef] [Green Version]
- Popp, M.R.; Kalwij, J.M. Abiotic conditions shape the relationship between indigenous and exotic species richness in a montane biodiversity hotspot. Plant Ecol. 2021, 213, 757–767. [Google Scholar]
- Pauchard, A.; Kueffer, C.; Dietz, H.; Daehler, C.C.; Alexander, J.; Edwards, P.J.; Arévalo, J.R.; Cavieres, L.A.; Guisan, A.; Haider, S.; et al. Ain’t no mountain high enough: Plant invasions reaching new elevations. Front. Ecol. Environ. 2009, 7, 479–486. [Google Scholar] [CrossRef] [Green Version]
- Pollnac, F.W.; Rew, L.J. Life after establishment: Factors structuring the success of a mountain invader away from disturbed roadsides. Biol. Invasions 2014, 16, 1689–1698. [Google Scholar] [CrossRef]
- Dietz, H.; Kueffer, C.; Parks, C.G. MIREN: A new research network concerned with plant invasion into mountain areas. Mt. Res. Dev. 2006, 26, 80–81. [Google Scholar] [CrossRef]
- Haider, S.; Kueffer, C.; Bruelheide, H.; Seipel, T.; Alexander, J.M.; Rew, L.J.; Arévalo, J.R.; Cavieres, L.A.; McDougall, K.L.; Milbau, A.; et al. Mountain roads and non-native species modify elevational patterns of plant diversity. Glob. Ecol. Biogeogr. 2018, 27, 667–678. [Google Scholar] [CrossRef] [Green Version]
- Mountain Invasion Research Network–RangeX. Available online: https://www.mountaininvasions.org/rangex (accessed on 30 July 2021).
- Mountain Invasion Research Network–Sites. Available online: https://www.mountaininvasions.org/sites-1 (accessed on 25 May 2021).
- Gwate, O.; Clark, V.R. (Afromontane Research Unit, University of the Free State, Free State, South Africa). Personal communication. 2021. [Google Scholar]
- Kalwij, J.M.; Steyn, C.; Le Roux, P.C. Repeated monitoring as an effective early detection means: First records of naturalised Solidago gigantea Aiton (Asteraceae) in southern Africa. S. Afr. J. Bot. 2014, 93, 204–206. [Google Scholar] [CrossRef] [Green Version]
- Alexander, J.M.; Diez, J.M.; Levine, J.M. Novel competitors shape species’ responses to climate change. Nature 2015, 525, 515–518. [Google Scholar] [CrossRef]
- Alexander, J.M.; Diez, J.M.; Hart, S.P.; Levine, J.M. When climate reshuffles competitors: A call for experimental macroecology. Trends Ecol. Evol. 2016, 31, 831–841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borer, E.T.; Grace, J.B.; Harpole, W.S.; MacDougall, A.S.; Seabloom, E.W. A decade of insights into grassland ecosystem responses to global environmental change. Nature Ecol. Evol. 2017, 1, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Stokstad, E. Open-source ecology takes root across the world. Science 2011, 334, 308–309. [Google Scholar] [CrossRef]
- Borer, E.T.; Harpole, W.S.; Alder, P.B.; Lind, E.M.; Orrock, J.L.; Seabloom, E.W.; Smith, M.D. Finding generality in ecology: A model for globally distributed experiments. Methods Ecol. Evol. 2014, 5, 65–73. [Google Scholar] [CrossRef]
- Nutrient Network: A Global Research Cooperative–Participating Sites. Available online: https://www.nutnet.org/field_sites (accessed on 9 June 2021).
