Toward Cleaner Production: Can Mobile Phone Technology Help Reduce Inorganic Fertilizer Application? Evidence Using a National Level Dataset
Abstract
1. Introduction
2. Conceptual Framework of the Study
3. Materials and Methods
3.1. Study Area
3.2. Sampling and Data
3.3. Data Modeling
4. Results and Discussion
4.1. Baseline Outcomes: Effect on IF Usage
4.2. The Mediating Role of Human Capital
4.3. Policy Assessment: DID Method
4.4. Robustness Test: PSM-DID Model
4.5. Robustness Test-Two: Instrumental Variables Method (IVM)
5. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Navarro, E.; Costa, N.; Pereira, A. A systematic review of IoT solutions for smart farming. Sensors 2020, 20, 4231. [Google Scholar] [CrossRef]
- Fróna, D.; Szenderák, J.; Harangi-Rákos, M. The challenge of feeding the world. Sustainability 2019, 11, 5816. [Google Scholar] [CrossRef]
- Reganold, J.P.; Wachter, J.M. Organic agriculture in the twenty-first century. Nat. Plants 2016, 2, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.; Hailu, A.; Kragt, M.E.; Ma, C. The response of broadacre mixed crop-livestock farmers to agricultural greenhouse gas abatement incentives. Agric. Syst. 2018, 160, 11–20. [Google Scholar] [CrossRef]
- Wu, J.; Ma, C.; Tang, K. The static and dynamic heterogeneity and determinants of marginal abatement cost of CO2 emissions in Chinese cities. Energy 2019, 178, 685–694. [Google Scholar] [CrossRef]
- Tang, K.; Hailu, A.; Yang, Y. Agricultural chemical oxygen demand mitigation under various policies in China: A scenario analysis. J. Clean. Prod. 2020, 250, 119513. [Google Scholar] [CrossRef]
- Khan, N.; Siddiqui, B.N.; Khan, N.; Khan, F.; Ullah, N.; Ihtisham, M.; Ullah, R.; Ismail, S.; Muhammad, S. Analyzing mobile phone usage in agricultural modernization and rural development. Int. J. Agric. Ext. 2020, 8, 139–147. [Google Scholar] [CrossRef]
- United Nations. World Population Projected to Reach 9.8 Billion in 2050, and 11.2 Billion in 2100; United Nations: New York, NY, USA, 2017.
- Xydis, G.A.; Liaros, S.; Avgoustaki, D.-D. Small scale Plant factories with artificial lighting and wind energy microgeneration: A multiple revenue stream approach. J. Clean. Prod. 2020, 255, 120227. [Google Scholar] [CrossRef]
- Tang, K.; He, C.; Ma, C.; Wang, D. Does carbon farming provide a cost-effective option to mitigate GHG emissions? Evidence from China. Aust. J. Agric. Resour. Econ. 2019, 63, 575–592. [Google Scholar] [CrossRef]
- Xiang, T.; Malik, T.H.; Nielsen, K. The impact of population pressure on global fertiliser use intensity, 1970–2011: An analysis of policy-induced mediation. Technol. Forecast. Soc. Chang. 2020, 152, 119895. [Google Scholar] [CrossRef]
- Notarnicola, B.; Sala, S.; Anton, A.; McLaren, S.J.; Saouter, E.; Sonesson, U. The role of life cycle assessment in supporting sustainable agri-food systems: A review of the challenges. J. Clean. Prod. 2017, 140, 399–409. [Google Scholar] [CrossRef]
- Scarpare, F.V.; Hernandes, T.A.D.; Ruiz-Corrêa, S.T.; Kolln, O.T.; de Castro Gava, G.J.; dos Santos, L.N.S.; Victoria, R.L. Sugarcane water footprint under different management practices in Brazil: Tietê/Jacaré watershed assessment. J. Clean. Prod. 2016, 112, 4576–4584. [Google Scholar] [CrossRef]
- Huang, J.; Xu, C.-C.; Ridoutt, B.G.; Wang, X.-C.; Ren, P.-A. Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China. J. Clean. Prod. 2017, 159, 171–179. [Google Scholar] [CrossRef]
- Savci, S. An agricultural pollutant: Chemical fertilizer. Int. J. Environ. Sci. Dev. 2012, 3, 73. [Google Scholar] [CrossRef]
- Kelishadi, R. Environmental Pollution: Health Effects and Operational Implications for Pollutants Removal; Hindawi: London, UK, 2012. [Google Scholar]
- Smith, P.; Ashmore, M.R.; Black, H.I.; Burgess, P.J.; Evans, C.D.; Quine, T.A.; Thomson, A.M.; Hicks, K.; Orr, H.G. The role of ecosystems and their management in regulating climate, and soil, water and air quality. J. Appl. Ecol. 2013, 50, 812–829. [Google Scholar] [CrossRef]
- Lu, Y.; Song, S.; Wang, R.; Liu, Z.; Meng, J.; Sweetman, A.J.; Jenkins, A.; Ferrier, R.C.; Li, H.; Luo, W. Impacts of soil and water pollution on food safety and health risks in China. Environ. Int. 2015, 77, 5–15. [Google Scholar] [CrossRef]
- Hakami, B.A. Impacts of soil and water pollution on food safety and health risks. Technology 2015, 6, 32–38. [Google Scholar]
- Savci, S. Investigation of effect of chemical fertilizers on environment. Apcbee Procedia 2012, 1, 287–292. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, Z.; He, C.; Gou, S.; Bai, Y.; Wang, Y.; Shen, M. The occupation of cropland by global urban expansion from 1992 to 2016 and its implications. Environ. Res. Lett. 2020, 15, 084037. [Google Scholar] [CrossRef]
