Growth of Common Plants of Boreal Reclamation Sites in Oil Sands Tailings Cake Mixes and Process Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Set Up
2.2. Substrates and Process Water
2.3. Plants
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Government of Alberta. Oil Sands Facts and Statistics. Available online: https://www.alberta.ca/oil-sands-facts-and-statistics.aspx (accessed on 6 August 2019).
- Alberta Government. Conservation and Reclamation Information Letter Guidelines for Reclamation to Forest Vegetation in the Athabasca Oil Sands Region; C and R/IL/99-1; Government of Alberta: Edmonton, AB, Canada, 1999.
- Alberta Energy Regulator. Directive 085: Fluid Tailings Management for Oil Sands Mining Projects; Alberta Energy Regulator: Alberta, AB, Canada, 2017. [Google Scholar]
- MacKinnon, M.D.; Sethi, A. A comparison of the physical and chemical properties of the tailings ponds at the Syncrude and Suncor oil sands plants. In Proceedings of the Our Petroleum Future Conference, Edmonton, AB, Canada, 4–7 April 1993. [Google Scholar]
- Allen, E.W. Process water treatment in Canada’s oil sands industry: I. Target pollutants and treatment objectives. J. Environ. Eng. Sci. 2008, 7, 123–138. [Google Scholar] [CrossRef] [Green Version]
- Bedair, O. Engineering Challenges in the Design of Alberta’s Oil Sands Projects. Pr. Period. Struct. Des. Constr. 2013, 18, 247–260. [Google Scholar] [CrossRef]
- Chalaturnyk, R.J.; Scott, J.D.; Ozum, B. Management of Oil Sands Tailings. Pet. Sci. Technol. 2002, 20, 1025–1046. [Google Scholar] [CrossRef]
- Mahaffey, A.; Dube, M. Review of the composition and toxicity of oil sands process-affected water. Environ. Rev. 2016, 25, 97–114. [Google Scholar] [CrossRef]
- Franklin, J.A.; Renault, S.; Croser, C.; Zwiazek, J.J.; MacKinnon, M. Jack pine growth and elemental composition are affected by saline tailings water. J. Environ. Qual. 2002, 31, 648–653. [Google Scholar] [CrossRef]
- Pouliot, R.; Rochefort, L.; Graf, M.D. Impacts of oil sands process water on fen plants: Implications for plant selection in required reclamation projects. Environ. Pollut. 2012, 167, 132–137. [Google Scholar] [CrossRef]
- Renault, S.; Zwiazek, J.J.; Fung, M.; Tuttle, S. Germination, growth and gas exchange of selected boreal forest seedlings in soil containing oil sands tailings. Environ. Pollut. 2000, 107, 357–365. [Google Scholar] [CrossRef]
- Audet, P.; Pinno, B.D.; Thiffault, E. Reclamation of boreal forest after oil sands mining: Anticipating novel challenges in novel environments. Can. J. For. Res. 2015, 45, 364–371. [Google Scholar] [CrossRef] [Green Version]
- Hanslin, H.M.; Eggen, T. Salinity tolerance during germination of seashore halophytes and salt-tolerant grass cultivars. Seed Sci. Res. 2005, 15, 43–50. [Google Scholar] [CrossRef]
- Iglesia, R.; Castro, D.; Ginocchio, R.; Lelie, D.; González, B. Factors influencing the composition of bacterial communities found at abandoned copper-tailings dumps. J. Appl. Microbiol. 2006, 100, 537–544. [Google Scholar] [CrossRef]
- Lam, E.J.; Keith, B.F.; Montofré, Í.L.; Gálvez, M.E. Copper uptake by Adesmia atacamensis in a Mine Tailing in an Arid Environment. Air Soil Water Res. 2018, 11, 1178622118812462. [Google Scholar] [CrossRef] [Green Version]
- Guala, S.D.; Vega, F.A.; Covelo, E.F. The dynamics of heavy metals in plant–soil interactions. Ecol. Model. 2010, 221, 1148–1152. [Google Scholar] [CrossRef]