- Willig, M.R. Biodiversity and productivity. Science 2011, 333, 1709–1710. [Google Scholar] [CrossRef]
- Wragg, P.D. Multiple nutrients control threatened grassland vegetation in eastern South Africa. S. Afr. J. Bot. 2017, 112, 225–236. [Google Scholar] [CrossRef]
- Hiltner, U.; Brӓuning, A.; Gebrekirstos, A.; Huth, A.; Fischer, R. Impacts of precipitation variability on the dynamics of a dry tropical montane forest. Ecol. Model. 2016, 320, 92–101. [Google Scholar] [CrossRef]
- Ponce-Reyes, R.; Plumptre, A.J.; Segan, D.; Ayebare, S.; Fuller, R.A.; Hugh, P.; Possingham, H.P.; Watson, J.E.M. Forecasting ecosystem responses to climate change across Africa’s Albertine Rift. Biol. Conserv. 2017, 209, 464–472. [Google Scholar] [CrossRef]
- Tilman, D.; Reich, P.B.; Knops, J.; Wedin, D.; Mielke, T.; Lehman, C. Diversity and productivity in a long-term grassland experiment. Science 2001, 294, 843–845. [Google Scholar] [CrossRef] [Green Version]
- Grace, J.B.; Anderson, T.M.; Smith, M.D.; Seabloom, E.; Andelman, S.J.; Meche, G.; Weiher, E.; Allain, L.K.; Jutila, H.; Sankaran, M.; et al. Does species diversity limit productivity in natural grassland communities? Ecol. Lett. 2007, 10, 680–689. [Google Scholar] [CrossRef] [Green Version]
- Carbutt, C.; Edwards, T.J.; Fynn, W.R.S.; Beckett, R.P. Evidence for temperature limitation of nitrogen mineralisation in the Drakensberg Alpine Centre. S. Afr. J. Bot. 2013, 88, 447–454. [Google Scholar] [CrossRef] [Green Version]
- Carbutt, C.; Edwards, T.J. Plant-soil interactions in lower-upper montane systems and their implications in a warming world: A case study from the Maloti-Drakensberg Park, southern Africa. Biodiversity 2015, 16, 262–277. [Google Scholar] [CrossRef]
- Mompati, M.K. Atmospheric Deposition of Sulphur and Nitrogen over Eastern South Africa. Master’s Thesis, North-West University, Potchefstroom, South Africa, 2019. [Google Scholar]
- Körner, C. Alpine Plant Life: Functional Plant Ecology of High Mountain Systems, 2nd ed.; Springer: Heidelberg, Germany, 2003; pp. 1–349. [Google Scholar]
- Testolin, R.; Attorre, F.; Jiménez-Alfaro, B. Global distribution and bioclimatic characterization of alpine biomes. Ecography 2020, 43, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Gottfried, M.; Pauli, H.; Futschik, A.; Akhalkatsi, M.; Barančok, P.; Benito, A.J.L.; Coldea, G.; Dick, J.; Erschbamer, B. Continent-wide response of mountain vegetation to climate change. Nat. Clim. Change 2012, 2, 111–115. [Google Scholar] [CrossRef]
- Pauli, H.; Gottfried, M.; Dullinger, S.; Abdaladze, O.; Akhalkatsi, M.; Benito, A.; José, L.; Coldea, G.; Dick, J.; Erschbamer, B. Recent Plant Diversity Changes on Europe's Mountain Summits. Science 2012, 336, 353–355. [Google Scholar] [CrossRef] [Green Version]