- Rahman, K.; Zhang, D. Effects of fertilizer broadcasting on the excessive use of inorganic fertilizers and environmental sustainability. Sustainability 2018, 10, 759. [Google Scholar] [CrossRef]
- Tang, K.; Hailu, A. Smallholder farms’ adaptation to the impacts of climate change: Evidence from China’s Loess Plateau. Land Use Policy 2020, 91, 104353. [Google Scholar] [CrossRef]
- Tang, K.; Kragt, M.E.; Hailu, A.; Ma, C. Carbon farming economics: What have we learned? J. Environ. Manag. 2016, 172, 49–57. [Google Scholar] [CrossRef]
- Poole, N.; Echavez, C.; Rowland, D. Are agriculture and nutrition policies and practice coherent? Stakeholder evidence from Afghanistan. Food Secur. 2018, 10, 1577–1601. [Google Scholar] [CrossRef]
- Faiz, A.; Gangadharappa, N.; Malang, N. Information communication technologies (ICTS) effect in improving of sustainable pistachio forest management in Aibak District of Smamangan Province, Afghanistan. J. Glob. Commun. 2016, 9, 205–214. [Google Scholar]
- Saba, D.S. Afghanistan: Environmental degradation in a fragile ecological setting. Int. J. Sustain. Dev. World Ecol. 2001, 8, 279–289. [Google Scholar] [CrossRef]
- FAO. Current World Fertilizer Trends and Outlook to 2015; Agriculture Organization of the United Nations: Rome, Italy, 2011. [Google Scholar]
- Liu, T.; Wu, G. Does agricultural cooperative membership help reduce the overuse of chemical fertilizers and pesticides? Evidence from rural China. Environ. Sci. Pollut. Res. 2021, 1–12. [Google Scholar] [CrossRef]
- Ostad-Ali-Askari, K.; Shayannejad, M.; Ghorbanizadeh-Kharazi, H. Artificial neural network for modeling nitrate pollution of groundwater in marginal area of Zayandeh-rood River, Isfahan, Iran. KSCE J. Civ. Eng. 2017, 21, 134–140. [Google Scholar] [CrossRef]
- Savari, M.; Gharechaee, H. Utilizing the theory of planned behavior to predict Iranian farmers’ intention for safe use of chemical fertilizers. J. Clean. Prod. 2020, 263, 121512. [Google Scholar] [CrossRef]
- Gao, Y.; Qian, H.; Ren, W.; Wang, H.; Liu, F.; Yang, F. Hydrogeochemical characterization and quality assessment of groundwater based on integrated-weight water quality index in a concentrated urban area. J. Clean. Prod. 2020, 260, 121006. [Google Scholar] [CrossRef]
- Asadi, E.; Isazadeh, M.; Samadianfard, S.; Ramli, M.F.; Mosavi, A.; Nabipour, N.; Shamshirband, S.; Hajnal, E.; Chau, K.-W. Groundwater quality assessment for sustainable drinking and irrigation. Sustainability 2020, 12, 177. [Google Scholar] [CrossRef]
- Huq, M.E.; Fahad, S.; Shao, Z.; Sarven, M.S.; Al-Huqail, A.A.; Siddiqui, M.H.; ur Rahman, M.H.; Khan, I.A.; Alam, M.; Saeed, M. High arsenic contamination and presence of other trace metals in drinking water of Kushtia district, Bangladesh. J. Environ. Manag. 2019, 242, 199–209. [Google Scholar] [CrossRef]
- Khan, N.; Siddiqui, B.N.; Khan, N.; Ullah, N.; Ismail, S.; Ali, S.; Hussain, S.; Abbas, K.; Javed, H.H.; Ahmad, Z. Impact of newspaper and radio in promoting agricultural information among farmers. A case study of Pakistan. Int. J. Adv. Res. Biol. Sci. 2020, 7, 192–198. [Google Scholar]
- Bai, X.; Wang, Y.; Huo, X.; Salim, R.; Bloch, H.; Zhang, H. Assessing fertilizer use efficiency and its determinants for apple production in China. Ecol. Indic. 2019, 104, 268–278. [Google Scholar] [CrossRef]
- Yang, L.; Tang, K.; Wang, Z.; An, H.; Fang, W. Regional eco-efficiency and pollutants’ marginal abatement costs in China: A parametric approach. J. Clean. Prod. 2017, 167, 619–629. [Google Scholar] [CrossRef]
- Fan, L.; Yuan, Y.; Ying, Z.; Lam, S.K.; Liu, L.; Zhang, X.; Liu, H.; Gu, B. Decreasing farm number benefits the mitigation of agricultural non-point source pollution in China. Environ. Sci. Pollut. Res. 2019, 26, 464–472. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Sun, D.; Wang, H.; Wang, X.; Yu, G.; Zhao, X. An evaluation of China’s agricultural green production: 1978–2017. J. Clean. Prod. 2020, 243, 118483. [Google Scholar] [CrossRef]
- Mendes, J.; Pinho, T.M.; Neves dos Santos, F.; Sousa, J.J.; Peres, E.; Boaventura-Cunha, J.; Cunha, M.; Morais, R. Smartphone applications targeting precision agriculture practices—A systematic review. Agronomy 2020, 10, 855. [Google Scholar] [CrossRef]
- Perito, R.M. U.S. Experience with Provincial Reconstruction Teams in Afghanistan: Lessons Identified; DIANE Publishing: Collingdale, PA, USA, 2009. [Google Scholar]
- Mayzelle, M.; Santibañez, M.-P.; Schweiger, J.; Jallo, C. Assessment of Information and Communication Technologies in Afghan Agricultural Extension. 2015. Available online: https://pdf.usaid.gov/pdf_docs/PA00XT8R.pdf (accessed on 28 September 2021).