- Chibuike, G.U.; Obiora, S.C.; Chibuike, G.U.; Obiora, S.C. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods. Appl. Environ. Soil Sci. 2014, 2014, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Gall, J.E.; Boyd, R.S.; Rajakaruna, N. Transfer of heavy metals through terrestrial food webs: A review. Environ. Monit. Assess. 2015, 187, 201. [Google Scholar] [CrossRef] [Green Version]
- Goyal, D.; Yadav, A.; Prasad, M.; Singh, T.B.; Shrivastav, P.; Ali, A.; Dantu, P.K.; Mishra, S. Effect of Heavy Metals on Plant Growth: An Overview. In Contaminants in Agriculture; Springer: Cham, Switzerland, 2020; pp. 79–101. [Google Scholar]
- Schutzendubel, A.; Polle, A. Plant responses to abiotic stresses: Heavy metal-induced oxidative stress and protection by mycorrhization. J. Exp. Bot. 2002, 53, 1351–1365. [Google Scholar] [CrossRef] [Green Version]
- Prasad, M.N.V. Heavy Metal Stress in Plants from Biomolecules to Ecosystems; Springer: Berlin, Germany, 2010; 462p. [Google Scholar]
- Mourato, M.; Moreira, I.N.; Leitão, I.; Pinto, F.; Sales, J.R.; Martins, L. Effect of Heavy Metals in Plants of the Genus Brassica. Int. J. Mol. Sci. 2015, 16, 17975–17998. [Google Scholar] [CrossRef] [Green Version]
- Davies, K.G.; Nafus, A.M.; Sheley, R.L. Non-native competitive perennial grass impedes the spread of an invasive annual grass. Biol. Invasions 2010, 12, 3187–3194. [Google Scholar] [CrossRef]
- Errington, R.C.; Pinno, B.D. Early successional plant community dynamics on a reclaimed oil sands mine in comparison with natural boreal forest communities. Écoscience 2015, 22, 133–144. [Google Scholar] [CrossRef]
- Howell, D.M.; Das Gupta, S.; Pinno, B.D.; MacKenzie, M.D. Reclaimed soils, fertilizer, and bioavailable nutrients: Determining similarity with natural benchmarks over time. Can. J. Soil Sci. 2016, 97, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; R Core Team. nlme: Linear and Nonlinear Mixed Effects Models; R Package Version 3.1-140; R Core Team: Evanston, IL, USA, 2019. [Google Scholar]
- Russell, L. Emmeans: Estimated Marginal Means, aka Least-Squares Means; R Package Version 1.4.1 2019; R Core Team: Evanston, IL, USA, 2019. [Google Scholar]
- Revelle, W. psych: Procedures for Personality and Psychological Research; R Packaage Version 1.8.12; R Core Team: Evanston, IL, USA, 2018. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org/ (accessed on 10 November 2020).
- Renault, S.; Qualizza, C.; MacKinnon, M. Suitability of altai wildrye (Elymus angustus) and slender wheatgrass (Agropyron trachycaulum) for initial reclamation of saline composite tailings of oil sands. Environ. Pollut. 2004, 128, 339–349. [Google Scholar] [CrossRef]
- Volkmar, K.M.; Hu, Y.; Steppuhn, H. Physiological responses of plants to salinity: A review. Can. J. Plant Sci. 1998, 78, 19–27. [Google Scholar] [CrossRef]
- Gosselin, P.; Hrudey, S.E.; Naeth, A.; Plourde, A.; Therrien, R.; Van Der Kraak, G.; Xu, Z. Environmental and Health Impacts of Canada’s Oil Sands Industry; The Royal Society of Canada: Ottawa, ON, Canada, 2010; 440p. [Google Scholar]
- Popova, L.P.; Stoinova, Z.G.; Maslenkova, L.T. Involvement of abscisic acid in photosynthetic process in Hordeum vulgare L. during salinity stress. J. Plant Growth Regul. 1995, 14, 211–218. [Google Scholar] [CrossRef]
- Renault, S.; MacKinnon, M.; Qualizza, C. Barley, a Potential Species for Initial Reclamation of Saline Composite Tailings of Oil Sands. J. Environ. Qual. 2003, 32, 2245–2253. [Google Scholar] [CrossRef] [PubMed]