- Grabherr, G.; Gottfried, M.; Pauli, H. GLORIA: A Global Observation Research Initiative in Alpine Environments. Mt. Res. Dev. 2000, 20, 190–191. [Google Scholar] [CrossRef]
- Pauli, H.; Gottfried, M.; Lamprecht, A.; Niessner, S.; Rumpf, S.; Winkler, M.; Steinbauer, K.; Grabherr, G. ; coordinating authors & editors. The GLORIA Field Manual–Standard Multi-Summit Approach, Supplementary Methods and Extra Approaches, 5th ed.; GLORIA-Coordination, Austrian Academy of Sciences and University of Natural Resources and Life Sciences: Vienna, Austria, 2015; pp. 1–137. [Google Scholar]
- Wohner, C.; Peterseil, J.; Poursanidis, D.; Kliment, T.; Wilson, M.; Mirtl, M.; Chrysoulakis, N. DEIMS-SDR—A web portal to document research sites and their associated data. Ecol. Inform. 2019, 51, 15–24. [Google Scholar] [CrossRef]
- Pauli, H. (Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences, Vienna, Austria). Personal communication. 2021. [Google Scholar]
- Carbutt, C.; Edwards, T.J. The flora of the Drakensberg Alpine Centre. Edinb. J. Bot. 2004, 60, 581–607. [Google Scholar] [CrossRef]
- Verrall, B.; Pickering, C.M. Alpine vegetation in the context of climate change: A global review of past research and future directions. Sci. Total Environ. 2020, 748, 141344. [Google Scholar] [CrossRef] [PubMed]
- Testolin, R.; Carmona, C.P.; Attorre, F.; Borchardt, P.; Bruelheide, H.; Dolezal, J.; Finckh, M.; Haider, S.; Hemp, A.; Jandt, U.; et al. Global functional variation in alpine vegetation. J. Veg. Sci. 2021, 32, e13000. [Google Scholar] [CrossRef]
- Testolin, R.; Attorre, F.; Borchardt, P.; Brand, R.F.; Bruelheide, H.; Chytrý, M.; De Sanctis, M.; Dolezal, J.; Finckh, M.; Haider, S.; et al. Global patterns and drivers of alpine plant species richness. Glob. Ecol. Biogeogr. 2021, 30, 1218–1231. [Google Scholar] [CrossRef]
- Brand, R.F.; Scott-Shaw, C.R.; O’Connor, T.G. The alpine flora on inselberg summits in the Maloti-Drakensberg Park, KwaZulu-Natal, South Africa. Bothalia 2019, 49, a2386. [Google Scholar] [CrossRef]
- Bardgett, R.D.; van der Putten, W.H. Belowground diversity and ecosystem functioning. Nature 2014, 515, 505–511. [Google Scholar] [CrossRef]
- Cameron, E.K.; Martins, I.S.; Lavelle, P.; Mathieu, J.; Tedersoo, L.; Gottschall, F.; Guerra, C.A.; Hines, J.; Patoine, G.; Siebert, J.; et al. Global gaps in soil biodiversity data. Nature Ecol. Evol. 2018, 2, 1042–1043. [Google Scholar] [CrossRef]
- Guerra, C.A.; Heintz-Buschart, A.; Sikorski, J.; Chatzinotas, A.; Guerrero-Ramírez, N.; Cesarz, S.; Beaumelle, L.; Rillig, M.C.; Maestre, F.T.; Delgado-Baquerizo, M.; et al. Blind spots in global soil biodiversity and ecosystem function research. Nat. Commun. 2020, 11, 3870. [Google Scholar] [CrossRef]
- Soil Biodiversity Observation Network. Available online: https://www.geobon.org/bons/thematic-bon/soil-bon/ (accessed on 30 July 2021).