- Wentz, L.K.; Karen, E. Analysis of an Intervention: Lessons from US Advisory Work in Afghanistan’s Information and Communications Technology Sector; National Defense University: Washington, DC, USA, 2017. [Google Scholar]
- Razaque, A.; Sallah, M. The use of mobile phone among farmers for agriculture development. Int. J. Sci. Res 2013, 2, 95–98. [Google Scholar]
- Fabregas, R.; Kremer, M.; Schilbach, F. Realizing the potential of digital development: The case of agricultural advice. Science 2019, 366, 6471. [Google Scholar] [CrossRef]
- Nie, P.; Ma, W.; Sousa-Poza, A. The relationship between smartphone use and subjective well-being in rural China. Electron. Commer. Res. 2020, 1–27. [Google Scholar] [CrossRef]
- Zhao, Q.; Pan, Y.; Xia, X. Internet can do help in the reduction of pesticide use by farmers: Evidence from rural China. Environ. Sci. Pollut. Res. 2021, 28, 2063–2073. [Google Scholar] [CrossRef]
- Haile, M.G.; Wossen, T.; Kalkuhl, M. Access to information, price expectations and welfare: The role of mobile phone adoption in Ethiopia. Technol. Forecast. Soc. Chang. 2019, 145, 82–92. [Google Scholar] [CrossRef]
- Singh, R.K.; Luthra, S.; Mangla, S.K.; Uniyal, S. Applications of information and communication technology for sustainable growth of SMEs in India food industry. Resour. Conserv. Recycl. 2019, 147, 10–18. [Google Scholar] [CrossRef]
- Sekabira, H.; Qaim, M. Mobile money, agricultural marketing, and off-farm income in Uganda. Agric. Econ. 2017, 48, 597–611. [Google Scholar] [CrossRef]
- Rehman, A.; Jingdong, L.; Khatoon, R.; Hussain, I.; Iqbal, M.S. Modern agricultural technology adoption its importance, role and usage for the improvement of agriculture. Life Sci. J. 2016, 14, 70–74. [Google Scholar]
- Yuan, F.; Tang, K.; Shi, Q. Does Internet use reduce chemical fertilizer use? Evidence from rural households in China. Environ. Sci. Pollut. Res. 2020, 28, 6005–6017. [Google Scholar] [CrossRef] [PubMed]
- Tesfaye, A.; Hansen, J.; Kassie, G.T.; Radeny, M.; Solomon, D. Estimating the economic value of climate services for strengthening resilience of smallholder farmers to climate risks in Ethiopia: A choice experiment approach. Ecol. Econ. 2019, 162, 157–168. [Google Scholar] [CrossRef]
- Salahuddin, M.; Alam, K.; Ozturk, I. The effects of Internet usage and economic growth on CO2 emissions in OECD countries: A panel investigation. Renew. Sustain. Energy Rev. 2016, 62, 1226–1235. [Google Scholar] [CrossRef]
- Ma, W.; Nie, P.; Zhang, P.; Renwick, A. Impact of Internet use on economic well-being of rural households: Evidence from China. Rev. Dev. Econ. 2020, 24, 503–523. [Google Scholar] [CrossRef]
- Matassa, S.; Batstone, D.J.; Hülsen, T.; Schnoor, J.; Verstraete, W. Can Direct Conversion of Used Nitrogen to New Feed and Protein Help Feed the World? ACS Publications: Washington, DC, USA, 2015. [Google Scholar]
- Khan, N.; Siddiqui, B.N.; Khan, N.; Ismail, S. The Internet of thing in sustainable agriculture. Artech J. Res. Stud. Agric. Sci 2020, 2, 12–15. [Google Scholar]
- Kaila, H.; Tarp, F. Can the internet improve agricultural production? Evidence from Viet Nam. Agric. Econ. 2019, 50, 675–691. [Google Scholar] [CrossRef]
- Hou, J.; Huo, X.; Yin, R. Does computer usage change farmers’ production and consumption? Evidence from China. China Agric. Econ. Rev. 2019, 11, 387–410. [Google Scholar] [CrossRef]
- Fan, Q.; Salas Garcia, V.B. Information access and smallholder farmers’ market participation in Peru. J. Agric. Econ. 2018, 69, 476–494. [Google Scholar] [CrossRef]
- Omerkhil, N.; Chand, T.; Valente, D.; Alatalo, J.M.; Pandey, R. Climate change vulnerability and adaptation strategies for smallholder farmers in Yangi Qala District, Takhar, Afghanistan. Ecol. Indic. 2020, 110, 105863. [Google Scholar] [CrossRef]