- Apostol, K.G.; Zwiazek, J.J.; MacKinnon, M.M. Naphthenic acids affect plant water conductance but do not alter shoot Na+ and Cl- concentrations in jackpine (Pinus banksiana) seedlings. Plant Soil 2004, 263, 183–190. [Google Scholar] [CrossRef]
- Fetter, C.W. Contaminant Hydrogeology, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Jandada, A. A Laboratory Evaluation of the Sorption of Oil Sands Naphthenic Acids on Soils. Masters Thesis, University of Saskatchewan, Saskatoon, SK, Canada, 2007. [Google Scholar]
- Walker, C.; Sibly, R.; Peakall, D. Principles of Ecotoxicology, 3rd ed.; Taylor and Francis Group: New York, NY, USA, 2016. [Google Scholar]
- Armstrong, S.A.; Headley, J.V.; Peru, K.M.; Germida, J.J. Phytotoxicity of oil sands naphthenic acids and dissipation from systems planted with emergent aquatic macrophytes. J. Environ. Sci. Health Part A 2007, 43, 36–42. [Google Scholar] [CrossRef]
- Renault, S.; Lait, C.; Zwiazek, J.; MacKinnon, M. Effect of high salinity tailings waters produced from gypsum treatment of oil sands tailings on plants of the boreal forest. Environ. Pollut. 1998, 102, 177–184. [Google Scholar] [CrossRef]
- Maas, E.V. Salinity and citriculture. Tree Physiol. 1993, 12, 195–216. [Google Scholar] [CrossRef]
- Naeth, M.A.; Wilkinson, S.R. Plant species suitability for reclamation of oil sands consolidated tailings. In Proceedings of the 26th Annual British Columbia Mine Reclamation Symposium, Dawson Creek, BC, Canada, 9–13 September 2002; pp. 226–229. [Google Scholar]
- Ripley, E.A.; Redmann, E.R.; Crowder, A.A.; Ariano, T.C.; Corrigan, C.A.; Farmer, R.J.; Jackson, L.M.; Redmann, R. Environmental Effects of Mining; St. Lucie Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Pinno, B.D.; Landhäusser, S.M.; Chow, P.S.; Quideau, S.; MacKenzie, M.D. Nutrient uptake and growth of fireweed (Chamerion angustifolium) on reclamation soils. Can. J. For. Res. 2014, 44, 1–7. [Google Scholar] [CrossRef]
- Myerscough, P.J.; Whitehead, F.H. Comparative Biology of Tussilago farfara L., Chamaenerion angustifolium (L.) Scop., Epilobium montanum L., and Fpilobium Adenocaulon hausskn. II. Growth and Ecology. New Phytol. 2006, 66, 785–823. [Google Scholar] [CrossRef]
- Government of Alberta. About Invasive Plants and Weeds. 2019. Available online: https://www.alberta.ca/about-invasive-plants-and-weeds.aspx (accessed on 23 August 2019).
- Bois, G.; Bigras, F.J.; Bertrand, A.; Piché, Y.; Fung, M.Y.; Khasa, D.P. Ectomycorrhizal fungi affect the physiological responses of Picea glauca and Pinus banksiana seedlings exposed to an NaCl gradient. Tree Physiol. 2006, 26, 1185–1196. [Google Scholar] [CrossRef] [Green Version]
- Acharya, S.N.; Darroch, B.A.; Hermesh, R.; Woosaree, J. Salt stress tolerance in native Alberta populations of slender wheatgrass and alpine bluegrass. Can. J. Plant Sci. 1992, 72, 785–792. [Google Scholar] [CrossRef]
Substrate | Water | ||||||
---|---|---|---|---|---|---|---|
Cake | Sand + Cake | FFMM + Cake | Peat + Cake | Reverse Osmosis | 50% Process Water | 100% Process Water | |
Percent solids (%) | 56 | 78 | 73 | 53 | |||
pH | 7.90 | 8.21 | 7.87 | 7.17 | 6.71 | 8.24 | 8.26 |
EC (mS/cm) | 2.79 | 4.95 | 4.73 | 2.39 | 0.02 | 1.16 | 2.18 |
TDS Calculated (g/L) | 3.69 | 5.64 | 4.82 | 2.86 | 0.02 | 1.06 | 1.87 |
SAR Concentrations | mg/kg mineral solids | mg/L | |||||
Na | 867 | 910 | 754 | 559 | 4.1 | 285 | 495 |
Cl− | 215 | 212 | 202 | 190 | 1.11 | 133.5 | 238 |
CO32− | 5.5 | 5.5 | <3.8 | <3.8 | <3.8 | 5.9 | 13 |