- Seymour, C.L.; Gillson, L.; Child, M.F.; Tolley, K.A.; Curie, J.C.; da Silva, J.M.; Alexander, G.J.; Anderson, P.; Downs, C.T.; Egoh, B.N.; et al. Horizon scanning for South African biodiversity: A need for social engagement as well as science. Ambio 2019, 49, 1211–1221. [Google Scholar] [CrossRef]
- Grumbine, R.E.; Xu, J. Mountain futures: Pursuing innovative adaptations in coupled social-ecological systems. Front. Ecol. Environ. 2021. [Google Scholar] [CrossRef]
- Martín-López, B.; Leister, I.; Cruz, P.L.; Palomo, I.; Grêt-Regamey, A.; Harrison, P.A.; Lavorel, S.; Locatelli, B.; Luque, S.; Walz, A. Nature’s contributions to people in mountains: A review. PLoS ONE 2019, 14, e0217847. [Google Scholar] [CrossRef] [Green Version]
- Schirpke, U.; Wang, G.; Padoa-Schioppa, E. Editorial: Mountain landscapes: Protected areas, ecosystem services, and future challenges. Ecosyst. Serv. 2021, 49, 101302. [Google Scholar] [CrossRef]
- Flint, C.G. Framing the human dimensions of mountain systems: Integrating social science paradigms for a global network of mountain observatories. Mt. Res. Dev. 2016, 36, 528–536. [Google Scholar] [CrossRef] [Green Version]
- Makino, Y.; Manuelli, S.; Hook, L. Accelerating the movement for mountain peoples and policies. Science 2019, 365, 1084–1086. [Google Scholar] [CrossRef]
- Everson, T.M.; Everson, C.S.; Zuma, K.D. Community Based Research on the Influence of Rehabilitation Techniques on the Management of Degraded Catchments, Water Research Commission Report 1316/1/0797; Water Research Commission: Pretoria, South Africa, 2007; pp. 1–97. [Google Scholar]
- Mthembu, B.E.; Everson, T.M.; Everson, C.S. Intercropping for enhancement and provisioning of ecosystem services in smallholder, rural farming systems in KwaZulu-Natal Province, South Africa: A review. J. Crop Improv. 2019, 33, 145–176. [Google Scholar] [CrossRef]
- Feig, G. The Expanded Freshwater and Terrestrial Environmental Observation Network (EFTEON). Clean Air J. 2018, 28, 27. [Google Scholar] [CrossRef]
- Asmal, O.E. Land Degradation in the Cathedral Peak Area of the Natal Drakensberg: 1945–1992. Master’sThesis, University of Cape Town, Cape Town, South Africa, 1995. [Google Scholar]
- Peden, M.I. The Impact of Communal Land-use on the Biodiversity of a Conserved Grassland at Cathedral Peak, uKhahlamba-Drakensberg Park, South Africa. Master of Science Thesis, University of KwaZulu-Natal, Pietermaritzburg, South Africa, 2004. [Google Scholar]
- De Villiers, A.M. The early history of Cathedral Peak Research Station. S. Afr. For. J. 1969, 72, 12–16. [Google Scholar] [CrossRef]
- South African Environmental Observation Network–Crucial Milestone for Ecosystems Research in South Africa. Available online: http://www.saeon.ac.za/ (accessed on 1 June 2021).
- Unganai, L.S. Historic and future climatic change in Zimbabwe. Clim. Res. 1996, 6, 137–145. [Google Scholar] [CrossRef]
- Mason, S.J.; Jury, M.R. Climatic change and variability over Southern Africa: A reflection on underlying processes. Prog. Phys. Geogr. 1997, 21, 23–50. [Google Scholar] [CrossRef]
- Fanta, B.; Zaake, B.T.; Kachroo, R.K. A study of variability of annual river flow of the southern Africa region. Hydrolog. Sci. J. 2001, 46, 513–524. [Google Scholar] [CrossRef]
- New, M.; Hewitson, B.; Stephenson, D.B.; Tsiga, A.; Kruger, A.; Manhique, A.; Gomez, B.; Coelho, C.A.S.; Masisi, D.N.; Kululanga, E.; et al. Evidence of trends in daily climate extremes over southern and west Africa. J. Geophys. Res. 2006, 111, 1–11. [Google Scholar] [CrossRef]
- Mazvimavi, D. Investigating changes over time of annual rainfall in Zimbabwe. Hydrol. Earth Syst. Sci. 2010, 14, 2671–2679. [Google Scholar] [CrossRef] [Green Version]
- Nel, W.; Sumner, P.D. Rainfall and temperature attributes on the Lesotho-Drakensberg escarpment edge, southern Africa. Geogr. Ann. A 2008, 90, 97–108. [Google Scholar] [CrossRef]
- Barry, R.G. Mountain climatology and past and potential future climatic changes in mountain regions: A review. Mt. Res. Dev. 1992, 12, 71–86. [Google Scholar] [CrossRef]
- African Mountain Research Foundation. Available online: https://www.africanmountainresearch.com/ (accessed on 22 June 2021).