- Ahmed, S. Agriculture-Fertilizer Interface in Asian and Pacific Region: Issue of Growth, Sustainability, and Vulnerability; Food and Fertilizer Technology Center: Taipei, Taiwan, 1994. [Google Scholar]
- Hashimi, R.; Matsuura, E.; Komatsuzaki, M. Effects of cultivating rice and wheat with and without organic fertilizer application on greenhouse gas emissions and soil quality in Khost, Afghanistan. Sustainability 2020, 12, 6508. [Google Scholar] [CrossRef]
- Shuqin, J.; Fang, Z. Zero growth of chemical fertilizer and pesticide use: China’s objectives, progress and challenges. J. Resour. Ecol. 2018, 9, 50–58. [Google Scholar] [CrossRef]
- Iqbal, K.; Hassan, S.T.; Peng, H. Analyzing the role of information and telecommunication technology in human development: Panel data analysis. Environ. Sci. Pollut. Res. 2019, 26, 15153–15161. [Google Scholar] [CrossRef] [PubMed]
- Ihtisham, M.; Fahad, S.; Luo, T.; Larkin, R.M.; Yin, S.; Chen, L. Optimization of nitrogen, phosphorus, and potassium fertilization rates for overseeded perennial ryegrass turf on dormant bermudagrass in a transitional climate. Front. Plant Sci. 2018, 9, 487. [Google Scholar] [CrossRef] [PubMed]
- Mohmand, A.M.; Marjan, A.; Sangin, A. Developing e-government in Afghanistan. In Proceedings of the 4th International Conference on Theory and Practice of Electronic Governance, Beijing, China, 25–28 October 2010; pp. 43–48. [Google Scholar]
- Salamzada, K.; Shukur, Z.; Bakar, M.A. A framework for cybersecurity strategy for developing countries: Case study of Afghanistan. Asia Pac. J. Inf. Technol. Multimed. 2015, 4, 1–10. [Google Scholar] [CrossRef][Green Version]
- Fong, M.W. Digital divide between urban and rural regions in China. Electron. J. Inf. Syst. Dev. Ctries. 2009, 36, 1–12. [Google Scholar] [CrossRef]
- Pant, L.P.; Odame, H.H. Broadband for a sustainable digital future of rural communities: A reflexive interactive assessment. J. Rural Stud. 2017, 54, 435–450. [Google Scholar] [CrossRef]
- Adapa, S. Indian smart cities and cleaner production initiatives—Integrated framework and recommendations. J. Clean. Prod. 2018, 172, 3351–3366. [Google Scholar] [CrossRef]
- Braungart, M.; McDonough, W.; Bollinger, A. Cradle-to-cradle design: Creating healthy emissions—A strategy for eco-effective product and system design. J. Clean. Prod. 2007, 15, 1337–1348. [Google Scholar] [CrossRef]
- Huang, J.; Huang, Z.; Jia, X.; Hu, R.; Xiang, C. Long-term reduction of nitrogen fertilizer use through knowledge training in rice production in China. Agric. Syst. 2015, 135, 105–111. [Google Scholar] [CrossRef]
- Sun, Y.; Hu, R.; Zhang, C. Does the adoption of complex fertilizers contribute to fertilizer overuse? Evidence from rice production in China. J. Clean. Prod. 2019, 219, 677–685. [Google Scholar] [CrossRef]
- WHO. WHO Country Cooperation Strategy at a Glance: Afghanistan; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Omerkhil, N.; Kumar, P.; Mallick, M.; Meru, L.B.; Chand, T.; Rawat, P.; Pandey, R. Micro-level adaptation strategies by smallholders to adapt climate change in the least developed countries (LDCs): Insights from Afghanistan. Ecol. Indic. 2020, 118, 106781. [Google Scholar] [CrossRef]
- Reich, D.; Pearson, C. Irrigation outreach in Afghanistan: Exposure to Afghan water security challenges. J. Contemp. Water Res. Educ. 2012, 149, 33–40. [Google Scholar] [CrossRef]
- Hassanzoy, N. Panorama Report of Afghanistan: A Review of Afghanistan’s Food and Agricultural Statistics System; TCP/INT/3401 Panorama Report I, Technical Report; FAO: Kabul, Afghanistan, 2013. [Google Scholar]
- CSO. Afghanistan Living Conditions Survey 2016–17; CSO: Kabul, Afghanistan, 2018. [Google Scholar]