HCO3− | 1266 | 1567 | 1678 | 471 | 12.7 | 466 | 858 |
SO42− | 837 | 1766 | 1214 | 1017 | 2.30 | 94.9 | 151 |
Ca | 85 | 368 | 294 | 86 | 0.33 | 11.4 | 21.4 |
K | 42 | 56 | 78 | 44 | <0.01 | 7.73 | 13.1 |
Mg | 35 | 97 | 116 | 53 | 0.37 | 7.73 | 12.4 |
S | 319 | 614 | 435 | 383 | 0.88 | 36.5 | 58.9 |
B | 5.49 | 6.67 | 6.16 | 6.27 | 0.14 | 0.81 | 1.34 |
Ba | 0.96 | 0.83 | 0.71 | 8.21 | 0.00 | 0.22 | 0.39 |
Al | 0.07 | 0.04 | 0.63 | 1.49 | 0.00 | 0.03 | 0.02 |
Species | NH4+ | NO3− | P | K | Ca | S | Mg |
---|---|---|---|---|---|---|---|
Chamerion angustifolium | 0.56 | 0.64 * | 0.61 * | 0.30 | 0.13 | −0.10 | 0.75 * |
Sonchus arvensis | 0.55 | 0.20 | 0.49 | 0.34 | −0.13 | −0.13 | 0.61 * |
Agropyron trachycaulum | 0.29 | 0.53 | 0.57 | 0.00 | 0.38 | 0.13 | 0.52 |
Hordeum vulgare | 0.34 | 0.15 | 0.44 | 0.42 | −0.34 | −0.31 | 0.34 |
Nutrient Supply Rate (μg 10 cm−2 8 Weeks−1) | ||||||||
---|---|---|---|---|---|---|---|---|
Substrate | Process Water (%) | NH4+ | NO3− | P | K | Ca | S | Mg |
Cake | 0 | 8.2 | 0.0 | 7.4 | 44.9 | 1700.6 | 270.3 | 505.2 |
(2.6) | (0.0) | (2.5) | (3.2) | (51.9) | (54.3) | (25.1) | ||
Cake | 50 | 6.0 | 0.0 | 3.0 | 47.3 | 1592.4 | 238.2 | 490.5 |
(1.3) | (0.0) | (0.9) | (3.2) | (84.3) | (39.6) | (24.3) | ||
Cake | 100 | 6.3 | 0.0 | 1.3 | 45.7 | 1444.2 | 266.8 | 469.3 |
(1.8) | (0.0) | (0.3) | (3.2) | (43.90) | (66.1) | (21.8) | ||
Cake + FFMM | 0 | 4.6 | 2.8 | 5.5 | 30.4 | 2144.3 | 315.8 | 530.0 |
(1.6) | (2.8) | (0.7) | (1.1) | (71.0) | (56.2) | (22.0) | ||
Cake + FFMM | 50 | 5.2 | 2.6 | 3.7 | 32.5 | 2025.5 | 302.7 | 508.6 |
(2.0) | (1.8) | (0.7) | (1.7) | (84.1) | (24.0) | (19.2) | ||
Cake + FFMM | 100 | 3.09 | 5.7 | 3.9 | 32.0 | 1997.4 | 336.0 | 479.0 |
(0.9) | (3.9) | (0.3) | (1.7) | (111.9) | (58.0) | (18.0) | ||
Cake + Peat | 0 | 19.8 | 0.2 | 2.1 | 49.6 | 1845.5 | 638.4 | 569.8 |
(3.0) | (0.2) | (0.4) | (2.3) | (59.8) | (82.6) | (17.5) | ||
Cake + Peat | 50 | 16.3 | 0.07 | 2.0 | 51.8 | 1742.3 | 500.4 | 540.2 |
(2.9) | (0.1) | (0.1) | (2.2) | (46.7) | (65.9) | (12.0) | ||
Cake + Peat | 100 | 12.9 | 0.0 | 2.0 | 53.0 | 1659.2 | 599.3 | 530.3 |
(3.6) | (0.0) | (0.4) | (2.3) | (86.2) | (51.5) | (17.0) | ||
Cake + Sand | 0 | 2.4 | 0.0 | 2.2 | 27.1 | 2117.6 | 875.8 | 379.2 |
(0.3) | (0.0) | (0.3) | (1.4) | (62.7) | (80.4) | (16.7) | ||
Cake + Sand | 50 | 2.0 | 0.00 | 1.3 | 29.9 | 2083.4 | 723.6 | 395.7 |
(0.4) | (0.0) | (0.1) | (2.1) | (109.3) | (28.0) | (23.7) | ||
Cake + Sand | 100 | 2.5 | 0.0 | 1.0 | 30.8 | 1990.2 | 615.7 | 382.8 |
(0.8) | (0.0) | (0.1) | (1.5) | (86.4) | (45.5) | (10.0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omari, K.; Pinno, B.D.; Utting, N.; Li, E.H.Y. Growth of Common Plants of Boreal Reclamation Sites in Oil Sands Tailings Cake Mixes and Process Water. Land 2021, 10, 25. https://doi.org/10.3390/land10010025
Omari K, Pinno BD, Utting N, Li EHY. Growth of Common Plants of Boreal Reclamation Sites in Oil Sands Tailings Cake Mixes and Process Water. Land. 2021; 10(1):25. https://doi.org/10.3390/land10010025
Chicago/Turabian StyleOmari, Kwadwo, Bradley D. Pinno, Nicholas Utting, and Edith H.Y. Li. 2021. "Growth of Common Plants of Boreal Reclamation Sites in Oil Sands Tailings Cake Mixes and Process Water" Land 10, no. 1: 25. https://doi.org/10.3390/land10010025
APA StyleOmari, K., Pinno, B. D., Utting, N., & Li, E. H. Y. (2021). Growth of Common Plants of Boreal Reclamation Sites in Oil Sands Tailings Cake Mixes and Process Water. Land, 10(1), 25. https://doi.org/10.3390/land10010025