- Linder, H.P.; Vlok, J.H.; McDonald, D.J.; Oliver, E.G.H.; Boucher, C.; Van Wyk, B.-E.; Schutte, A. The high altitude flora and vegetation of the Cape Floristic Region, South Africa. Opera Bot. 1993, 121, 247–261. [Google Scholar]
- Carbutt, C.; Edwards, T.J. The endemic and near-endemic angiosperms of the Drakensberg Alpine Centre. S. Afr. J. Bot. 2006, 72, 105–132. [Google Scholar] [CrossRef] [Green Version]
- Clark, V.R.; Barker, N.P.; Mucina, L. The Sneeuberg: A new centre of floristic endemism on the Great Escarpment, South Africa. S. Afr. J. Bot. 2009, 75, 196–238. [Google Scholar] [CrossRef]
- Adie, H.; Kotze, D.J.; Lawes, M.J. Small fire refugia in the grassy matrix and the persistence of Afrotemperate forest in the Drakensberg mountains. Sci. Rep. 2017, 7, 6549. [Google Scholar] [CrossRef] [Green Version]
- Körner, C.; Hiltbrunner, E. Why is the alpine flora comparatively robust against climate warming? Diversity 2021, 13, 383. [Google Scholar] [CrossRef]
- Hall, K. Glaciation in southern Africa. In Quaternary Glaciations–Extent and Chronology, Part III; Ehlers, J., Gibbard, P.L., Eds.; Elsevier: Amsterdam, The Netherlands, 2004; pp. 337–338. [Google Scholar]
- Smith, J.M.; Lee-Thorp, J.A.; Sealy, J.C. Stable carbon and oxygen isotopic evidence for late Pleistocene to middle Holocene climatic fluctuations in the interior of southern Africa. J. Quat. Sci. 2002, 17, 683–695. [Google Scholar] [CrossRef]
- Lesotho. Available online: https://en.wikipedia.org/wiki/Lesotho (accessed on 26 July 2021).
- Shahgedanova, M.; Adler, C.; Gebrekirstos, A.; Grau, H.R.; Huggel, C.; Marchant, R.; Pepin, N.; Vanacker, V.; Viviroli, D.; Vuille, M. Mountain observatories: Status and prospects for enhancing and connecting a global community. Mt. Res. Dev. 2021, 41, A1–A15. [Google Scholar] [CrossRef]
- Tucker, C.M.; Alcántara-Ayala, I.; Gunya, A.; Jimenez, E.; Klein, J.A.; Xu, J.; Bigler, S.L. Challenges for governing mountains sustainably: Insights from a global survey. Mt. Res. Dev. 2021, 41, 10–20. [Google Scholar] [CrossRef]
- O’Connor, T.G. Understanding Environmental Change in Complex Systems: SAEON Core Science Framework, 1st ed.; SAEON: Pretoria, South Africa, 2010; pp. 1–47. [Google Scholar]
Features | Strengths | Weaknesses |
---|---|---|
LT(S)ER history | There is a long history of LT(S)ER in the mountains of South Africa dating back to some 111 years. | Despite a long history, LT(S)ER is relatively limited and currently overseen by a small community of organisations and researchers. |
Historical focus | The earliest LTER in South Africa was all mountain-based eco-hydrology because it was needed to inform catchment management practices and water policy, highly relevant to a water-scarce country. | However, because of this one-dimensional legacy, purer forms of ecological LTER suffered historically. |
Adaptive changes | LT(S)ER is evolving towards multi-disciplinary global change observation science. | This evolution has been a slow transition from long-term monitoring platforms. |
Diversity of LT(S)ER initiatives | There is a diverse range of LT(S)ER programmes in Southern Africa. This diversity provides a larger and more robust knowledge base from which to draw conclusions about how to better safeguard people’s well-being, appropriately manage biodiversity, and ensure environmental sustainability. | Having a diverse range of initiatives can also spread resources very thin, resulting in poorly replicated networks of each LT(S)ER type. There are some LT(S)ER types represented by solitary sites rather than the preferred distributed, coordinated, multi-site networks. |
LT(S)ER capacity in Southern African countries (excluding South Africa) | These countries still have an enormous opportunity to design and capacitate the types of LT(S)ER networks that will serve their purposes to great effect, generating both quality science and the outcomes needed to address livelihood challenges in their mountain regions. | There is little to no LT(S)ER taking place in the mountains of Angola, Lesotho, Mozambique, Namibia, and Zimbabwe. LT(S)ER in Southern Africa is therefore unbalanced and not representative of the Great Escarpment. Africa in general is lacking mountain observatories, which contrasts markedly with its high population densities and socio-economic needs against a backdrop of accelerating environmental change [162]. |