- Abdul, M.; Anowar, M. Nutrition promotion and collective vegetable gardening by adolescent girls: Feasibility assessment from a pilot in Afghanistan. Asian J. Agric. Rural Dev. 2018, 8, 40–49. [Google Scholar]
- Ahmed, A.; Shafique, I. Perception of household in regards to water pollution: An empirical evidence from Pakistan. Environ. Sci. Pollut. Res. 2019, 26, 8543–8551. [Google Scholar] [CrossRef] [PubMed]
- Kehinde, A.; Adeyemo, R.; Amujoyegbe, B.; Bamire, A.; Idrissou, L. Gender differentials and fertilizer adoption among small holder farmers in cocoa based farming system of Southwestern, Nigeria. Int. J. Agric. Policy Res. 2016, 4, 276–281. [Google Scholar]
- Huang, W.; Ghimire, R.; Poudel, M. Adoption intensity of agricultural technology: Empirical evidence from smallholder maize farmers in Nepal. Int. J. Agric. Innov. Res. 2015, 4, 139–146. [Google Scholar]
- Narula, S.A. Revolutionizing food supply chains of Asia through ICTs. Sustain. Chall. Agrofood Sect. 2017, 212. [Google Scholar]
- Bellon-Maurel, V.; Peters, G.M.; Clermidy, S.; Frizarin, G.; Sinfort, C.; Ojeda, H.; Roux, P.; Short, M.D. Streamlining life cycle inventory data generation in agriculture using traceability data and information and communication technologies—Part II: Application to viticulture. J. Clean. Prod. 2015, 87, 119–129. [Google Scholar] [CrossRef]
- Zhou, D.; Liang, X.; Zhou, Y.; Tang, K. Does emission trading boost carbon productivity? Evidence from China’s pilot emission trading scheme. Int. J. Environ. Res. Public Health 2020, 17, 5522. [Google Scholar] [CrossRef] [PubMed]
- Shi, B.; Feng, C.; Qiu, M.; Ekeland, A. Innovation suppression and migration effect: The unintentional consequences of environmental regulation. China Econ. Rev. 2018, 49, 1–23. [Google Scholar] [CrossRef]
- Hamdard, J. The State of Telecommunications and Internet in Afghanistan. Six Years Later (2006–2012); Assistant Report; MICT of Afghanistan: Kabul, Afghanistan, 2012. [Google Scholar]
- Yang, Y.; Wu, F.; Zhang, Q.; Hong, J.; Dong, C. Is it sustainable to implement a regional payment for ecosystem service programme for 10 Years? An empirical analysis from the perspective of household livelihoods. Ecol. Econ. 2020, 176, 106746. [Google Scholar] [CrossRef]
- Michalek, J.; Ciaian, P.; Pokrivcak, J. The impact of producer organizations on farm performance: The case study of large farms from Slovakia☆. Food Policy 2018, 75, 80–92. [Google Scholar] [CrossRef]
- Smith, J.A.; Todd, P.E. Does matching overcome LaLonde’s critique of nonexperimental estimators? J. Econom. 2005, 125, 305–353. [Google Scholar] [CrossRef]
- Zhang, H.; Duan, M.; Deng, Z. Have China’s pilot emissions trading schemes promoted carbon emission reductions?—The evidence from industrial sub-sectors at the provincial level. J. Clean. Prod. 2019, 234, 912–924. [Google Scholar] [CrossRef]
- Ren, S.; Wei, W.; Sun, H.; Xu, Q.; Hu, Y.; Chen, X. Can mandatory environmental information disclosure achieve a win-win for a firm’s environmental and economic performance? J. Clean. Prod. 2020, 250, 119530. [Google Scholar] [CrossRef]
- Khan, M.; Mahmood, H.Z.; Damalas, C.A. Pesticide use and risk perceptions among farmers in the cotton belt of Punjab, Pakistan. Crop. Prot. 2015, 67, 184–190. [Google Scholar] [CrossRef]
- Zhang, J.; Mishra, A.K.; Hirsch, S.; Li, X. Factors affecting farmland rental in rural China: Evidence of capitalization of grain subsidy payments. Land Use Policy 2020, 90, 104275. [Google Scholar] [CrossRef]
- Corrado, C.; Haltiwanger, J.; Sichel, D. Introduction to ”Measuring capital in the new economy”. In Measuring Capital in the New Economy; University of Chicago Press: Chicago, IL, USA, 2005; pp. 1–10. [Google Scholar]
- Case, S.; Oelofse, M.; Hou, Y.; Oenema, O.; Jensen, L.S. Farmer perceptions and use of organic waste products as fertilisers—A survey study of potential benefits and barriers. Agric. Syst. 2017, 151, 84–95. [Google Scholar] [CrossRef]
- Aziz, M. Implementing ICT For Governance in Fragile States—A Case Study of Afghanistan. In e-Governance: A Global Journey; IOS Press: Amsterdam, The Netherlands, 2012; pp. 93–106. [Google Scholar]
- Mikheev, A.; Aleksandrova, A.; Khabib, M. The Impact of Information Technology on the GDP Growth Rate of Developing Countries. Talent Dev. Excell. 2020, 12, 1303–1313. [Google Scholar]
- Guo, X.; Xiao, B.; Song, L. Emission reduction and energy-intensity enhancement: The expected and unexpected consequences of China’s coal consumption constraint policy. J. Clean. Prod. 2020, 271, 122691. [Google Scholar] [CrossRef]
- Nimruzi, A.; Ganapathy, J.; Nyborg, I.L. Can technology build trust? Community-oriented policing and ICT in Afghanistan. In Community-Oriented Policing and Technological Innovations; Springer: Cham, Switzerland, 2018; pp. 11–18. [Google Scholar]
- Jenish, N. ICT-Driven Technological and Industrial Upgrading in Afghanistan, Kyrgyzstan and Tajikistan: Current Realities and Opportunities; University of Central Asia—Institute of Public Policy and Administration: Bishkek, Kyrgyzstan, 2018. [Google Scholar]
- Khan, N.; Ismail, S.; Wali, A.; Kazim, R.; Azam, T. The influence of information communication technology development on income inequality. Artech J. Curr. Bus. Financ. Aff. 2020, 2, 11–18. [Google Scholar]
- Zhang, C.; Zhou, B.; Wang, Q. Effect of China’s western development strategy on carbon intensity. J. Clean. Prod. 2019, 215, 1170–1179. [Google Scholar] [CrossRef]
- Deng, X.; Xu, D.; Zeng, M.; Qi, Y. Does internet use help reduce rural cropland abandonment? Evidence from China. Land Use Policy 2019, 89, 104243. [Google Scholar] [CrossRef]
Variables Names | Description | Mean (S.D) |
---|---|---|
Inorganic fertilizer | Use of inorganic fertilizer (kg/ha) | 198.40 (36.98) |
Mobile phone | Whether the household uses mobile phone (1 = yes; 0 = no) | 0.17 (0.42) |
Age | Age of the respondent (year) | 43.16 (14.23) |
Health status | Health status of head 1 | 6.45 (2.83) |
Education | Education of head (year) | 5.63 (3.41) |
Household size | Household member (numbers) | 6.45 (2.83) |
Land area | Land area per capita (ha) | 2.85 (2.14) |
IT | Number of households using Internet technology | 2.85 (3.52) |
Income | Per capita income (Afghani) | 27,984.19 (41,846.61) |
Asset | Fixed assets produced per capita (Afghani) | 2572.16 (16,292.17) |
Cereal crop | Whether the cereal crops are the major product (1 = cereal income ratio 50%; 0 = ratios of cereals profits to farming profits fewer than 50%) | 0.55 (0.49) |
Agricultural Education | If the household received AEST (1= yes, 0= no) | 0.20 (0.41) |
Non-Agricultural Education | If the household received NAEST (1= yes, 0= no) | 0.42 (0.50) |
Explanatory Variables | Column (1) | S.E | Column (2) | S.E | Column (3) | S.E | Column (4) | S.E |
---|---|---|---|---|---|---|---|---|
Age | −0.002 | 0.082 | −0.005 | 0.082 | −0.002 | 0.082 | −0.006 | 0.082 |
Health status | 0.085 *** | 0.028 | 0.083 *** | 0.028 | 0.086 *** | 0.028 | 0.085 *** | 0.028 |
Education | 0.019 | 0.016 | 0.019 | 0.016 | 0.019 | 0.016 | 0.019 | 0.016 |
Household size | −0.015 | 0.007 | −0.015 | 0.007 | −0.014 | 0.008 | −0.014 | 0.008 |
Land area | −0.260 *** | 0.030 | −0.260 *** | 0.030 | −0.260 *** | 0.030 | −0.261 *** | 0.030 |
IT | 0.000 | 0.002 | 0.000 | 0.002 | −0.062 *** | 0.013 | −0.056 *** | 0.013 |
Income | 0.064 *** | 0.009 | 0.064 *** | 0.009 | 0.064 *** | 0.009 | 0.064 *** | 0.009 |