LT(S)ER capacity in South Africa | South Africa has the most comprehensive LT(S)ER networks in the region and the best equipped mountain observatories. It therefore has a key role to play in capacitating and supporting its regional neighbours. | Notwithstanding South Africa’s significant strides at LTER, the spread of sites in the country is not fully representative of its diverse mountain regions which traverse large moisture/aridity, aspect, and temperature gradients and consequentially a range of zonobiomes. The limited and uneven distribution of mountain observatories is also a global trend [162]. An example is the heavy reliance on Cathedral Peak in the Maloti-Drakensberg. This behemoth of LT(S)ER in Southern Africa’s mountains accounts for the Research Catchments, the Brotherton Fire Experiment, a NutNet site and is proposed as a significant component of the forthcoming EFTEON LTSER landscape, as well as proposed MIREN and Soil BON sites. |
International connectivity | A number of collaborative partnerships with international LT(S)ER programmes are emerging, opening up significant opportunities for collaboration, lesson-sharing, and learning. | Southern Africa, Africa, and the Southern Hemisphere are poorly represented in international LTER programmes. LT(S)ER has suffered from a “silo mentality”, whereby researchers have historically been working in isolation within the region and divorced from Northern Hemisphere colleagues and programmes. The Cape Fold Belt in particular lacks connection to such programmes, particularly MIREN and Soil BON. |
Focal areas | There are still many research gaps and opportunities for scholarly study at all levels (graduate, post-graduate, and scholar). There is an opportunity for better integration of faunal, floral and soil-based LTER components towards more systems-based research. | There has been a historical bias towards certain spheres of study and certain taxonomic groups—faunas, soil biodiversity, and below-ground systems—are less studied than floras and above-ground systems at high elevation. |
Elevational representation | Southern Africa has an alpine region that has great potential to host global change LT(S)ER. | Better use must be made of Southern Africa’s alpine region, which remains very under-studied. Multiple alpine observatories are required for the GLORIA, MIREN, NutNet, RangeX, and Soil BON programmes, particularly in the colder and drier recesses of the south-eastern Maloti-Drakensberg. All observatories, with the exception of the long-term automated weather station on an alpine inselberg summit near Vulture’s Retreat (3010 m a.s.l.), are montane (this site also hosts a long-term vegetation monitoring platform through fixed cameras; Table A1). |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carbutt, C.; Thompson, D.I. Mountain Watch: How LT(S)ER Is Safeguarding Southern Africa’s People and Biodiversity for a Sustainable Mountain Future. Land 2021, 10, 1024. https://doi.org/10.3390/land10101024
Carbutt C, Thompson DI. Mountain Watch: How LT(S)ER Is Safeguarding Southern Africa’s People and Biodiversity for a Sustainable Mountain Future. Land. 2021; 10(10):1024. https://doi.org/10.3390/land10101024
Chicago/Turabian StyleCarbutt, Clinton, and Dave I. Thompson. 2021. "Mountain Watch: How LT(S)ER Is Safeguarding Southern Africa’s People and Biodiversity for a Sustainable Mountain Future" Land 10, no. 10: 1024. https://doi.org/10.3390/land10101024
APA StyleCarbutt, C., & Thompson, D. I. (2021). Mountain Watch: How LT(S)ER Is Safeguarding Southern Africa’s People and Biodiversity for a Sustainable Mountain Future. Land, 10(10), 1024. https://doi.org/10.3390/land10101024