Asset | 0.088 *** | 0.006 | 0.088 *** | 0.006 | 0.089 *** | 0.006 | 0.088 *** | 0.006 |
Cereal crop | 2.573 *** | 0.041 | 2.529 *** | 0.042 | 2.447 *** | 0.049 | 2.419 *** | 0.049 |
Mobile phone | −0.126 ** | 0.053 | −0.355 *** | 0.075 | −0.117 ** | 0.053 | −0.321 *** | 0.352 |
Mobile phone× cereal crop | - | - | 0.395 *** | 0.091 | - | - | 0.352 *** | 0.092 |
IT× cereal crop | - | - | - | - | 0.063 *** | 0.013 | 0.058 *** | 0.013 |
Constant | 0.504 | 3.181 | 0.943 | 4.171 | 0.561 | 4.171 | 0.872 | 4.171 |
Individual effect | Yes | - | Yes | - | Yes | - | Yes | - |
Year effects | Yes | - | Yes | - | Yes | - | Yes | - |
Area dummies | Yes | - | Yes | - | Yes | - | Yes | - |
Observation numbers | 31,036 | - | 31,036 | - | 31,036 | - | 31,036 | - |
Group number | 7514 | - | 7514 | - | 7514 | - | 7514 | - |
F-stat | 361.34 | - | 344.19 | - | 344.24 | - | 328.64 | - |
Described Variables | NAEST | S.E | IF | S.E | AEST | S.E | IF | S.E |
---|---|---|---|---|---|---|---|---|
Fixed-Effects Models | Logit | Linear | Logit | Linear | ||||
Column (1) | Column (2) | Column (3) | Column (4) | |||||
Age | 0.359 | 0.228 | 0.001 | 0.083 | 0.004 | 0.236 | −0.001 | 0.083 |
Health status | 0.045 | 0.077 | 0.085 *** | 0.028 | −0.016 | 0.081 | 0.085 *** | 0.028 |
Education | −0.041 | 0.038 | 0.018 | 0.015 | −0.017 | 0.040 | 0.018 | 0.014 |
Household size | 0.104 *** | 0.0340 | −0.012 | 0.009 | −0.004 | 0.029 | −0.013 | 0.009 |
Land area | −0.261 *** | 0.030 | −0.261*** | 0.030 | −0.260 *** | 0.030 | −0.260 *** | 0.030 |
IT | 0.279 *** | 0.042 | 0.000 | 0.002 | −0.055 | 0.049 | 0.000 | 0.002 |
Income | 0.072 *** | 0.027 | 0.064 *** | 0.010 | −0.023 | 0.026 | 0.064 *** | 0.010 |
Asset | 0.009 | 0.016 | 0.087 *** | 0.007 | 0.035 * | 0.018 | 0.087 *** | 0.007 |
Cereal crop | 0.034 | 0.124 | 2.573 *** | 0.041 | 0.110 | 0.125 | 2.572 *** | 0.041 |
Mobile phone | 0.479 *** | 0.138 | −0.123 ** | 0.053 | −0.085 | −0.166 | 0.126 ** | 0.053 |
Agricultural Education | - | - | - | - | - | - | 0.210 *** | 0.063 |
Non-Agricultural Education | - | - | −0.117 ** | 0.055 | - | - | - | - |
Constant | - | - | 0.510 | 4.277 | - | - | 0.554 | 4.277 |
Individual effect | Yes | - | Yes | - | Yes | - | Yes | - |
Year effect | Yes | - | Yes | - | Yes | - | Yes | - |
Area dummies | Yes | - | Yes | - | Yes | - | Yes | - |
Observation numbers | 4957 | - | 31,036 | - | 3948 | - | 31,036 | - |
Group numbers | 1047 | - | 7514 | - | 833 | - | 7514 | - |
F-value | -- | - | 444.90 | - | -- | - | 335.45 | - |
Likelihood ratio test | 170.29 | - | -- | - | 42.64 | - | -- | - |
Described Variables: IF | Column (1) | S.E | Column (2) | S.E | Column (3) | S.E | Column (4) | S.E |
---|---|---|---|---|---|---|---|---|
Treat × T | −0.525 ** | 0.230 | −0.375 * | 0.217 | ||||
Treat × year2012 | - | - | - | −0.690 ** | 0.285 | −0.515 * | 0.270 | |
Treat × year2013 | - | - | - | - | −0.657 ** | 0.305 | −0.572 ** | 0.273 |
Treat × year2014 | - | - | - | - | −0.217 | 0.295 | −0.034 | 0.274 |
Treat | −0.281 | 0.170 | −0.666 *** | 0.162 | −0.278 | 0.170 | −0.065 *** | 0.170 |
Constant | 3.707 *** | 0.122 | −1.724 *** | 0.571 | 3.777 *** | 0.111 | −1.725 *** | 0.560 |
Year dummy | Yes | - | Yes | - | Yes | - | Yes | - |
Control variables | No | - | Yes | - | No | - | Yes | - |
Observation numbers | 6411 | - | 6411 | - | 6411 | - | 6411 | - |
F-value | 25.00 | - | 67.40 | - | 27.09 | - | 66.71 | - |
Result: IF | Unmatched (Matched) | Matched Mean | Percent Bias | Percent Reduce Bias | t-Test | ||
---|---|---|---|---|---|---|---|
Control | Treatment | t-Value | p-Value | ||||
Age | U (M) 1 | 37.20 (37.20) | 36.74 (35.38) | −19.0 (−2.4) | (87.6) | −6.05(−0.62) | 0.00 (0.53) |
Health status | U (M) | 4.59 (4.59) | 4.38 (4.58) | 43.8 (3.3) | (92.4) | 13.15 (0.88) | 0.00 (0.38) |
Education | U (M) | 7.99 (7.99) | 7.01 (6.93) | −5.8 (−2.0) | (65.1) | −1.83 (−0.53) | 0.07 (0.60) |
Household size | U (M) | 4.28 (4.28) | 4.64 (4.20) | −19.1 (4.6) | (75.7) | −6.50 (1.23) | 0.00 (0.214) |
Land area | U (M) | −0.32 (−0.32) | −0.24 (−0.41) | −9.4 (9.8) | (−4.4) | −2.75 (2.34) | 0.01 (0.02) |
Income | U (M) | 8.72 (8.72) | 8.67 (8.77) | 2.3 (−2.2) | (3.4) | 0.70 (−0.58) | 0.49 (0.56) |
Asset | U (M) | 6.30 (6.30) | 5.20 (6.25) | 31.4 (1.4) | (95.5) | 9.57 (0.40) | 0.00 (0.70) |
IT | U (M) | 1.73 (1.73) | 2.30 (2.59) | −5.0 (−7.6) | (−51.3) | −1.29 (−1.13) | 0.21 (0.25) |
Cereal crop | U (M) | 0.59 (0.59) | 0.53 (0.59) | 13.1 (1.4) | (89.5) | 5.13 (0.85) | 0.00 (0.88) |
Described Variables | Column (1) | S.E | Column (2) | S.E | Column (3) | S.E | Column (4) | S.E |
---|---|---|---|---|---|---|---|---|
Treat × T | −1.237 *** | 0.198 | −0.996 *** | 0.260 | ||||
Treat × year2012 | - | - | - | - | −1.233 *** | 0.370 | −1.068 *** | 0.345 |
Treat × year2013 | - | - | - | -- | −1.396 *** | 0.381 | −1.002 *** | 0.356 |
Treat × year2014 | - | - | - | - | −1.389 *** | 0.371 | −0.919 *** | 0.348 |
Treat | 0.139 | 0.217 | −0.110 | 0.203 | 0.139 | 0.217 | −0.110 | 0.203 |
Constant | 3.237 *** | 0.193 | 1.343 | 0.835 | 3.237 *** | 0.193 | 1.360 | 0.837 |
Year dummy | Yes | - | Yes | - | Yes | - | Yes | - |
Control variables | No | - | Yes | - | No | - | Yes | - |
Observation numbers | 2610 | - | 2610 | - | 2610 | - | 2610 | - |
F-value | 12.38 | - | 31.57 | - | 9.43 | - | 30.71 | - |
Described Variables | Column (1) | S.E | Column (2) | S.E |
---|---|---|---|---|
First-Stage | Two-Stage Least Squares | |||
Mobile Phone | IF | |||
IV | 0.727 *** | 0.446 | -- | -- |
Mobile phone | -- | -- | −0.543 *** | 0.187 |
Age | −0.002 | 0.010 | −0.002 | 0.083 |
Health status | 0.003 | 0.003 | 0.076 *** | 0.021 |
Education | −0.001 | 0.002 | 0.015 | 0.013 |
Household size | 0.004 *** | 0.001 | −0.014 | 0.008 |
Land area | −0.003 | 0.003 | −0.262 *** | 0.030 |
IT | 0.000 | 0.000 | 0.000 | 0.002 |
Income | 0.003 *** | 0.001 | 0.053 *** | 0.009 |
Asset | 0.001 *** | 0.001 | 0.089 *** | 0.006 |
Cereal crop | −0.001 | 0.005 | 2.662 *** | 0.032 |
Year effect | Yes | - | Yes | - |
Area dummies | Yes | - | Yes | - |
Individual effect | Yes | - | Yes | - |
Observation numbers | 15,223 | - | 15,223 | - |
First stage F statistic (P) | 444.90 | 0.000 | -- | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, N.; Ray, R.L.; Kassem, H.S.; Ihtisham, M.; Abdullah; Asongu, S.A.; Ansah, S.; Zhang, S. Toward Cleaner Production: Can Mobile Phone Technology Help Reduce Inorganic Fertilizer Application? Evidence Using a National Level Dataset. Land 2021, 10, 1023. https://doi.org/10.3390/land10101023
Khan N, Ray RL, Kassem HS, Ihtisham M, Abdullah, Asongu SA, Ansah S, Zhang S. Toward Cleaner Production: Can Mobile Phone Technology Help Reduce Inorganic Fertilizer Application? Evidence Using a National Level Dataset. Land. 2021; 10(10):1023. https://doi.org/10.3390/land10101023
Chicago/Turabian StyleKhan, Nawab, Ram L. Ray, Hazem S. Kassem, Muhammad Ihtisham, Abdullah, Simplice A. Asongu, Stephen Ansah, and Shemei Zhang. 2021. "Toward Cleaner Production: Can Mobile Phone Technology Help Reduce Inorganic Fertilizer Application? Evidence Using a National Level Dataset" Land 10, no. 10: 1023. https://doi.org/10.3390/land10101023
APA StyleKhan, N., Ray, R. L., Kassem, H. S., Ihtisham, M., Abdullah, Asongu, S. A., Ansah, S., & Zhang, S. (2021). Toward Cleaner Production: Can Mobile Phone Technology Help Reduce Inorganic Fertilizer Application? Evidence Using a National Level Dataset. Land, 10(10), 1023. https://doi.org/10.3390/land10101023